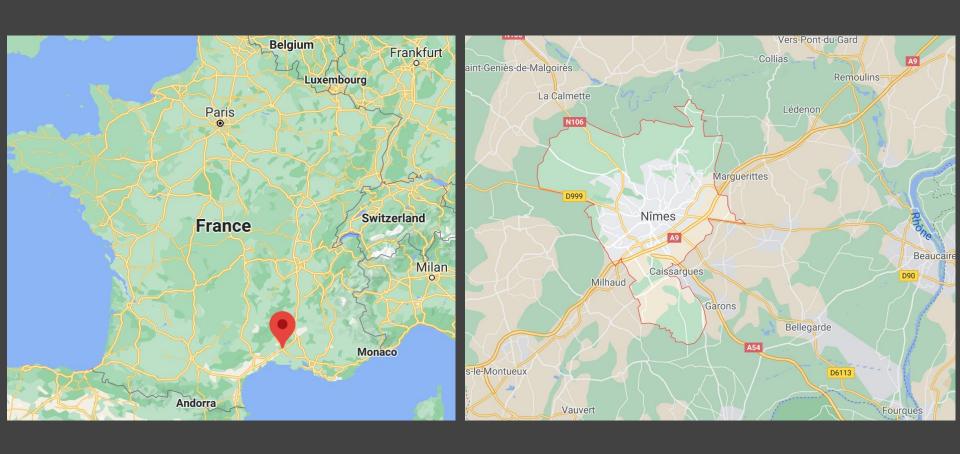
Use of Mixing Models to Explain Groundwater Quality in Aquifers


By Camden Hoganson NDSU Geochemisitry GEOL 428 2020

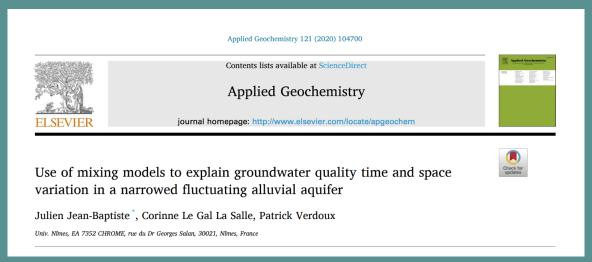
Introduction

- In France groundwater makes up approximately 62% of domestic water supply
- Alluvial aquifers constitute an accessible and easily renewed resource, recharged by surface water
- Around 10 million people depend on this resource and since the beginning of the last century, quality and quantity pressures have been increasing

Focus

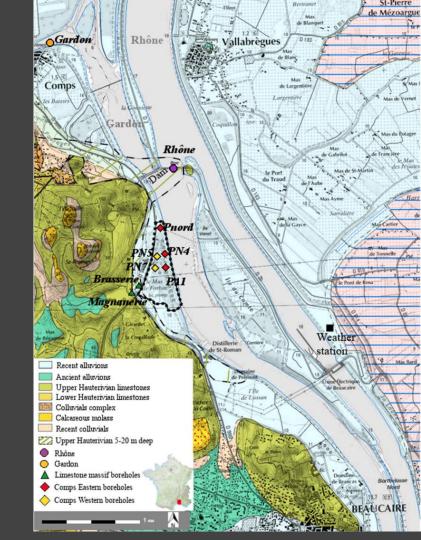
- Comps aquifer system used in Nîmes township
- Origin of the water
- mixing processes
- reactive processes

Local geology


- Comps aquifers is located in between the Rhone and the Gardon Rivers
- Cretaceous limestone massif outcropping and plunging Eastward
- 15 m of Holocene alluvial materials deposited by the Rhone ^ and Gardon valley, the Comps aquifer is covered by 5 m of loam and lies on a 200 m thick impermeable Plaisancien loam formation.

Why I choose aquifers

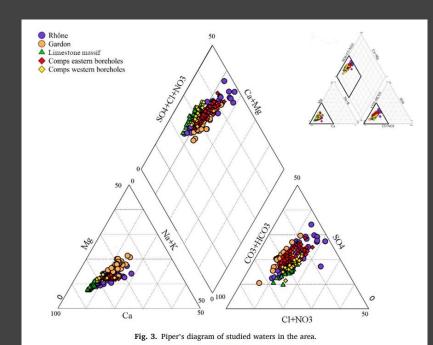
- I think fresh water can be such an overlooked resource and i think it should be protected better.
- Groundwater makes up 30% of freshwater and about 68% of freshwater is in glaciers and ice caps



 Julien Jean-Baptiste, Corinne Le Gal La Salle, Patrick Verdoux, Use of mixing models to explain groundwater quality time and space variation in a narrowed fluctuating alluvial aquifer, Applied Geochemistry, Volume 121, 2020, 104700, ISSN 0883-2927,

Sample Areas

- Multiply samples taken:
 - Limestone massif boreholes (green triangle)
 - Comps Eastern boreholes (red rhombus)
 - Comps Western boreholes (yellow rhombus)
- Temperature, pH, oxydo-reduction potential, specific conductance at 25 °C and dissolved oxygen



Previous work

- lons: Ca2+, Mg2+, Na+, K+, Cl-, SO4 2-, and NO3 -
- PHREEQC and GLUE-EMMA were used to do calculations
- Water was collected in 10mL, glass bottles avoiding air bubbles, for δ 180 and δ 2 H analyses.
- Everything came back normal and was all well within the stable limits
- Mixing models are accepted when simulated results fall within $\pm 5\%$ for the major ions and 0.5‰ for deuterium.

Piper's Diagram

- Data from fortnightly sampling are given in Table 1 (supplementary data). Major ion analyses, for all considered water bodies in the studied area, exhibit a typical Ca– HCO3 fresh water type (Fig. 3.)
- Limestone massif waters present higher proportion of calcium and nitrate ions while surface waters exhibit higher proportion of magnesium and sodium ions.

Previous Work

- The end results of this study were that the water quality was normal and was tested for 60 days and there were no harmful agents in the water
- What they did find however is that the groundwater levels were dropping much more than expected in the summer
- They predict in 2060 that the river level will drop 30-70%

Mixing Models

Phase	SI	log IAP	log KT	
Anhydrite	-1.47	-5.83	-4.36	CaSO4
Aragonite	-0.79	-9.13	-8.34	CaCO3
Calcite	-0.65	-9.13	-8.48	CaCO3
CH4(q)	-32.07	-76.00	-43.93	CH4
CO2(g)	-1.85	-20.00	-18.15	CO2
Dolomite	-0.92	-18.01	-17.09	CaMg(CO3)
Gypsum	-1.25	-5.83	-4.58	CaSO4:2H20
H2(q)	-14.00	-14.00	0.00	Н2
H2O(q)	-1.51	-0.00	1.51	H2O
H2S(g)	-31.11	-72.70	-41.59	H2S
Halite	-6.29	-4.70	1.58	NaCl
N2(q)	-0.03	-3.29	-3.26	N2
NH3(g)	-18.12	-22.64	-4.52	NH3
02(g)	-55.12	28.00	83.12	02
Sulfur	-22.99	-58.70	-35.71	S

Phase	SI	log IAP	log KT	
Anhydrite	-1.48	-5.84	-4.36	CaSO4
Aragonite	-1.07	-9.41	-8.34	CaCO3
Calcite	-0.93	-9.41	-8.48	CaCO3
CH4(g)	-32.20	-76.14	-43.93	CH4
CO2(g)	-1.99	-20.14	-18.15	CO2
Dolomite	-1.42	-18.51	-17.09	CaMg(CO3)2
Gypsum	-1.26	-5.84	-4.58	CaSO4:2H2O
H2(g)	-14.00	-14.00	0.00	H2
H2O(g)	-1.51	-0.00	1.51	H2O
H2S(g)	-30.98	-72.57	-41.59	H2S
Halite	-6.14	-4.55	1.58	NaCl
N2(g)	0.73	-2.53	-3.26	N2
NH3(g)	-17.74	-22.26	-4.52	NH3
02(g)	-55.12	28.00	83.12	02
Sulfur	-22.86	-58.57	-35.71	S

Phase	SI	log IAP	log KT	
Anhydrite Aragonite Calcite CH4(g)	-1.47 -0.79 -0.65 -32.07	-9.13	-8.48	CaSO4 CaCO3 CaCO3 CH4
CO2(g) Dolomite Gypsum H2(g)	-1.85 -0.92 -1.25 -14.00 -1.51	-20.00 -18.01 -5.83 -14.00	-18.15 -17.09	CO2 CaMg(CO3)2 CaSO4:2H2O H2
H2O(g) H2S(g) Halite N2(g) NH3(g) O2(g) Sulfur	-1.51 -31.11 -6.29 -0.03 -18.12 -55.12 -22.99	-72.70 -4.70 -3.29 -22.64 28.00	-41.59 1.58 -3.26 -4.52	H2O H2S NaCl N2 NH3 O2 S

Phase	SI	log IAP	log KT	
Anhydrite Aragonite Calcite CH4(g) CO2(g) Dolomite Gypsum H2(g) H2O(g)	-1.44 -0.53 -0.39 -31.77 -1.56 -0.24 -1.22 -14.00 -1.51	-5.80 -8.87 -8.87 -75.70 -19.71 -17.33 -5.80 -14.00 -0.00	-4.36 -8.34 -8.48 -43.93 -18.15 -17.09 -4.58 0.00 1.51	CaSO4 CaCO3 CH4 CO2 CaMg(CO3)2 CaSO4:2H2O H2
H2S(g) Halite N2(g) NH3(g) O2(g) Sulfur	-31.05 -6.06 0.57 -17.82 -55.12 -22.93	-4.47 -2.69 -22.34 28.00	-4.52	H2S NaC1 N2 NH3 O2 S

Phase	SI	log IAP	log KT	
Anhydrite	-1.47	-5.83	-4.36	CaSO4
Aragonite	-0.79	-9.13	-8.34	CaCO3
Calcite	-0.65	-9.13	-8.48	CaCO3
CH4(g)	-32.07	-76.00	-43.93	CH4
CO2(g)	-1.85	-20.00	-18.15	CO2
Dolomite	-0.92	-18.01	-17.09	CaMg(CO3)2
Gypsum	-1.25	-5.83	-4.58	CaSO4:2H2O
H2(g)	-14.00	-14.00	0.00	H2
H2O(g)	-1.51	-0.00	1.51	H2O
H2S(g)	-31.11	-72.70	-41.59	H2S
Halite	-6.29	-4.70	1.58	NaCl
N2(g)	-0.03	-3.29	-3.26	N2
NH3(g)	-18.12	-22.64	-4.52	NH3
02(g)	-55.12	28.00	83.12	02
Sulfur	-22.99	-58.70	-35.71	S

Phase	SI	log IAP	log KT	
Anhydrite	-1.45		-4.36	CaSO4
Aragonite	-0.64	-8.97	-8.34	CaCO3
Calcite	-0.49	-8.97	-8.48	CaCO3
CH4(g)	-31.82	-75.75	-43.93	CH4
CO2(g)	-1.68	-19.83	-18.15	CO2
Dolomite	-0.52	-17.61	-17.09	CaMg(CO3)2
Gypsum	-1.23	-5.81	-4.58	CaSO4:2H2O
H2(g)	-13.98	-13.98	0.00	H2
H2O(g)	-1.51	-0.00	1.51	H2O
H2S(g)	-31.00	-72.59	-41.59	H2S
Halite	-6.16	-4.57	1.58	NaCl
N2(g)	0.37	-2.89	-3.26	N2
NH3(g)	-17.89	-22.42	-4.52	NH3
02(g)	-55.16	27.96	83.12	02
Sulfur	-22.90	-58.61	-35.71	S

Mixing Models

Phase	SI	log IAP	log KT	
Anhydrite	-1.39	-5.75	-4.36	CaSO4
Aragonite	-0.96	-9.30	-8.34	CaCO3
Calcite	-0.82	-9.30	-8.48	CaCO3
CH4(g)	-32.21	-76.14	-43.93	CH4
CO2(g)	-1.99	-20.14	-18.15	CO2
Dolomite	-1.27	-18.36	-17.09	CaMg(CO3)
Gypsum	-1.17	-5.75	-4.58	CaSO4:2H2
H2(g)	-14.00	-14.00	0.00	н2
H2O(g)	-1.51	-0.00	1.51	H2O
H2S(g)	-31.00	-72.59	-41.59	H2S
Halite	-6.11	-4.53	1.58	NaCl
N2(g)	0.78	-2.48	-3.26	N2
NH3(g)	-17.72	-22.24	-4.52	NH3
O2(g)	-55.12	28.00	83.12	02
Sulfur	-22.88	-58.59	-35.71	S

Phase	SI	log IAP	log KT	
Anhydrite	-1.10	-5.46	-4.36	CaSO4
Aragonite	-0.31	-8.65	-8.34	CaCO3
Calcite	-0.17	-8.65	-8.48	CaCO3
CH4(g)	-31.86	-75.79	-43.93	CH4
CO2(g)	-1.64	-19.79	-18.15	CO2
Dolomite	-0.18	-17.27	-17.09	CaMg(CO3)2
Gypsum	-0.88	-5.47	-4.58	CaSO4:2H2O
H2(g)	-14.00	-14.00	0.00	Н2
H2O(g)	-1.51	-0.00	1.51	H2O
H2S(g)	-31.02	-72.60	-41.59	H2S
Halite	-6.11	-4.53	1.58	NaCl
N2(g)	0.55	-2.71	-3.26	N2
NH3(g)	-17.83	-22.36	-4.52	NH3
02(g)	-55.12	28.00	83.12	02
Sulfur	-22.89	-58.60	-35.71	S

Phase	SI	log IAP	log KT	
Anhydrite	-1.22		-4.36	CaSO4
Aragonite	-0.57	-8.91	-8.34	CaCO3
Calcite	-0.43	-8.91	-8.48	CaCO3
CH4(g)	-32.00	-75.93	-43.93	CH4
CO2(g)	-1.78	-19.93	-18.15	CO2
Dolomite	-0.62	-17.71	-17.09	CaMg(CO3)2
Gypsum	-1.00	-5.58	-4.58	CaSO4:2H2O
H2(g)	-14.00	-14.00	0.00	H2
H2O(g)	-1.51	-0.00	1.51	H2O
H2S(g)	-31.02	-72.61	-41.59	H2S
Halite	-6.11	-4.53	1.58	NaCl
N2(g)	0.68	-2.58	-3.26	N2
NH3(g)	-17.77	-22.29	-4.52	NH3
02(g)	-55.12	28.00	83.12	02
Sulfur	-22.90	-58.60	-35.71	S

Questions?