# Reduction of Cr Stable isotopes in contaminated groundwater in Leon Valley, Mexico

By: Joseph Tigges

NDSU Geochemistry 2018

## Chromium

### Uses

- Metallurgy
- Dyes for paints
- Synthetic rubies
- Tanning
- Two main valences
  - Cr(III)
  - Cr(VI)



## **Chromium Toxicity**

- Cr(III) poor mobility and less toxic
- Cr(VI) Highly mobile and toxic
  - 10-100 times more toxic (Gon Kim et al., 2002)
- Detected in 89% if tap water in U.S.A. (Branan, 2011)
- Top 17 chemicals posing a threat to humans

## Leon Valley



Basalts, and lacustrine

sediments



Top: Flickriver.com

Bottom: google maps

### **Previous Studies**

Detected in 1987

International attention in 1994

Buenavista

| Well/           | Sampling               | Cr(VI) (in mg/L)            |                              |  |  |  |  |
|-----------------|------------------------|-----------------------------|------------------------------|--|--|--|--|
| Piezometer      | depth (m)              | Median value<br>(1991–1996) | Median value<br>(2003–2005)  |  |  |  |  |
| Hulera          | -                      | 43.11                       | 35.31                        |  |  |  |  |
| Piezometer<br>2 | 8–12<br>13–16<br>17–19 | 11.07<br>12.67<br>10.63     | 1.01<br>6.37<br>0.8881       |  |  |  |  |
| Piezometer<br>3 | 9–12<br>13–16<br>17–20 | 0.0969<br>0.1311<br>0.0542  | <0.0052<br>0.0059<br><0.0052 |  |  |  |  |
| Piezometer<br>4 | 8–11<br>12–15<br>16–20 | 0.0316<br>0.0200<br>0.0115  | <0.0052<br>0.0090<br>0.0061  |  |  |  |  |
| Piezometer<br>5 | 8–11<br>12–15          | 2.40<br>1.89                | <0.0052<br><0.0052           |  |  |  |  |
| Cartonera       | -                      | 11.79                       | 15.87                        |  |  |  |  |

Cr (VI) historical monitoring Buenavista, Guanajuato.

Alejandro V.A. et Al., 2012

### Chromium sources

- 3 CORPS (Chromate Ore Processing Residue Piles)
- Natural sources

Landfill



Alejandro V.A. et Al., 2012

## Sampled values

| Table | 2 |               |  |
|-------|---|---------------|--|
| e     |   | International |  |

Sampling location and key chemical parameters.

| Sample ID     | Location       | Coordinates LAT (N) LONG (W) |           | pН   | Temp.<br>(°C) | Cond.<br>(mS/cm) | Alkalinity<br>(HCO3) | Total Cr<br>(mg/L) | Cr(VI)<br>(mg/L) | δ <sup>53</sup> Cr<br>(‰) | Red <sub>calc</sub><br>(%) <sup>a</sup> |
|---------------|----------------|------------------------------|-----------|------|---------------|------------------|----------------------|--------------------|------------------|---------------------------|-----------------------------------------|
| Buenavista (E | W)             |                              |           |      |               |                  |                      |                    |                  |                           |                                         |
| P3-07         | Piezometer 3   | 21.03814                     | 101.80638 | 7.01 | 22.75         | 371              | 199.25               | 0.030              | 0.010            | -                         | -                                       |
| PA-07         | Piezometer A   | 21.04608                     | 101.79892 | 7.04 | 24.46         | 747              | 266.50               | -                  | 0.033            | +0.33                     | 9.0                                     |
| PC-07         | Piezometer C   | 21.03567                     | 101.80794 | 6.91 | 23.50         | 1.429            | -                    | 0.003              | <0.001           | -                         | -                                       |
| CA-07         | Cartonera well | 21.04559                     | 101,79804 | 7.09 | 26.81         | 870              | 228                  | 11                 | 10,84            | -0.08                     | -                                       |
| P3-08         | Piezometer 3   | 21.03814                     | 101.80638 | 7.07 | 23.04         | 552              | 238.15               | 0.003              | <0.001           | +1.275                    | 30.5                                    |
| P4-08         | Piezometer 4   | 21.03690                     | 101.80901 | 6.96 | 22.96         | 1238             | 489.44               | 0.43               | 0.42             | +2.599                    | 52.4                                    |
| P5-08         | Piezometer 5   | 21.04565                     | 101.79825 | 7.09 | 22.31         | 990              | 246.23               | 0.15               | 0.14             | +1.407                    | 33.1                                    |
| PA-08         | Piezometer A   | 21.04608                     | 101.79892 | 6.82 | 23,80         | 782              | 432,19               | 0.08               | 0.002            | -                         | -                                       |
| PC-08         | Piezometer C   | 21.03567                     | 101.80794 | 7.14 | 22.25         | 918              | 338.93               | 0.025              | 0.020            | +2.327                    | 48.6                                    |
| Química Cent  | ral (QC)       |                              |           |      |               |                  |                      |                    |                  |                           |                                         |
| P2-07         | Piezometer 2   | 21.04025                     | 101.79151 | 6.51 | 23.96         | 6800             | 931.50               | 21.5               | 10.80            | +0.46                     | 12.3                                    |
| PB-07         | Piezometer B   | 21.03592                     | 101.79672 | 6.74 | 21.69         | 4300             | 647.88               | 0.009              | 0.005            |                           | -                                       |
| HU-07         | Hulera well    | 21,04333                     | 101.79344 | 6.54 | 23.29         | 5140             | 354                  | 128                | 121,57           | +0.33                     | 9.0                                     |
| P1-08         | Piezometer 1   | 21.04459                     | 101.79103 | 6.74 | 23.11         | 3716             | 1193.25              | < 0.003            | <0.001           | -                         |                                         |
| P2-08A        | P-B @ 13 m     | 21.04025                     | 101.79151 | 6.51 | 23.96         | 2040             | 792.71               | 62.13              | 56.92            | +0.124                    | 3.5                                     |
| P2-08B        | P-B @ 26 m     | 21.04025                     | 101.79151 | 6.49 | 23.50         | 8150             | 991.32               | 19.7               | 17.90            | +0.811                    | 20.7                                    |
| PB-08         | Piezometer B   | 21.03592                     | 101.79672 | 6.84 | 20.91         | 3784             | 591.47               | < 0.003            | < 0.001          | -                         | -                                       |
| HU-08         | Hulera well    | 21.04333                     | 101.79344 | 6.60 | 30,84         | 4805             | 785,78               | 95.1               | 92,55            | +0.440                    | 11.8                                    |
| COPRP-1       | -              | -                            | -         | -    | -             | -                | -                    | -                  | -                | +0.76                     | 20                                      |
| COPRP-2       | -              | -                            | -         | -    | -             | -                | -                    | -                  | -                | +3.25                     | 60                                      |
| COPRP-3       | -              | -                            | -         | -    | -             | -                | -                    | -                  | -                | -0.017                    | -                                       |

Concentrations in bold exceed Mexican maximum drinking water contaminant levels (NOM 127-SSA1-1994, 2000). <sup>a</sup> Calculated using Eq. (2).

#### Table 3

Analyses for major ions and trace metals.

| Sample ID     | Location  | Ca<br>(mg/L) | K<br>(mg/L) | Na<br>(mg/L) | Mg<br>(mg/L) | Cl<br>(mg/L) | NO3<br>(mg/L) | SO4<br>(mg/L) | Al<br>(µg/L) | Ba<br>(µg/L) | Fe<br>(µg/L) | Mn<br>(μg/L) | U<br>(µg/L) |
|---------------|-----------|--------------|-------------|--------------|--------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|-------------|
| Buenavista (B | V)        |              |             |              |              |              |               |               |              |              |              |              |             |
| P3-07         | P3        | 34.1         | 14.3        | 34.05        | 8.5          | 3.82         | <0.1          | 18.2          | 2            | 132          | <10          | 6.6          | <1.5        |
| PA-07         | PA        | 64.1         | 20.7        | 91.0         | 13.4         | 44.1         | <0.1          | 66.8          | 3            | 173          | <10          | 9            | 48          |
| PC-07         | PC        | 136          | 62.4        | 136.5        | 54.8         | 101.4        | <0.1          | 214           | 3            | <0.1         | <10          | <0.9         | <1.5        |
| CA-07         | Cartonera | 82.2         | 22.4        | 75.5         | 13.4         | 92.8         | <0.1          | 45.1          | 29           | <0.1         | <10          | <0.9         | <1.5        |
| P3-08         | P3        | 54.1         | 15.1        | 31.7         | 10.1         | 30.35        | 12.74         | 19.9          | 48           | 254          | <10          | 54           | 3           |
| P4-08         | P4        | 133.0        | 29.8        | 70.0         | 25,2         | 121.1        | <0.1          | 145.5         | 2            | 116          | <10          | 1            | 19          |
| P5-08         | P5        | 79.2         | 33.9        | 57.2         | 13.5         | 19.0         | 61.35         | 170.0         | 99           | 233          | <10          | 4            | 3           |
| PA-08         | PA        | 111.9        | 25.9        | 78.1         | 10.9         | 45.7         | <0.1          | 8.9           | 2            | <0.1         | 310          | 77           | <1.5        |
| PC-08         | PC        | 123.8        | 12.7        | 68.1         | 12.2         | 62.2         | <0.1          | 104.6         | 7            | 148          | <10          | 50           | 13          |
| Química Cent  | ral (QC)  |              |             |              |              |              |               |               |              |              |              |              |             |
| P2-07         | P2        | 651.3        | 35          | 866.7        | 164          | 1660         | <0.1          | 549.3         | 30           | <0.1         | <10          | <0.9         | <1.5        |
| PB-07         | PB        | 404.8        | 21.5        | 473.8        | 177.9        | 860          | <0.1          | 463.2         | 3            | 164          | <10          | 9            | 59          |
| HU-07         | Hulera    | 521          | 45          | 582.4        | 121.5        | 1027.5       | <0.1          | 522.3         | 29           | <0.1         | <10          | <0.9         | <1.5        |
| P1-08         | P1        | 441.2        | 37.3        | 968.1        | 133.7        | 1837.8       | <0.1          | 470.0         | 37           | 331          | 120          | <0.9         | 18          |
| P2-08A        | P2 @ 13 m | 263.0        | 30.3        | 358.8        | 63.6         | 923.1        | <0.1          | 926.6         | <2           | 125          | <10          | 37           | 45          |
| P2-08B        | P2 @ 26 m | 369.2        | 40.9        | 749.4        | 183.9        | 3312.2       | <0.1          | 613.3         | <2           | 117          | <10          | 17           | 38          |
| PB-08         | PB        | 392.8        | 27.5        | 247.7        | 96.3         | 1165.1       | 9.86          | 397.3         | 26           | 368          | <10          | 131          | 78          |
| HU-08         | Hulera    | 569.0        | 43.5        | 491          | 109.3        | 1398.8       | <0.1          | 458.8         | <2           | 57           | <10          | 19           | 45          |

Concentrations in bold exceed Mexican maximum drinking water contaminant levels (NOM 127-SSA1-1994, 2000).

## Cr sampled data

| Cr(2)        | 7.142e-21 |           |         |         |        |
|--------------|-----------|-----------|---------|---------|--------|
| Cr+2         | 7.142e-21 | 2.896e-21 | -20.146 | -20.538 | -0.392 |
| Cr(3)        | 1.107e-03 |           |         |         |        |
| Cr3(OH)4+5   | 3.525e-04 | 1.977e-06 | -3.453  | -5.704  | -2.251 |
| Cr(OH)2+     | 3.749e-05 | 2.985e-05 | -4.426  | -4.525  | -0.099 |
| CrOH+2       | 1.066e-05 | 4.321e-06 | -4.972  | -5.364  | -0.392 |
| Cr (OH) 3    | 5.180e-07 | 5.180e-07 | -6.286  | -6.286  | 0.000  |
| Cr2 (OH) 2+4 | 4.942e-07 | 1.626e-08 | -6.306  | -7.789  | -1.483 |
| Cr+3         | 6.086e-08 | 1.248e-08 | -7.216  | -7.904  | -0.688 |
| Cr (OH) 4-   | 8.968e-10 | 7.140e-10 | -9.047  | -9.146  | -0.099 |
| CrC1+2       | 4.947e-10 | 2.006e-10 | -9.306  | -9.698  | -0.392 |
| CrCl2+       | 1.137e-11 | 9.054e-12 | -10.944 | -11.043 | -0.099 |
| Cr (5)       | 6.409e-19 |           |         |         |        |
| Cr04-3       | 6.409e-19 | 7.793e-20 | -18.193 | -19.108 | -0.915 |
| Cr(6)        | 4.118e-17 |           |         |         |        |
| Cr04-2       | 2.801e-17 | 1.102e-17 | -16.553 | -16.958 | -0.405 |
| HCrO4-       | 1.318e-17 | 1.049e-17 | -16.880 | -16.979 | -0.099 |
| CrO3C1-      | 9.954e-25 | 7.925e-25 | -24.002 | -24.101 | -0.099 |
| H2CrO4       | 1.262e-25 | 1.262e-25 | -24.899 | -24.899 | 0.000  |
| Cr207-2      | 9.785e-33 | 3.851e-33 | -32.009 | -32.414 | -0.405 |

## Cr Species

|                  | S.I.   | Log IAP | log K  |          |
|------------------|--------|---------|--------|----------|
| Lopezite         | -35.55 | -53.09  | -17.54 | K2Cr207  |
| Magnesiochromite | 11.81  | 33.81   | 22.00  | MgCr2O4  |
| Na2Cr2O7         | -40.19 | -50.40  | -10.20 | Na2Cr2O7 |
| Na2CrO4          | -23.28 | -20.36  | 2.92   | Na2CrO4  |
| Chromite         | 13.61  | 29.04   | 15.43  | FeCr204  |
| Cr               | -54.38 | 44.96   | 99.33  | Cr       |
| CrC13            | -30.95 | -12.84  | 18.11  | CrC13    |
| CrO2             | 0.48   | -18.75  | -19.22 | CrO2     |
| CrO3             | -26.48 | -30.04  | -3.55  | Cr03     |
| Eskolaite        | 15.60  | 6.41    | 9.1    | .9 Cr2O3 |

## Addition of O<sub>2</sub>

After addition of O<sub>2</sub>

#### Original

| 0101         | 010000100 | 010000100 | 100.010  | 100.010  | 0.100  |              |           |           |          |          |        |
|--------------|-----------|-----------|----------|----------|--------|--------------|-----------|-----------|----------|----------|--------|
| Cr(2)        | 7.144e-21 |           |          |          |        | Cr (2)       | 7.142e-21 |           |          |          |        |
| Cr+2         | 7.144e-21 | 2.896e-21 | -20.146  | -20.538  | -0.392 | Cr+2         | 7.142e-21 | 2.896e-21 | -20.146  | -20.538  | -0.392 |
| Cr(3)        | 1.108e-03 |           |          |          |        | Cr(3)        | 1.107e-03 |           |          |          |        |
| Cr3 (OH) 4+5 | 3.526e-04 | 1.977e-06 | -3.453   | -5.704   | -2.251 | Cr3(OH)4+5   | 3.525e-04 | 1.977e-06 | -3.453   | -5.704   | -2.251 |
| Cr (OH) 2+   | 3.749e-05 | 2.985e-05 | -4.426   | -4.525   | -0.099 | Cr (OH) 2+   | 3.749e-05 | 2.985e-05 | -4.426   | -4.525   | -0.099 |
| CrOH+2       | 1.066e-05 | 4.321e-06 | -4.972   | -5.364   | -0.392 | CrOH+2       | 1.066e-05 | 4.321e-06 | -4.972   | -5.364   | -0.392 |
| Cr (OH) 3    | 5.179e-07 | 5.179e-07 | -6.286   | -6.286   | 0.000  | Cr (OH) 3    | 5.180e-07 | 5.180e-07 | -6.286   | -6.286   | 0.000  |
| Cr2 (OH) 2+4 | 4.943e-07 | 1.626e-08 | -6.306   | -7.789   | -1.483 | Cr2 (OH) 2+4 | 4.942e-07 | 1.626e-08 | -6.306   | -7.789   | -1.483 |
| Cr+3         | 6.087e-08 | 1.248e-08 | -7.216   | -7.904   | -0.688 | Cr+3         | 6.086e-08 | 1.248e-08 | -7.216   | -7.904   | -0.688 |
| Cr(OH)4-     | 8.965e-10 | 7.138e-10 | -9.047   | -9.146   | -0.099 | Cr(OH)4-     | 8.968e-10 | 7.140e-10 | -9.047   | -9.146   | -0.099 |
| CrC1+2       | 4.949e-10 | 2.006e-10 | -9.306   | -9.698   | -0.392 | CrC1+2       | 4.947e-10 | 2.006e-10 | -9.306   | -9.698   | -0.392 |
| CrCl2+       | 1.138e-11 | 9.058e-12 | -10.944  | -11.043  | -0.099 | CrC12+       | 1.137e-11 | 9.054e-12 | -10.944  | -11.043  | -0.099 |
| Cr(5)        | 6.408e-19 |           |          |          |        | Cr(5)        | 6.409e-19 |           |          |          |        |
| Cr04-3       | 6.408e-19 | 7.790e-20 | -18.193  | -19.108  | -0.915 | Cr04-3       | 6.409e-19 | 7.793e-20 | -18.193  | -19.108  | -0.915 |
| Cr(6)        | 4.117e-17 |           |          |          |        | Cr(6)        | 4.118e-17 |           |          |          |        |
| Cr04-2       | 2.800e-17 | 1.102e-17 | -16.553  | -16.958  | -0.405 | Cr04-2       | 2.801e-17 | 1.102e-17 | -16.553  | -16.958  | -0.405 |
| HCrO4-       | 1.317e-17 | 1.049e-17 | -16.880  | -16.979  | -0.099 | HCrO4-       | 1.318e-17 | 1.049e-17 | -16.880  | -16.979  | -0.099 |
| Cr03C1-      | 9.954e-25 | 7.924e-25 | -24.002  | -24.101  | -0.099 | Cr03C1-      | 9.954e-25 | 7.925e-25 | -24.002  | -24.101  | -0.099 |
| H2CrO4       | 1.262e-25 | 1.262e-25 | -24.899  | -24.899  | 0.000  | H2CrO4       | 1.262e-25 | 1.262e-25 | -24.899  | -24.899  | 0.000  |
| Cr207-2      | 9.781e-33 | 3.848e-33 | -32.010  | -32.415  | -0.405 | Cr207-2      | 9.785e-33 | 3.851e-33 | -32.009  | -32.414  | -0.405 |
|              |           |           |          |          |        |              |           |           |          |          |        |
| Na 2Ca 2     | 07 40     | 10 50     | 40 10    | 0 00 M-0 | 00-207 | 12.00        |           |           |          |          |        |
| Nazurz       | -40       | .19 -50   | 1.40 -10 | 0.20 Na2 | CE207  | Na2Cr        | 207 -40   | .19 -50   | 0.40 -10 | .20 Na20 | Jr207  |
| Na2CrO       | 423       | .28 -20   | ).36 2   | 2.92 Na2 | 2CrO4  | Na2Cr(       | 04 -23    | .28 -20   | .36 2    | .92 Na20 | Cr04   |
|              |           |           |          |          |        |              |           |           |          |          |        |

## Increasing iron oxide

#### More iron oxide

Original

| Cr(2)        | 7.139e-21 |           |         |          |        |     | Cr(2)        | 7.142e-21 |           |         |          |        |
|--------------|-----------|-----------|---------|----------|--------|-----|--------------|-----------|-----------|---------|----------|--------|
| Cr+2         | 7.139e-21 | 2.892e-21 | -20.146 | -20.539  | -0.392 | (0) | Cr+2         | 7.142e-21 | 2.896e-21 | -20.146 | -20.538  | -0.392 |
| Cr(3)        | 1.107e-03 |           |         |          |        |     | Cr(3)        | 1.107e-03 |           |         |          |        |
| Cr3(OH)4+5   | 3.526e-04 | 1.970e-06 | -3.453  | -5.706   | -2.253 | (0) | Cr3(OH)4+5   | 3.525e-04 | 1.977e-06 | -3.453  | -5.704   | -2.251 |
| Cr(OH)2+     | 3.745e-05 | 2.981e-05 | -4.427  | -4.526   | -0.099 | (0) | Cr (OH) 2+   | 3.749e-05 | 2.985e-05 | -4.426  | -4.525   | -0.099 |
| CrOH+2       | 1.065e-05 | 4.315e-06 | -4.973  | -5.365   | -0.392 | (0) | CrOH+2       | 1.066e-05 | 4.321e-06 | -4.972  | -5.364   | -0.392 |
| Cr(OH)3      | 5.173e-07 | 5.173e-07 | -6.286  | -6.286   | 0.000  | (0) | Cr (OH) 3    | 5.180e-07 | 5.180e-07 | -6.286  | -6.286   | 0.000  |
| Cr2 (OH) 2+4 | 4.943e-07 | 1.622e-08 | -6.306  | -7.790   | -1.484 | (0) | Cr2 (OH) 2+4 | 4.942e-07 | 1.626e-08 | -6.306  | -7.789   | -1.483 |
| Cr+3         | 6.084e-08 | 1.246e-08 | -7.216  | -7.904   | -0.689 | (0) | Cr+3         | 6.086e-08 | 1.248e-08 | -7.216  | -7.904   | -0.688 |
| Cr(OH)4-     | 8.958e-10 | 7.131e-10 | -9.048  | -9.147   | -0.099 | (0) | Cr (OH) 4-   | 8.968e-10 | 7.140e-10 | -9.047  | -9.146   | -0.099 |
| CrCl+2       | 4.943e-10 | 2.003e-10 | -9.306  | -9.698   | -0.392 | (0) | CrC1+2       | 4.947e-10 | 2.006e-10 | -9.306  | -9.698   | -0.392 |
| CrCl2+       | 1.135e-11 | 9.038e-12 | -10.945 | -11.044  | -0.099 | (0) | CrCl2+       | 1.137e-11 | 9.054e-12 | -10.944 | -11.043  | -0.099 |
| Cr(5)        | 6.412e-19 |           |         |          |        |     | Cr(5)        | 6.409e-19 |           |         |          |        |
| Cr04-3       | 6.412e-19 | 7.783e-20 | -18.193 | -19.109  | -0.916 | (0) | Cr04-3       | 6.409e-19 | 7.793e-20 | -18.193 | -19.108  | -0.915 |
| Cr(6)        | 4.115e-17 |           |         |          |        |     | Cr(6)        | 4.118e-17 |           |         |          |        |
| Cr04-2       | 2.799e-17 | 1.101e-17 | -16.553 | -16.958  | -0.405 | (0) | Cr04-2       | 2.801e-17 | 1.102e-17 | -16.553 | -16.958  | -0.405 |
| HCrO4-       | 1.316e-17 | 1.048e-17 | -16.881 | -16.980  | -0.099 | (0) | HCrO4-       | 1.318e-17 | 1.049e-17 | -16.880 | -16.979  | -0.099 |
| CrO3C1-      | 9.941e-25 | 7.913e-25 | -24.003 | -24.102  | -0.099 | (0) | Cr03C1-      | 9.954e-25 | 7.925e-25 | -24.002 | -24.101  | -0.099 |
| H2CrO4       | 1.260e-25 | 1.260e-25 | -24.900 | -24.900  | 0.000  | (0) | H2CrO4       | 1.262e-25 | 1.262e-25 | -24.899 | -24.899  | 0.000  |
| Cr207-2      | 9.768e-33 | 3.841e-33 | -32.010 | -32.416  | -0.405 | (0) | Cr207-2      | 9.785e-33 | 3.851e-33 | -32.009 | -32.414  | -0.405 |
|              |           |           |         |          |        |     | 1            |           |           |         |          |        |
| Chromi       | ite 16.   | 61 32.    | 05 15.4 | 3 FeCr20 | 4      |     | Chromite     | 13.61     | 29.0      | 4 15.4  | 3 FeCr20 | 04     |
|              |           |           |         |          |        |     |              |           |           |         |          |        |

## Work Summary

### Ran data tests in PHREEQC

• Looking for drop in ratio between Cr3 and Cr6 from sampled value

### Conclusions

### Results unsuccessful

- Negligible change in amounts of Cr
- Need for methods not testable in PHREEQC

## References

- Alejandro V.A., Andre S. Ellis, Maria A. Armienta, Ofelia Morton-Berma, Thomas M. Johnson, 2012, Geochemistry and Cr Stable isotopes of Crcontaminated groundwater in Leon valley, Guanajuato, Mexico.
- Wikipedia