Ferrous iron oxidation in hydrocarbon polluted groundwater for bioremediation

Samantha Ritter

Geol 628

December 6, 2016

Contamination

- Terrestrial oil spills
- Hydrocarbon compounds: BTEX
 - Soluble and mobile in groundwater
- Bioremediation

Bioremediation

- BTEX degradation
 - Common in aerobic environments
 - Also occurs in anaerobic conditions
- Anaerobic system occurs at slower rate
 - Includes most petroleum-contaminated aquifers

Electron acceptors

- Microbes consume most thermodynamically favorable electron acceptor
- Fe³⁺ provides greatest potential electron-accepting capacity
- Addition of electron acceptors to system

Anaerobic system

Anaerobic bioremediation of BTEX (Lovley, 1997) DR Lovley

Methanogens and nitrification limited pH <6

Study Site

- Perth, Australia
- 500 liters gasoline
- Background geochemistry is anaerobic
- pH is 5.0

Primary Literature

Prommer, H., Davis, G.B., and Barry, D.A. 1999. Geochemical changes during biodegradation of petroleum hydrocarbons: field investigations and biogeochemical modelling: Organic Geochemistry, v. 30, p. 423-435.

Initial Study

- Focused on contribution of Fe³⁺ as electron acceptor
- Siderite and goethite assumed to be equilibrium
 - pH too low
- Modelled benzene, toluene, sulphate, Fe²⁺ with groundwater flow
- Concluded iron was not available for further reduction
 - Not a significant electron acceptor at this site
 - Reduced forms bound in formation of siderite, pyrite, and magnetite

Objective

- Addition of oxygen to system
 - Air sparging (Lee et al., 1988)
- Simulate ferrous iron oxidation
- Fe³⁺ as electron acceptor

Input

Four scenarios were simulated:

- (1) oxidation of ferrous iron
- (2) oxidation of ferrous iron with siderite in equilibrium
- (3) oxidation of ferrous iron with an increase of initial Fe³⁺ input
- (4) oxidation of ferrous iron with both siderite in equilibrium and an increase of initial Fe³⁺ input

```
Title Initial Concentrations
SOLUTION 1
              27
    temp
              5
   рΗ
              1.21
   ре
   redox
              ре
   units
              mol/l
   density
              1
   Alkalinity 0.000327
              0.000841
   Ca
   Cl
              0.00645
   Fe di
              6.65e-05
   Fe tri
              0.000259
              0.000566
   Mg
              0.00524
   Na
   S(-2)
              3e-06
              0.000783
   S(6)
             1 # kg
    -water
```

^{*}Increased Fe³⁺ concentration was 0.00005 mol L⁻¹

Saturation indices

		SI Values			
		Equilibrium Phase			
Phase	Formula	Initial	Siderite in equilibrium	Increase in initial Fe ³⁺	Siderite in equilibrium & increase in initial Fe ³⁺
Goethite	Fe ³⁺ OOH	6.8	8.8	7.4	8.9
Hematite	Fe ³⁺ ₂ O ₃	15.6	19.7	16.8	19.8
Jarosite-K	$KFe^{3+}(SO_4)_2(OH)_6$	1.4	6.0	3.1	6.0
Melanterite	Fe ²⁺ SO ₄ :7H ₂ O	-5.7	-5.5	-5.7	-5.7
Pyrite	Fe ²⁺ S	-222.4	-221.9	-222.4	-222.3
Siderite	Fe ²⁺ CO ₃	-2.5	-1.3	-2.7	-1.7

Oxidation of Ferrous Iron

- As expected Fe³⁺ increased
- Fe²⁺ decreased
- pH did not change, 5.0

Siderite in Equilibrium

- Fe³⁺ increased much more dramatically
- Fe²⁺ decreased
- pH ending 5.5

Initial increase in Fe³⁺ concentration

- Steady increase in Fe³⁺
- Steady decrease in Fe²⁺
- pH constant at 5.0

Siderite in Equilibrium, Initial Fe³⁺ concentration

- Greatest increase
 in Fe³⁺ (6.40
 x 10⁻⁴ mol/kg)
- Greatest decrease in Fe²⁺ (4.60 x 10⁻⁵ mol/kg)
- pH ending at 5.5

Discussion

- Longer time period
- An aerobic phase would have to occur for ferric iron reduction by microbes
- Theoretically, this is creating an aerobic system that does not use ferric iron

Conclusion

- Results are assuming the program was used correctly
- Theory to promote Fe³⁺ abundance to stimulate degradation of hydrocarbons
 - Other electron acceptors are available
- Remediation by addition of oxygen includes many benefits (Lovley, 1997)
 - Does not produce waste products
 - Generally fast, safe, and economical

References

- Lee, M.D., Thomas, J.M., Borden, R.C., Bedient, P.B., Ward, C.H., Wilson, J.T., and Conway, R.A., 1988, Biorestoration of aquifers contaminated with organic compounds: Critical Reviews in Environmental Control, v. 18, p. 29–89.
- Lovley, D.R., 1997, Potential for anaerobic bioremediation of BTEX in petroleum- contaminated aquifers: Journal of Industrial Microbiology & Biotechnology, v. 18, p. 75–81.
- Prommer, H., Davis, G.B., and Barry, D.A., 1999, Geochemical changes during biodegradation of petroleum hydrocarbons: Field investigations and biogeochemical modelling: Organic Geochemistry, v. 30, p. 423–435.