The majority of the credit you receive will be based on the completeness and the clarity of your responses. Please use equal signs where appropriate and write solutions with a logical flow. Show your work, and avoid saying things that are untrue, ambiguous, or nonsensical.

Chapter 4

1. Things you should know:

- Euler's formula, and the basics of complex numbers: addition, multiplication, complex conjugation, modulus and argument.
- The meaning of linear independence/dependence for real-valued functions.
- How to compute a Wronskian, and how to use a Wronskian to detect linear independence/dependence of solutions to linear homogeneous ODE's.
- How to use characteristic polynomials to solve second-order linear homogeneous ODE's with constant coefficients.
- How to solve second-order linear non-homogeneous ODE's using the method of undetermined coefficients.
- How to solve second-order linear non-homogeneous ODE's using the method of variation of parameters.

2. LINEAR HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS.

Form: $a y^{\prime \prime}+b y^{\prime}+c y=0$

- Solve the characteristic equation $a \lambda^{2}+b \lambda+c=0$ to find two solutions λ_{1} and λ_{2}.
- If λ_{1}, λ_{2} are distinct real solutions, then a solution to the ODE is $y=C_{1} e^{\lambda_{1} t}+C_{2} e^{\lambda_{2} t}$.
- If $\lambda_{1}=\lambda_{2}$ is a repeated real solutions, then a solution to the ODE is $y=C_{1} e^{\lambda_{1} t}+C_{2} t e^{\lambda_{1} t}$.
- If $\lambda_{1}=a+b i$ and $\lambda_{2}=a-b i$ are complex conjugate solutions, then a solutions to the ODE is $y=C_{1} e^{a t} \cos (b t)+C_{2} e^{a t} \sin (b t)$.

3. LINEAR EQUATIONS: UNDETERMINED COEFFICIENTS

Form: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$

- Obtain a fundamental set of solutions $\left\{y_{1}, y_{2}\right\}$ to the corresponding homogeneous equation $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$.
- Based on what $f(t)$ looks like, try to identify the form of the particular solution y_{p} to the ODE by multiplying by the appropriate t^{s}.
- Compute y_{p}^{\prime} and $y_{p}^{\prime \prime}$, and plug into the ODE to determine the values of the coefficients.
- A general solution to the ODE is $y=y_{p}+C_{1} y_{1}+C_{2} y_{2}$.

4. LINEAR EQUATIONS: VARIATION OF PARAMETERS

Form: $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$

- Obtain a fundamental set of solutions $\left\{y_{1}, y_{2}\right\}$ to the corresponding homogeneous equation $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$.
- Compute the Wronskian $W\left(y_{1}, y_{2}\right)$.
- Set $u_{1}^{\prime}=-\frac{y_{2}(t) f(t)}{W\left(y_{1}, y_{2}\right)(t)}$ and $u_{2}^{\prime}=\frac{y_{1}(t) f(t)}{W\left(y_{1}, y_{2}\right)(t)}$.
- Integrate to find u_{1} and u_{2}. Then, $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ is a particular solution to the ODE.
- A general solution is $y=y_{p}+C_{1} y_{1}+C_{2} y_{2}$.

