Plant-mediated stabilization of illitic clays in temperate soils: A potential pathway

John S. Breker M.S. Student, NDSU Dept. of Soil Science

NDSU GEOL 628: Geochemistry Dr. Berhardt Saini-Eidukat 6 December 2016

Clay minerals and soil potassium

- Cation exchange capacity
 - Exchangeable K (plantavailable)
- K fixation
 - Nonexchangeable K
 - Strong adsorption of K by high layer-charge clays
 - e.g., vermiculite, illite

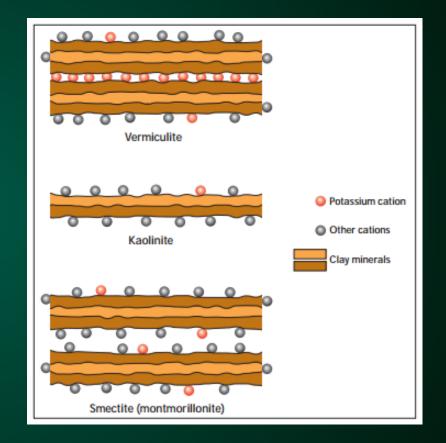
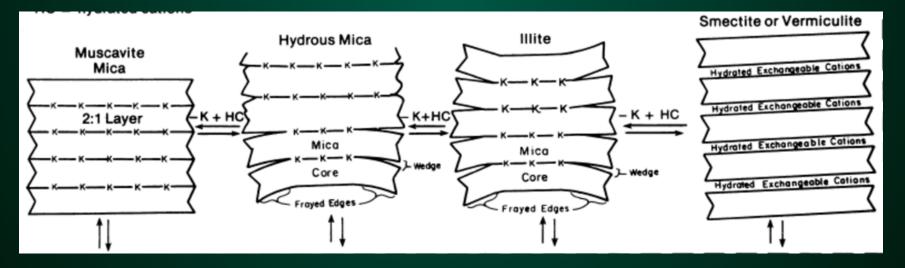
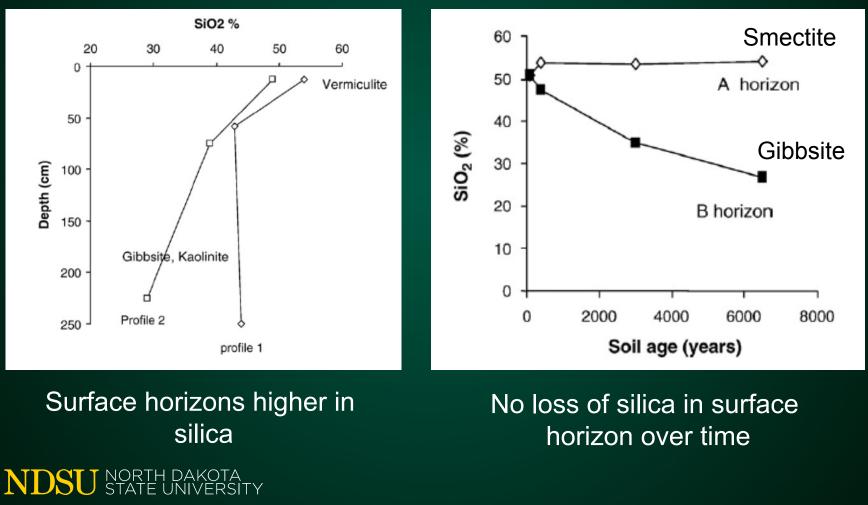
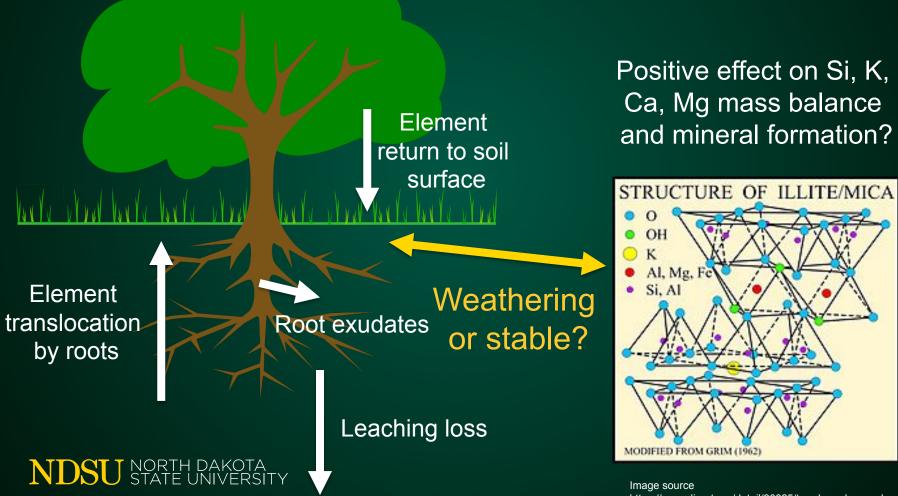



Image source

Classical paradigm of mineral weathering


- Loss of Si and mobile cations (K, Ca, Mg)
 Formation of keelinite and gibbaite
 - Formation of kaolinite and gibbsite
- K loss: illite \rightarrow smectite
- Si loss: 2:1 clays \rightarrow kaolinite

A horizons remain SiO₂ rich


Mississippi coastal plain, USA

Glacial moraine, Switzerland

From Barré et al., 2009

Plant interactions and nutrient uplift

https://openclipart.org/detail/90025/tree-branches-and-root-01r https://commons.wikimedia.org/wiki/File:Illstruc.jpg

Contents lists available at ScienceDirect

Geoderma

journal homepage: www.elsevier.com/locate/geoderma

How element translocation by plants may stabilize illitic clays in the surface of temperate soils

P. Barré ^{a,c,*}, G. Berger ^b, B. Velde ^c

^a BIOEMCO, UMR 7618, CNRS-INRA-ENS-Paris 6, AgroParisTech, Campus Grignon, bâtiment EGER, 78850 Thiverval-Grignon, France

^b LMTG, UMR 5563, CNRS-Université Paul Sabatier-IRD, 14 avenue Edouard Belin, 31400 Toulouse, France

^c Laboratoire de Géologie, UMR 8538, CNRS-ENS, Ecole normale supérieure, 24 rue Lhomond, 75005 Paris, France

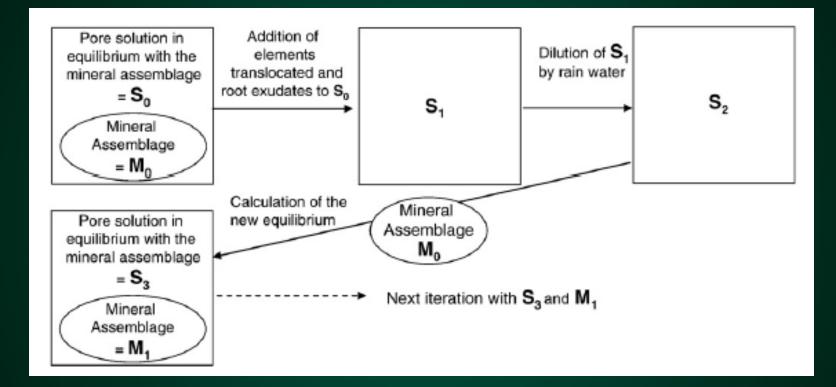
PHREEQC model

- Addition of Si, K, Ca, Mg, oxalic acid by plants
- Weathering by rainfall
- Changes in clay mineral composition

System inputs: Generic grassland

Temperate grassland Net primary productivity 10 t/ha/yr

Biomass translocated to 0-10 cm depth 2.5 t/ha/yr


Element addition (t/ha/yr)K0.125Si0.01875Ca0.025Mg0.01Oxalate0.5

Rainfall and element addition divided into 12 monthly batch-reaction events

Image source https://openclipart.org/detail/90025/tree-branches-and-root-01r https://openclipart.org/detail/22004/weather-symbols-rain

Batch-reaction pathway

From Barré et al., 2009

Model parameters

From Barré et al., 2009

Table 2

Selected parameter values for a "reference" temperate grassland ecosystem.

Parameter	Values
Soil horizon	0–10 cm
Bulk density	1.2 g/cm ³
Clay mineral content	25%
porosity	25%
Initial mineral phases	Illite, Ca montmorillonite,
	kaolinite, calcite
pCO ₂	10 ^{-3.5} ppm
Rain water	750 mm/year
Net primary production (NPP)	10 t/ha/year
ANPP	0.5*NPP
Roots in the top 10 cm	50%
Translocation	0.5* ANPP
ANPP K content	5%
ANPP Si content	0.75%
ANPP Ca content	1%
ANPP Mg content	0.4%
Root exudation	0.1*NPP
Oxalate introduced in the top 10 cm	0.5 (0.1*NPP)
Rain water interacting with pore solution (A)	25%
Temperature	25 °C

E1	E14 \checkmark : $\times \checkmark f_x$						
	А	В	С	D			
1							
2		Annual	Monthly				
3	Depth (cm)	10					
4	Rain (mm/yr)	750					
5	NPP (t/ha/yr)	10					
6	Aboveground NPP	5					
7	Translocated NPP	2.5					
8							
9	ANPP K content	0.05					
10	ANPP Si content	0.0075					
11	ANPP Ca content	0.01					
12	ANPP Mg content	0.004					
13							
14	K addition	0.125	0.01042	(t/ha/mo)			
15	Siaddition	0.01875	0.00156	(t/ha/mo)			
16	Ca additon	0.025	0.00208	(t/ha/mo)			
17	Mg addition	0.01	0.00083				
18							
19	Root exudation (t/ha/yr)	1.0					
20	Oxalate produced in top 10 cm	0.5	0.04167	(t/ha/mo)			
21	Rainwater acting in pore (mm)	187.5	15.625	(kg/m^2/mo)			
22							

Solution reactants

Initial pore solution

Monthly addition: Root exudates/elements Rain water

Clay (plus calcite) composition

Water/clay ratio	1 kg water / 1 kg clay						
	Mass (g/m	n^2)	Molec. Wt.	<u>mol</u>			
Initial solution	25000		18.02	1387.71	H2O		
K	1.04167		39.10	0.0266	KCI		
Si	0.15625		28.09	0.0056	Chalcedon	y	
Ca	0.20833		40.08	0.0052	CaCl2		
Mg	0.08333		24.31	0.0034	MgCl2		
Oxalate	4.16667		88.02	0.0473	Oxalic acid	I	
Water	15625		18.02	867.32	H2O		
							1

	Mass clay	Formula	Form. Wt	mol
g/m^2	25000			
Illite	6250	K0.6Mg0.25Al2.3Si3.5O10(OH)2	383.90	16.280
Ca-mont	6250	Ca0.165Al2.33Si3.67O10(OH)2	366.56	17.050
Kaol	6250	Al2Si2O5(OH)4	258.16	24.210
Calc	6250	CaCO3	100.09	62.446

Adding oxalate to the model

- Oxalate: C₂O₄²⁻
 Not defined in PHREEQC database
- Mg-, Ca-, & Al-oxalate complexes

```
೧ 🏦 🖈 К I 🎬 🎬
    SOLUTION MASTER SPECIES
X
          0x-2 0.0 0x
                            88.018
    Ox
    SOLUTION SPECIES
          H2Ox = H2Ox
          log k 0.0
          HOx - = HOx -
          log k 0.0
          0x - 2 = 0x - 2
          log k 0.0
          H+ + HOx - = H2Ox
          log K 1.25
          H+ + Ox-2 = HOx-
          log K 4.27
    PHASES
    Mg-Oxalate
          MgOx = Mg+2 + Ox-2
          log K -3.439
    Ca-Oxalate
          CaOx = Ca+2 + Ox-2
          log K -3.000
    Al-Oxalate
          A120x3 = 2 A1+3 + 3 0x-2
          log K -7.100
```

NDSU NORTH DAKOTA STATE UNIVERSITY

From Harrison and Thyne, 1992

Model structure

- SOLID_SOLUTIONS
 - Defined mass added (mol)
 - Keep track of mass
- REACTION
 - Element mass added (mol)
- EQUILIBRIUM_PHASES

 Cycle ran 12 times using previous solid solution

TITLE Cycle 1							
SOLUTION 0 Pore solution							
temp 25.	D						
-water 25.	-water 25.0 #kg						
SOLID SOLUTIONS 0	Mineral assemblage	initial					
Clay fraction	on						
-comp	Illite	16.280					
	Ca-montmorillonite	17.050					
-comp	Kaolinite	24.210					
-comp	Calcite	62.446					
USE solution 0							
USE solid_solution	n 0						
EQUILIBRIUM_PHASE:	5 0						
CO2 (g)	-3.5						
SAVE solution 1							
END END							
USE colution 1							
REACTION 1							
KC1	0.026642						
Chalcedony							
CaC12	0.005198						
MgC12	0.003429						
H2Ox	0.047339						
1.0 moles							
SAVE solution 2							
END							
USE solution 2							
REACTION 2							
H2O	1.0						
867.3192978	moles						
SAVE solution 3 END							
	- 0						
USE solid_solution USE solution 3							
EQUILIBRIUM PHASE							

Model output Initial solution equilibration

Solid solutions							
Solid solution	Component	Moles	Delta moles	Mole fract			
Clay		1.20e+02					
	Illite	1.63e+01	-1.25e-02	1.36e-01			
	Ca-montmorillonite	1.70e+01	-9.07e-02	1.41e-01			
	Kaolinite	2.43e+01	1.20e-01	2.03e-01			
	Calcite	6.25e+01	8.11e-03	5.20e-01			
Description of solution							
	pH	= 8.2	265				
	pe	= 9.0	684				
Specific Conduct	ance (µS/cm, 25°C)	= 104					
	Density (g/cm³)	= 0.9	99735				
	Volume (L)	= 25.	07403				

Phase	5100.
Al(OH)3(a)	-5.15
Anorthite	-5.99
Aragonite	-0.43
Ca-Montmorillo	onite -0.85
Calcite	-0.28
CH4 (g)	-121.36 -
Chalcedony	1.28
Chlorite(14A)	-1.18
Chrysotile	0.89
CO2 (g)	-3.50
Dolomite	-0.78
Gibbsite	-2.46
H2 (g)	-35.95
H2O(g)	-1.50
Illite	-0.87
K-feldspar	1.45
K-mica	2.13
Kaolinite	-0.69
O2 (g)	-11.39
Quartz	1.71
Sepiolite	2.51
Sepiolite(d)	-0.39
SiO2(a)	0.44
Talc	7.14

ST**

Phase

Model output Cycle 1: Element addition & mineral re-equilibration

Solid solutions					Phase	SI** 1
					Al(OH)3(a)	-5.16
Solid solution	Component	Moles	Delta moles	Mole fract	Al-Oxalate	-38.63
. r					Anorthite	-5.99
Clay		1.20e+02			Aragonite	-0.43
	Illite	1.63e+01		1.36e-01	Ca-Montmorillo	nite -0.85
	Ca-montmorillonite	1.70e+01		1.42e-01	Ca-Oxalate	-3.12
	Kaolinite	2.43e+01	6.82e-02	2.02e-01	Calcite	-0.28
	Calcite	6.24e+01	-3.23e-02	5.20e-01	CH4 (g)	-122.15 -
					Chalcedony	1.28
					Chlorite(14A)	-3.39
	Description	of soluti	.on		Chrysotile	-0.44
					CO2 (g)	-3.50
	7	рН = 7.	960		Dolomite	-1.22
		pe = 10.			Gibbsite	-2.47
		-	000		H2 (g)	-36.14
Specific Condu	uctance (µS/cm, 25°	•			H2O(g)	-1.50
	Density (g/cm		99754		Illite	-0.87
	Volume (1	L) = 40.	74688		K-feldspar	1.64
					K-mica	2.32
					Kaolinite	-0.69
					Mg-Oxalate	-3.46
					O2 (g)	-11.00
					Quartz	1.71
					Sepiolite	1.63
					Sepiolite(d)	-1.27
	RTH DAKOTA				SiO2(a)	0.44
NDSU NORTH DAKOTA STATE UNIVERSITY					Sylvite	-6.96
					Talc	5.82

Model output After 12 cycles

Solid solution	Component	Moles	Delta moles	Mole fract
Clay		1.20e+02		
	Illite	1.62e+01	-9.13e-03	1.35e-01
	Ca-montmorillonite	1.65e+01	-4.66e-02	1.38e-01
	Kaolinite	2.50e+01	6.48e-02	2.09e-01
	Calcite	6.21e+01	-3.25e-02	5.18e-01

Solid solutions-----

Cumulative change

	lnitial (mol)	Final (mol)	Δmol	Relative amount (%)
Illite	16.28	16.2	-0.080	99.5
Ca-mont	17.05	16.5	-0.550	96.8
Kaolinite	24.21	25.0	0.790	103.3
Calcite	62.45	62.1	-0.346	99.4

Phase	SI** 1
Al(OH)3(a)	-5.13
Al-Oxalate	-38.58
Anorthite	-5.98
Aragonite	-0.43
Ca-Montmorillon:	ite -0.86
Ca-Oxalate	-3.12
Calcite	-0.29
CH4 (g)	-21.12
Chalcedony	1.26
Chlorite(14A)	-3.33
Chrysotile	-0.44
CO2 (g)	-3.50
Dolomite	-1.21
Gibbsite	-2.44
H2(g)	-10.89
H2O(g)	-1.50
Illite	-0.87
K-feldspar	1.61
K-mica	2.34
Kaolinite	-0.68
Mg-Oxalate	-3.45
O2 (g)	-61.51
Quartz	1.69
Sepiolite	1.59
Sepiolite(d)	-1.31
SiO2(a)	0.42
Sylvite	-6.95
Talc	5.78

Discrepancies with Barré et al., 2009

	∆mmol/kgw			
	Barré et al., 2009	Model attempt		
Illite	0.205	-0.38		
Ca-mont	-0.063	-2.59		
Kaolinite	-0.182	3.72		
Calcite		-1.63		

- Database: PhreeqC vs. SUPCRT92
- Original clay mineral assemblage not defined

Synthesis of additional minerals?

Supersaturated in: K-feldspar K-mica Talc

SI after 1	cycle	SI after 1	2 cycles	
Phase	SI** 1	Phase	SI** 1	
Al(OH)3(a)	-5.16	Al(OH)3(a)	-5.13	
Al-Oxalate	-38.63	Al-Oxalate	-38.58	
Anorthite	-5.99	Anorthite	-5.98	
Aragonite	-0.43	Aragonite	-0.43	
Ca-Montmorillo	nite -0.85	Ca-Montmorillonite -0.86		
Ca-Oxalate	-3.12	Ca-Oxalate	-3.12	
Calcite	-0.28	Calcite	-0.29	
CH4 (g)	-122.15 -	CH4 (g)	-21.12	
Chalcedony	1.28	Chalcedony	1.26	
Chlorite(14A)	-3.39	Chlorite(14A)	-3.33	
Chrysotile	-0.44	Chrysotile	-0.44	
CO2 (g)	-3.50	CO2 (g)	-3.50	
Dolomite	-1.22	Dolomite	-1.21	
Gibbsite	-2.47	Gibbsite	-2.44	
H2 (g)	-36.14	H2 (g)	-10.89	
H2O(g)	-1.50	H2O(g)	-1.50	
Illite	-0.87	Illite	-0.87	
K-feldspar	1.64	K-feldspar	1.61	
K-mica	2.32	K-mica	2.34	
Kaolinite	-0.69	Kaolinite	-0.68	
Mg-Oxalate	-3.46	Mg-Oxalate	-3.45	
02 (g)	-11.00	02 (g)	-61.51	
Quartz	1.71	Quartz	1.69	
Sepiolite	1.63	Sepiolite	1.59	
Sepiolite(d)	-1.27	Sepiolite(d)	-1.31	
SiO2(a)	0.44	SiO2(a)	0.42	
Sylvite	-6.96	Sylvite	-6.95	
Talc	5.82	Talc	5.78	

Refitting model for K-mica, K-feldspar, talc

Initial equilibration

Solid solutions-

Component	Moles	Delta moles
	1.19e+02	
Illite	3.44e-02	-1.62e+01
Ca-montmorillonite	2.35e+01	6.41e+00
Kaolinite	2.35e+01	-7.55e-01
Calcite	6.14e+01	-1.07e+00
K-mica	7.09e+00	7.09e+00
K-feldspar	2.65e+00	2.65e+00
Talc	1.35e+00	1.35e+00

After 12th cycle

Solid solutions----

Component	Moles	Delta moles
	1.19e+02	
Illite	3.46e-02	1.40e-05
Ca-montmorillonite	2.28e+01	-6.52e-02
Kaolinite	2.37e+01	2.74e-02
Calcite	6.07e+01	-5.21e-02
K-mica	7.49e+00	3.51e-02
K-feldspar	2.58e+00	-8.52e-03
Talc	1.37e+00	1.13e-03

NDSU NORTH DAKOTA STATE UNIVERSI

Cumulative change: Equilibration to final

	Start (mol)	Initial equilibration (mol)	Final (mol)	∆mol final
Illite	16.28	0.0344	0.0346	0.0002
Ca-mont	17.05	23.5	22.8	-0.7
Kaolinite	24.21	23.5	23.7	0.2
Calcite	62.45	61.4	60.7	-0.7
K-mica	0.0	7.1	7.5	0.4
K-feldspar	0.0	2.7	2.6	-0.07
Talc	0.0	1.35	1.37	0.02

Temperature grassland: Model failure

- Parameters of Barré et al., 2009
 - Failure to synthesize illite
 - Synthesis of kaolinite backs up classical weathering theory
- Allowance for K-mica, K-feldspar, talc
 - Immediate re-equilibration to those minerals
 - Illite, kaolinite, K-mica, and talc synthesized
 - Kinetic considerations

System inputs: Eastern ND From Whitman and Wali, 1975 Rainfall 500 mm/yr Tallgrass prairie Net primary productivity 8.6 t/ha/yr Element addition (t/ha/yr) Κ 0.1075 Si 0.016125 0.0215 Ca Biomass translocated to 0-10 cm depth Mg 0.0086 2.15 t/ha/yr 0.43 Oxalate

Rainfall and element addition divided into 12 monthly batch-reaction events

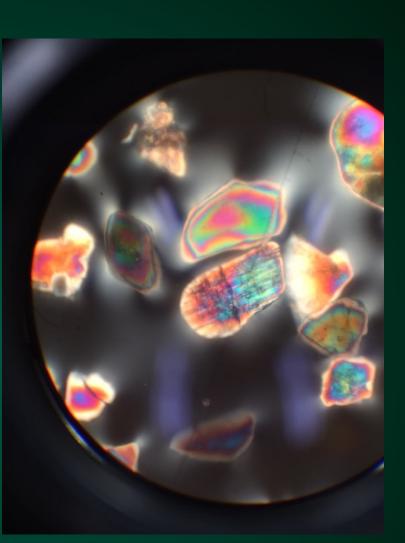
NDSU NORTH DAKOTA STATE UNIVERSITY

> Image source https://openclipart.org/detail/90025/tree-branches-and-root-01r https://openclipart.org/detail/22004/weather-symbols-rain

Eastern ND: Model semi-success

Surface soil from Milnor, ND 2015 (0-6 inches)

	Soil analysis	Initial (mol)	Final (mol)	Δmol
	% of clay fraction			
Illite	20	12.66	12.7	0.04
Ca-mont	74	49.06	45.5	-3.56
Kaolinite	6	5.65	9.79	4.14
Calcite	2.8 (of whole soil)	6.99	7.12	0.13


Discussion

- Unable to reproduce Barré et al., 2009
 Original clay mineral assemblage
- Neoformation of K-mica and K-feldspar?
- Nonexchangeable K release slow in soils (Sparks and Huang, 1985)
- Eastern ND soil
 - Stabilized illite and kaolinite, loss of smectite

Conclusion

- Model requires some "tinkering"
 - System and soil characteristic dependent
 - Kinetic considerations
- Possible rejection of classical weathering theory in surface soils
 - Empirical data
 - Element translocation and nutrient uplift
 - Fertilizer K additions, crop K removal

Questions?

"Tartan" twinning of microcline (K-feldspar)

References

- Barré, P., Berger, G., and Velde, B., 2009, How element translocation by plants may stabilize illitic clays in the surface of temperate soils: Geoderma, v. 151, no. 1–2, p. 22–30.
- Harrison, W.J., and Thyne, G.D., 1992, Prediction of diagenetic reactions in the presence of organic acids: Geochimica et Cosmochimica Acta, v. 56, no. 2, p. 565–586.
- McLean, E.O., and Watson, M.E., 1985, Soil measurements of plant-available potassium, in Munson, R.D. ed., Potassium in Agriculture, ASA-CSSA-SSSA, Madison, WI, p. 277–308.
- Sparks, D.L., and Huang, P.M., 1985, Physical chemistry of soil potassium, in Munson, R.D. ed., Potassium in Agriculture, ASA-CSSA-SSSA, Madison, WI, p. 201–276.
- Whitman, W.C., and Wali, M.K., 1975, Grasslands of North Dakota, in Wali, M.K. ed., Prairie: A multiple view, University of North Dakota Press, Grand Forks, ND, p. 53– 73.