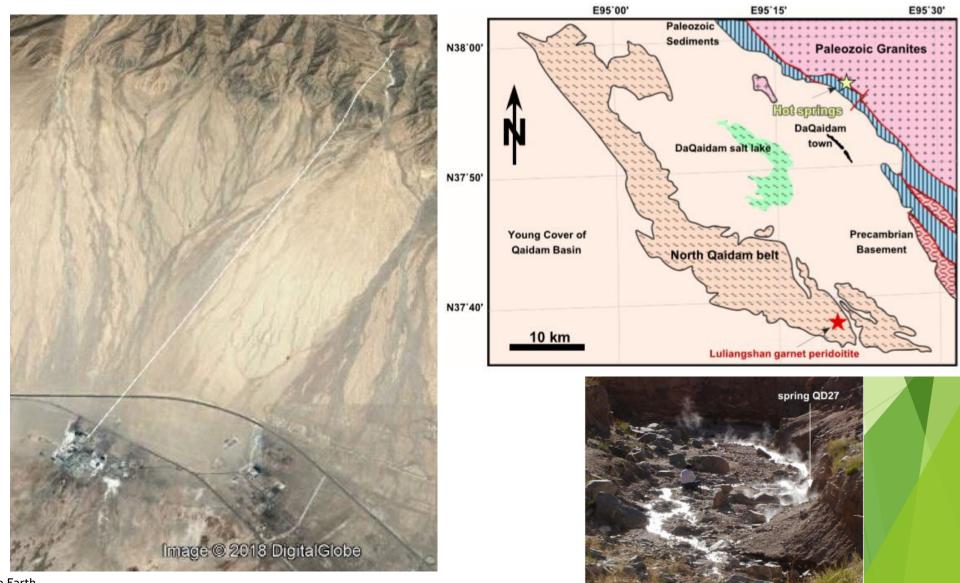

Fluid-rock interactions of hot springs in Da Qaidam, China

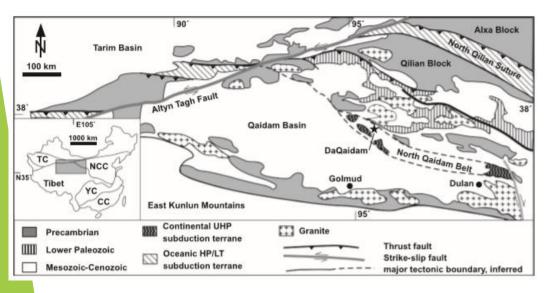
Haley Marston NDSU Geochemistry 2018

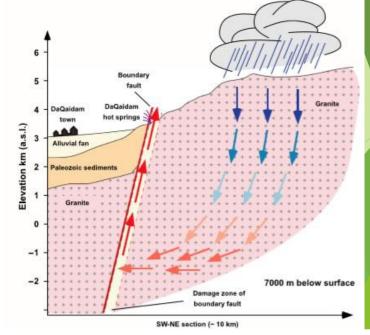

Introduction

- Central China, Northwestern portion
- Qilian Mountains
- Bathing and recreation
- Qaidam Basin
- Spring 9.5 km north of the city

Google Maps and Google Earth

Google Earth


Background


- Unrelated to magma activity- rare exceptions
- Below boiling
- Surface composition = chemical + transport reactions
- Subsurface circulation
- Located at brittle upper crust
- Deep circulations along fault lines
- Solutes are a combination of older rocks and newer fractured rocks

Local Geology

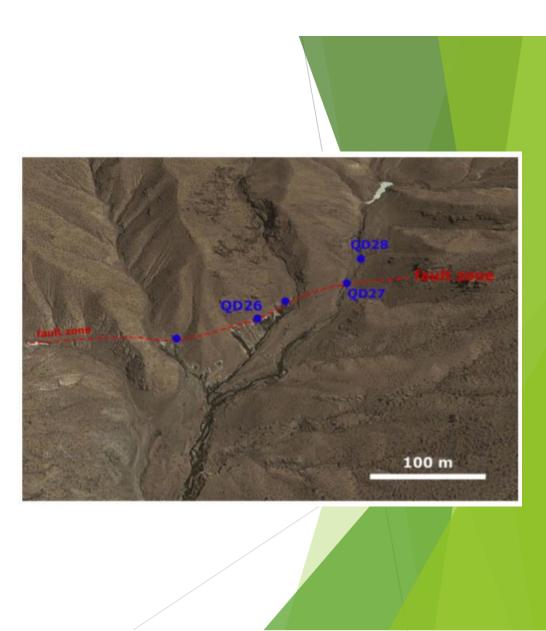
- Tectonic activity
- Multiple faults
- Granite base, sediments deposited on top, topped with alluvial deposits
- Qilian Block
- Evaporative deposits- Salt flats and Gypsum deserts

Why I chose this topic

- Fascinated by hot springs
- How they're heated
- Where they're located
- Hot thermal water mixing with cold surface water

Source of data

EBSCO


https://web-a-ebscohostcom.ezproxy.lib.ndsu.nodak.edu/ehost/pdfviewer/pdfviewer?vid=1&sid=1134 59fa-e071-4080-a49e-a3b8e5ba12fc%40sdc-v-sessmgr02

Sample collection

- 2 samples directly from outflow points (QD26)
- Thermal spring bordering the brook (QD27)
- Cold water meters upstream (QD28)
- Bottles were filled completely
- ▶ Temperature, pH, and EC in the field

Previous work

- ▶ Ions: Na⁺, Cl⁻, SO_4^{2-} , HCO_3^{-} , and $H_3BO_3^{0-}$
- Dissolved: NaCl, Na₂SO₄, carbonate, and borate
- Salt components considered using SALTNORM corresponds to the sinter they found
- PHREEQ and LLNL database used to calculate ions in solution
- Leaching experiments were done on rock samples

My work

- Changed pe values from default of 4 to 8
- What would happen if the temperature was cooled?
- ► Warmed?

Results

- All of the ion concentrations were the same, however the elemental values were different
- > The elements became further undersaturated
- The minerals were not affected at all

pe=4 (Default)

pe=8

K	-49.20	12.45	61.65	K	K	-53.20	8.45	61.65	K	
C C(g) Ca Ca(g)	-36.95 -137.53 -93.72 -114.75	17.73 17.73 26.52 26.52	54.68 155.26 120.24 141.26	C Ca	C C(g) Ca Ca(g)	-52.95 -153.53 -101.72 -122.75	18.52	54.68 155.26 120.24 141.26	C Ca	
B B(g)	-73.65 -151.51	20.66			B B(g)	-85.65 -163.51	8.66		1 1 1 1 1	
Aragonite	1.84	3.15	1.31 Ca	aCO3	Aragonite	1.84	3.15	1.31 Ca(203	

Results (continued)

- If the water would be cooled to room temperature (25 C)..
- A trend of precipitation occurs:

71.8 C

Borax	0.34	14.32	13.98	Na2 (B405 (OH) 4) :8H20
Boric_acid	-0.22	0.09	0.31	B (OH) 3
25 C				
Borax	2.38	14.42	12.04	Na2 (B405 (OH) 4) :8H20
Boric_acid	0.27	0.11	-0.16	B (OH) 3
However	somo a	oro not		r saturatod.

	201116	are	ΠΟC	as	Uvei	sau	nate	u.

Gypsum	0.21	-4.48	-4.69	CaSO4:2H2O
Gypsum	0.14	-4.39	-4.53	CaS04:2H20

Results (continued)

- If the hot spring would continue to heat to 80 C...
- Hotter temperatures were tried, however were not possible with the concentrations of the ions in solution

▶ 80 C

Borax	0.02	14.30	14.2	28 Na2 (B405 (OH) 4) :8H20
Boric_acid	-0.29	0.08		
Gypsum	0.24	-4.50	-4.7	74 CaSO4:2H2O
71.8 C				
Borax	0.34	14.32	13.98	Na2 (B405 (OH) 4) :8H20
Boric_acid	-0.22	0.09	0.31	B (OH) 3
Gypsum	0.21	-4.48	-4.69	CaSO4:2H2O

Conclusions

- > The pe value affects the elemental's values, not any compounds
- If the hot springs cool down it could be dangerous (Heller, 2017)
- They aren't able to get much hotter
- Increased temperature continues to oversaturate solids

Questions?

