Nitrate and Fluoride Enriched Groundwater Purification in India

BY SAM MAROLT NDSU GEOCHEMISTRY 2018

Why This Topic?

- Thought fluoride was a good thing, too much is bad
- Nitrate contamination is widespread worldwide
- Was interested in learning how to go about purifying water

Background

- ▶ 62% of Guna's surface area is used for agriculture
- Fluoride is necessary in water for dental hygiene
- Higher amounts can cause Fluorosis
- EPA suggests no more than 4 mg/L
- World Health Organization has set its maximum contaminant level for fluoride at 1.5 mg/L
- Consuming more than 10mg of fluoride a day causes Fluorosis

Local Geology

ABUNDANCE OF FLUORINE IN ROCKS

Averages of the fluorine contents of various igneous rocks are as follows:

Pock type	Fluorine, in parts per million (number of samples in parentheses)						
KOCK type	Fleischer and Robinson (1963, tables I, II)	This report ¹					
Extrusive:							
Basalt	380 (268)	510 (187)					
Andesite	220 (83)	630 (85)					
Rhyolite	700 (145)	780 (261)					
Phonolite	930 (14)						
Intrusive:							
Gabbro	430 (47)						
Granite ² granodiorite	840 (183)						
Alkalic rocks	960 (71)	32,640 (100)					

How was data collected

- 149 groundwater samples were taken in bore wells systematically spaced
- Digital electrodes were used to collect Temp., EC, DO, Redox Potential, and TDS.
- Data was then rechecked in a lab with 100ml water samples
- Sample ion activity was determined using electrodes, titrations, and a spectrophotometer
 - Spectrophotometer uses reflected light to determine concentrations of known chemical substances

Table 1. Summary of statistics of hydrogeochemical parameters.

		Eh	EC	DO	TDS	C1 -	HCO:	SO ²⁻	NO.	F ⁻	PO3-	H ₂ SiO7	Na	K	Mg	Ca	Cu	Pb	Fe	Hg
Statistics	pH	(mV)	(S/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Kumbha	Kumbharaj block, $N=12$																			
Min.	7.05	370	550	9.1	385	75.03	78.72	17.5	13	0.5	0.26	6.33	44	3	14	24	0.22	0.01	0.01	0.0006
Max.	7.89	410	2700	12.6	1890	455.6	510.45	107.1	108	8.46	0.44	36.67	154	133	126	204	1.33	0.875	1.03	0.0066
Mean	7.36	392.92	1075.8	11.28	753.08	177.06	350.97	49.46	43.92	2.25	0.3	23.82	79.04	20.91	54.46	88.43	0.975	0.33	0.249	0.004
Std.	0.31	12.5	632.65	0.96	442.85	124.36	142.47	26.59	22.95	2.35	0.05	8.79	35.81	37.62	31.12	62.72	0.37	0.22	0.29	0.0016
Raghoga	arh blo	ck, N:	=59																	
Min.	6.79	311	400	8.7	280	32.55	34.44	21	8.75	0.01	0.27	16.33	25	0.01	1.2	1.6	0.26	0.001	0.02	0.0001
Max.	7.81	415	4100	13.5	2865	1288.8	776.13	246.2	371.3	2.99	1.36	32.67	730	510	245.2	328.8	2.41	0.904	3.18	0.0097
Mean	7.21	367.93	1163.7	10.59	816.27	219.43	409.32	63.57	83.8	1.24	0.37	19.99	104.9	26.51	68.8	86.55	1.03	0.45	0.48	0.005
Std.	0.21	18.26	747.45	0.9	523.01	247.78	170.36	48.55	54.66	0.84	0.15	3.3	126.5	83.92	45.27	57.81	0.391	0.144	0.346	0.0065
Aron bl	Aron block, $N=22$																			
Min.	6.71	322	350	8.8	245	45.04	86.45	10.5	19.25	0.12	0.26	12.67	20	0.01	14	16	0.11	0.001	0.03	0.0003
Max.	7.24	395	1820	11.8	1274	465.23	543.66	88.1	123	1.87	0.38	31.33	112	29	103.6	206.4	1.93	0.863	1.98	0.0076
Mean	7.08	366.13	804.54	10.36	554	133.98	336.14	28.64	58.13	0.77	0.29	16.23	67.27	5.41	50.04	65.81	0.736	0.049	0.96	0.005
Std.	0.18	21.66	339.54	0.79	237.68	99.56	127.1	20.33	30.93	0.46	0.04	3.85	24.98	7.18	23.06	41.19	0.52	0.177	0.46	0.0018
Guna bl	lock, N	=17																		
Min.	6.71	247	470	8.8	330	52.53	254.12	15.3	30.5	0.12	0.26	14.33	34	1	26.8	44.8	0.15	0.007	0.07	0.0003
Max.	7.27	388	1560	11.8	1090	300.32	536.28	78.2	136.3	1.87	0.52	22.67	91	170	84.4	144	2.33	0.016	3.73	0.0092
Mean	7.04	352.7	806.47	10.15	560	137.47	393.46	33.5	69.22	0.65	0.36	17.04	63.24	22.46	54.68	78.78	1.044	0.13	1.091	0.005
Std.	0.15	32.36	249.65	0.94	170	64.24	75.69	18.33	24.11	0.75	0.07	1.93	17.58	43	13.88	28.28	0.53	0.003	0.95	0.002
Bamori	block,	N=29																		
Min.	6.6	297	300	8.7	204	55.03	93.48	19	23.5	0.12	0.26	10.33	15	1	6	30.4	0.19	0.003	0.02	0.0001
Max.	7.32	425	1020	11.5	693.6	290.12	436.65	71.9	308.5	2.74	0.38	31.33	70	1.89	66.8	121.6	2.22	0.015	1.92	0.0074
Mean	6.96	380.86	549.31	9.81	373.53	107.46	244.99	29.8	75.44	0.73	0.33	18.53	39.48	23.48	37.13	57.23	1.078	0.012	0.601	0.004
Std.	0.18	23.96	167.95	0.71	114.2	53.12	91.28	13.35	54.65	0.72	0.06	4.67	13.92	43.87	17.5	19.89	0.46	0.003	0.51	0.0025
Chachoo	da bloc	k, N =	10																	
Min.	6.91	305	520	10.4	525	105.4	27.06	23.9	13.25	0.25	0.28	14	55	1	23.6	3.2	0.37	0.01	0.07	0.0001
Max.	8.78	388	3300	12.2	2310	873.48	604.84	137.2	288	9.08	0.35	21	176	27	231.4	304.8	1.81	0.21	1.07	0.0097
Mean	7.39	355.5	1615	11.11	1130.5	363.03	335.49	74.2	106.6	2.74	0.31	16.97	109.6	5.5	84.99	133.8	0.94	0.055	0.25	0.004
Std.	0.66	24.06	962.06	0.51	673.82	290.01	212.33	33.98	77.44	3.1	0.03	2.26	41.59	7.56	74.08	98.18	0.49	0.057	0.3	0.0031
WHO.	6.5 - 8.5	÷							50	1.5			200		50	200	1.5	0.01	0.3	0.006
BIS*	6.5 - 8.5	i			2000	1000	732	400	100	1.5			200		100	200	1	0.05	1	0.001
*Permiss	ible lim	it.															Srivact	a and P	amanath	an 2018

Srivasta and Ramanathan, 2018

Previous studies

- Source of fluorine identified:
 - Aquifer is composed of fluorine rich basalts, this fluorine is then dissolved into the groundwater
- Source of nitrates identified:
 - Nitrates are being used for agricultural purposes and then running off into the groundwater
- Both nitrates and fluorine are above the permissible contamination level in the groundwater
- Proposed solution:
 - Reduce consumption of fertilizer to solve the nitrate issue
 - Drink water from lower fluorine rich wells

Srivasta and Ramanathan, 2018

Chachoda Block

		$\mathbf{E}\mathbf{h}$	EC	DO	TDS	Cl^{-}	HCO_3^-	SO_4^{2-}	NO_3^-	F^{-}	PO_4^{3-}	$H_3SiO_4^-$	Na	Κ	Mg	Ca	Cu	\mathbf{Pb}	Fe	Hg
Statistics	$_{\rm pH}$	(mV)	(S/cm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Chachoda	a bloc	$\mathbf{k}, N =$	10																	
Min.	6.91	305	520	10.4	525	105.4	27.06	23.9	13.25	0.25	0.28	14	55	1	23.6	3.2	0.37	0.01	0.07	0.0001
Max.	8.78	388	3300	12.2	2310	873.48	604.84	137.2	288	9.08	0.35	21	176	27	231.4	304.8	1.81	0.21	1.07	0.0097
Mean	7.39	355.5	1615	11.11	1130.5	363.03	335.49	74.2	106.6	2.74	0.31	16.97	109.6	5.5	84.99	133.8	0.94	0.055	0.25	0.004
Std.	0.66	24.06	962.06	0.51	673.82	290.01	212.33	33.98	77.44	3.1	0.03	2.26	41.59	7.56	74.08	98.18	0.49	0.057	0.3	0.0031

Phase	SI**	log IAP	log K(277 K. 1 atm)	HgCl(g)	-32.78	-11.13	21.65	HgCl
					HgC12	-8.51	-31.20	-22.69	HgC12
Aragonite	-0.10	-8.24	-8.14	CaCO3	HgF(g)	-49.11	-13.05	36.06	HgF
Artinite	-7.35	3.85	11.20	MgCO3:Mg(OH)2:3	HgF2 (g)	-49.79	-35.03	14.76	HgF2
Atacamite	-0.94	7.69	8.63	Cu2 (OH) 3C1	Hgmetal(1)	1.48	-13.08	-14.56	Hg
Azurite	0.84	-14 80	-15 64	C113 (OH) 2 (CO3) 2	Huntite	-4.31	-32.85	-28.54	CaMg3 (CO3) 4
Brucite	-6.31	12 05	18 36	Mg (OH) 2	Hydrocerussite	-0.73	-19.50	-18.77	Pb3 (OH) 2 (CO3) 2
Calcite	0.14	-9.24	-8.37	CaCO3	Hydromagnesite	-14.90	-20.77	-5.87	Mg5 (CO3) 4 (OH) 2:4H2C
Calomel	-3.13	-22.27	-10.13	Ha2C12	Laurionite	-3.06	-2.44	0.62	PbOHC1
Carbacito	-3.13	-12.25	-12.46	ng2C12 PbCO2	Lepidocrocite	3.23	4.60	1.37	FeOOH
CPI4(a)	-66 92	-111 29	-13.46	CH4	Lime	-23.25	12.02	35.27	CaO
CR4 (g)	-66.92	-111.30	-14.40	COS	Litharge	-6.56	7.00	13.56	PbO
CO2 (g)	-2.05	-20.26	-18.20	02	Maghemite	2.81	9.20	6.39	Fe203
Cotunnite	-6.76	-11.89	-5.13	PBC12	Magnesioferrite	0.69	21.25	20.56	Fe2MgO4
Cu (OH) 2	-0.85	8.57	9.42	Cu (OH) 2	Magnesite	-0.48	-8.20	-7.73	MgCO3
Cu2 (OH) 3NO3	-2.65	7.56	10.21	Cu2 (OH) 3NO3	Magnetite	9.84	16.01	6.17	Fe304
CuCO3	-0.19	-11.69	-11.50	CuCO3	Malachite	3.20	-3.12	-6.32	Cu2 (OH) 2CO3
CuF	-6.45	-11.58	-5.13	CuF	Massicot	-6.78	7.00	13.78	PbO
CuF2	-16.15	-14.15	2.00	CuF2	Matlockite	-4.39	-13.80	-9.41	PbClF
CuF2:2H2O	-9.80	-14.15	-4.35	CuF2:2H2O	Melanothallite	-17.42	-10.32	7.10	CuC12
Cumetal	-1.90	-11.61	-9.71	Cu	Mg(OH)2(active)	-6.74	12.05	18.79	Mg (OH) 2
Cupricferrite	8.99	17.77	8.78	CuFe204	MgF2	-2.64	-10.67	-8.02	MgF2
Cuprite	-0.68	-0.44	0.24	Cu20	Minium	-35.33	43.79	79.12	Pb304
Cuprousferrite	13.08	4.38	-8.71	CuFeO2	Montroydite	-9.19	-12.31	-3.12	HgO
Dolomite (disord	dered) -0	.52 -1	6.44 -1	5.92 CaMg(CO3)2	Nantokite	-2.37	-9.67	-7.30	CuCl
Dolomite (ordere	ed) 0.12	-16.4	4 -16.5	7 CaMg (CO3) 2	Natron	-8.07	-10.26	-2.19	Na2CO3:10H2O
Fe (OH) 2	-6.76	6.81	13.56	Fe (OH) 2	Nesquehonite	-3.86	-8.21	-4.35	MgCO3:3H2O
Fe(OH)2.7C1.3	4.81	1.77	-3.04	Fe(OH)2.7C1.3	O2 (g)	-45.12	45.56	90.68	02
Fe3 (OH) 8	-4.21	16.01	20.22	Fe3 (OH) 8	Pb (OH) 2	-1.92	7.00	8.93	Pb (OH) 2
Ferrihvdrite	0.43	4.60	4.16	Fe (OH) 3	Pb10 (OH) 60 (CO3)	6 -42.74	-51.50	-8.76	Pb10 (OH) 60 (CO3) 6
Fluorite	-0.09	-10.70	-10.61	CaF2	Pb2 (OH) 3C1	-4.23	4.56	8.79	Pb2 (OH) 3C1
Goethite	3.30	4,60	1.30	FeOOH	Pb20 (OH) 2	-12.18	14.01	26.19	Pb20 (OH) 2
Halite	-6.00	-4.44	1.55	NaC1	Pb203	-24.25	36.79	61.04	Pb203
Hematite	8,91	9.20	0.29	Fe203	Pb2OCO3	-6.23	-6.25	-0.02	Pb2OCO3
$H_{\alpha}(CH_{3}) \geq (\alpha)$	-154 96	-235.06	-80.10	Hg (CH3) 2	Pb302C03	-11.73	0.76	12.49	Pb302C03
Hg (cho) 2 (g)	_4 91	-13.08	-8.17	Ha	PbF2	-8.01	-15.71	-7.71	PbF2
Hg (0H) 2	_0 02	-12 31	-3 50	Hg (OH) 2	Pbmetal	-20.01	-15.78	4.23	Pb
Hg (On) 2	-10.42	-26.16	-3.30	Hg (OH) 2	Pb0:0.3H20	-5.98	7.00	12.98	Pb0:0.33H20
	-10.43	-20.10	-15.75	ng2	Periclase	-11.54	12.05	23.59	MgO
ng2 (On) 2	-0.04	-3.38	5.26	ng2 (On) 2	Phosgenite	-5.33	-25.14	-19.81	PbC12:PbCO3
ng2CO3	-6.98	-23.63	-10.05	ng2003	Plattnerite	-23.75	29.78	53.53	PbO2
ng2F2	-15.98	-26.09	-10.12	Hg2F2	Portlandite	-12.49	12.02	24.51	Ca (OH) 2
Hg302C03	-27.51	-57.19	-29.68	Hg302C03	Siderite	-3.42	-13.45	-10.03	FeCO3

Decreasing Free Fluorine

4ppm = 2.105E-4 M, and 1.5ppm = 7.895E-5 M

	CaF2 SI Values	MgF2 SI Values	F- activity based on percent	F- activty
Raw Data	-0.09	-2.64	0.869	0.00013
1st solution	-0.59	-2.97	0.578	4.2E-05
2nd solution	-1.03	-3.39	0.137	9.9E-06
3rd solution	-8.44	-6.08	0.0000014	9.8E-12

- ▶ 1st solution= 1,000ppm of Ca²⁺ and Mg²⁺
- > 2nd Solution= 10,000ppm of Ca^{2+} and Mg^{2+}
- ▶ 3rd Solution= 100,000ppm of Ca^{2+} and Mg^{2+}

To Reduce Nitrate

50ppm of Nitrate is the maximum contaminant concentration, or 8.06E-4 M (WHO)

Initial Activities

N(5)	3.809e-03
NO3-	3.794e-03
CaNO3+	1.481e-05
CuNO3+	7.761e-09
PbNO3+	7.492e-10
Pb (NO3) 2	4.897e-12
Cu (NO3) 2	2.551e-12
FeNO3+2	3.237e-19
HgNO3+	1.959e-20
Hg (NO3) 2	2.409e-23

After mixing with a 48,700ppm Ca²⁺ solution

N(5)	3.809e-03
CaNO3+	3.003e-03
NO3-	8.057e-04
CuNO3+	2.618e-08
PbN03+	1.222e-09
Cu (NO3) 2	5.480e-13
Pb (NO3) 2	5.088e-13
FeNO3+2	1.666e-16
HgNO3+	1.308e-20
Hg (NO3) 2	1.024e-24

My Work Summary

Ran data as a solution in PHREEQC

- Found high iron oxides, explains yellow/red tinge
- Made a mixture of the water sample data and another liquid that could be added to purify the water of fluorine and nitrate.
 - ► High Ca²⁺ and Mg²⁺ to bond with fluorine
- Attempted to get nitrates to precipitate out
 - Mixture had high Ca²⁺

Conclusion

- To purify the drinking water 48,700 ppm (48.7g/L) solution of Ca²⁺ would need to be added to lower the nitrate
- 1,000 ppm (1g/L) of Ca²⁺ and Mg²⁺ needs to be added to lower the fluoride
- That's a lot of calcium!
- Agree with Dr. Srivastava and Dr. Ramanathan
 - Drink from cleaner wells
 - Reduce fertilizer use

Sources

- Shawe D.R., Van Alistine R.E., Worl R.G., Heyl A.V., Trace R.D., Parker R.L., Griffitts W.R., Sainsbury C.L., and Cathcart J.B. 1976 Geology and Resources of Fluorine in the United States. p. 5. USGS. Washington, D.C.
- Srivastava S.K. and Ramanathan A.L. 2018 Geochemical assessment of fluoride enrichment and nitrate contamination in groundwater in hard-rock aquifer by using graphical and statistical methods. Indian Academy of Sciences. Journal of Earth System Science.
- Google Earth
- www.alchetron.com/Guna
- www.indiawaterportal.org
- www.epa.gov