Effects of a carbonate-rock aquifer on a groundwater system

Anna Vanderlaan NDSU Geochemistry 2018

Location

- Midwestern Basins and Arches aquifer system
- Indiana, Ohio, Michigan, and Illinois

Background

- Land in this area is primarily temperate deciduous forest with some grasslands and savannah near Lake Michigan
- Less than 20% is being used as cropland
- This area is urbanized and industrialized
- Climate: Humid Continental, moderate climate
- Average Precipitation: Moderate to high, depending on snow fall amounts
- Aquifers used for irrigation and residential use
 - 15% groundwater drawn up in this area is from the carbonate-rock aquifer

Why I Choose This Topic

- Interested in carbonates and their relationship to the environment
- Previous work with carbonates
- In an area located nearby

Source of data

- Samples taken from 1,300 groundwater wells in study location
 - Carbonate-rock aquifers and glacial aquifers
- Detailed analysis done on each sample
- Samples were taken from both domestic and test wells
- Samples were taken at deepest available points in each well

Surrounding Geology

- The Midwestern Basins and Arches aquifer system lies between the Appalachian, the Illinois, and the Michigan Basins.
- Bedrock units range in age from Ordovician to Lower Mississippian
- Ordovician units are predominately shales with interbedded limestone
- Carbonate bedrock in Silurian and Devonian in age
- Mississippian ages shale overlies carbonate rock outside of study area but has been eroded away within this system
- The ground surface is covered with Quaternary aged glacial deposits

Previous work

- Describe physical and hydraulic boundaries of this aquifer system
- Identify relationships between surface and groundwater
- Develop a model to compute a regional ground water budget
- Identify groundwater chemistry in relations to flow

Inverse Modeling of effect of pCO2

- Use PHREEQC to model variations in dolomite concentrations by modifying pCO2
- Used 2 deep carbonate-rock wells
 - One well with bedrock near the surface
 - One well with bedrock far below the surface
- Using inverse modeling
 - Test with pCO2 at average atmosphere level: -3.5
 - Test with average pCO2 in aquifers: -4.8

 $CaCO_3 + H_2O + CO_2 <--> Ca^{2+} + 2HCO_3^{-1}$ (calcite)

 $CaMg(CO_3)_2 + 2H_2O + 2CO_2 <--> Ca^{2+} + Mg^{2+} + 4HCO_3^{-}$ (dolomite)

- Choose two carbonate rock aquifer wells to test
- Located in North-Eastern section of Midwestern Basins and Arches aquifer system
- Within the Maurmee River Basin
- Well #1: Augustine
- Well #2: City of Weston

	number	depth (fi)	bedrock (fl)	open interval (ft)	open interval (ft)	interval (ff)	
Ross	10 G	102	**	N.A.	N.A.	N.A.	G
Birt	10 S	86	76	80	86	6	C-R
Ben Logan H.S.	10 D	340	97	160	340	*180	C-R
Searfoss	15 G	60	**	N.A.	N.A.	N.A.	G
Rife	15 S	39	34	34	39	5	C-R
Schoenberger	15 D	240	33	36	240	205	C-R
Beasley	16 G	81		61	81	20	G
Hill	16.5	80	52	63	80	17	C-R
Gillig	16 D	310	45	55	310	255	C-R
Lamalie	17 G	75		71	75	4	G
S-18	17 D	340	70	180	340	^h 160	C-R
Finnegan	18 D	185	2	26	185	159	C-R
Wilson	11 G	50		N.A.	N.A.	N.A.	G
Spencer	115	43	16	22	43	21	C-R
Stair	11 D	250	18	21	250	229	C-R
Francis	12.5	62	40	43	62	20	C-R
Augustine	12 D	320	6	9	320	311	C-R
Richard	13.0	01		N.O.	8.6.	N.G.	0
Kern	13 S	102	73	75	102	27	C-R
Auckeman	13 D	400	78	109	400	°291	C-R
Rice	14.5	35	32	32	35	1	C-R
City of Weston	14 D	500	65	410	500	490	C-R
Hartman	19	144	114	114	144	30	C-R
Lacy	4 G	67	- strain	64	67	3	G
Hummel	4 S	121	88	90	121	31	C-R
Jones	4 D	201	119	122	201	79	C-R
Harrison	3 S	117	108	108	117	9	C-R
Martin	3 D	200	135	138	200	62	C-R
Lockhart	2 G	140		136	140	4	Ģ
Mattingly	2 S	150	140	140	150	10	C-R
Merchant	2 D	310	170	170	310	140	C-R
Gates	1D	320	88	88	320	*232	C-R
Bickford	5 G	45	-	41	45	4	G
Bartlett	55	106	74	74	106	32	C-R
Desoto Substation	5 D	265	88	91	265	174	C-R
Staggs	6 G	116		113	116 -	3	G
Ice	65	110	92	92	110	18	C-R
Underwood	6 D	302	161	162	302	140	C-R
Cohee	70	99		84	89	5	G
Ellis	7 S	102	49	55	102	47	C-R
Harmon	7 D	293	51	53	293	240	C-R
Fox	8 G	89	- 10.00	84	89	5	G
Skiles	8 D	202	63	64	202	138	C-R
Justice	9 G	62		59	62	3	G
Lee	95	113	65	67	113	46	C-R
Starbuck	9 D	182	76	79	182	103	C-R
Geradot	22	260	72	70	260	190	G, C-R
Stenzel	21	260	170	170	260	90	C-R
Rees	20	230	160	160	230	70	C-R

Aouifer

and an and the second secon

Well name

PHREEQC Interactive - [ex17]	
Sile Edit Insert View Options Windo	w Help
	Bun
Forward and inverse modeling 🔐 🐼 👃 ᆂ	○ 批 稼 K I ■ 曲
	= × #must use DATABASE pitzer.dat
⊡- 👙 Input files	TITLE Example 17Inverse modeling of Black Sea water evaporation
È	SOLUTION 1 Black Sea water
Simulation 1	units mg/L
Ė 	density 1.014
🗄 💼 Simulation 1	pH 8.0 # estimated
Simulation 2	Ca 233
	Mg 679
	Na 5820
	K 193
	S(6) 1460
	C1 10340
	Br 35
	C 1 CO2 (g) -3.5
	SOLUTION 2 Composition during halite precipitation
	units mg/L
	density 1.271
	pH 5.0 # estimated
	Mg 50500
	Na 55200
	A 13800
	5(6) /6200
	Rx 2670
	$D_{1} = 2070$
	INVERSE MODELING
	-solution 1.2
	-uncertainties .025
	-range
	-balances
	Br
	K
	Mg
	-phases
	H2O(g) pre
	Calcite pre

Ready

👙 PHREEQC Interactive - [ex17 modified run 1]	
👙 File Edit Insert View Options Window Help 📃 🗗	
D 🖆 🖬 🕼 🕉 🖻 🛍 🖨 🔃] Bun	
Initial conditions $\stackrel{\sim}{ au}$ \scriptstyle	
Forward and inverse modeling 🎥 🚳 🌡 🛥 🇠 🏦 🏂 K I 🎬 🞬	
<pre>* #must use DATABASE pitzer.dat TITLE Example 17Inverse modeling of Carbonate-rock aquifer SOLUTION 1 Composition of rainwater units mg/L density 1.014 pH 5.7 # estimated Ca 0.69 Mg 0.3 Na 0.26 K 0.12 S(6) 4.00 Cl 0.18 Br 0 C 1 CO2(g) -3.5 SOLUTION 2 Augustine Well</pre>	INVERSE_MODELING -solution 1 2 -uncertainties .025 -range -balances Br
units mg/L density 1.271 pH 7.34 # estimated Ca 140 Mg 64 Na 4.00 K 3.8 S(6) 3.3 Cl 100 Br 0.16 C 1 CO2(g) -3.5 INVERSE_MODELING -solution 1 2 -uncertainties 1 -range -balances Br	K Mg -phases H2O(g) Calcite CO2(g) Gypsum Halite Dolomite END
K Mg −phases H2O(g)	

Results- wells at average pCO2 (-3.5)

• Augustine Well

• 65 Models found with uncertainty at 1

Phase mole transfers:		Minimum	Maximum		
	H2O(g)	5.551e+01	5.551e+01	5.551e+01	H2O
	Calcite	-1.152e-04	-2.304e-04	1.223e-04	CaCO3
	CO2 (g)	7.091e-05	-1.223e-04	2.641e-04	CO2
	Gypsum	2.703e-05	0.000e+00	5.407e-05	CaSO4:2H20
	Halite	1.369e-04	0.000e+00	2.739e-04	NaCl
	Dolomite	8.816e-05	0.000e+00	1.763e-04	CaMg(CO3)2

City of Weston Well

 65 Models found with uncertainty at 1

Phase mole transfers:		Minimum	Maximum	
H2O(g)	5.551e+01	5.551e+01	5.551e+01	H2O
Calcite	-1.780e-04	-3.560e-04	1.134e-04	CaCO3
CO2 (g)	6.598e-05	-1.134e-04	2.454e-04	CO2
Gypsum	6.065e-05	0.000e+00	1.213e-04	CaSO4:2H2O
Dolomite	1.174e-04	0.000e+00	2.347e-04	CaMg (CO3) 2

"+" dissolving "-" precipitating

Results- Wells at average aquifer pCO2 (-4.8)

• Augustine Well

• 65 Models found with uncertainty at 1

Phase mole transfers:		Maximum	
5.551e+01	5.551e+01	5.551e+01	H2O
-5.729e-05	-1.146e-04	6.435e-06	CaCO3
3.399e-06	-6.435e-06	1.323e-05	CO2
2.703e-05	0.000e+00	5.407e-05	CaSO4:2H2O
1.369e-04	0.000e+00	2.739e-04	NaCl
3.025e-05	0.000e+00	6.050e-05	CaMg (CO3) 2
	rs: 5.551e+01 -5.729e-05 3.399e-06 2.703e-05 1.369e-04 3.025e-05	rs: Minimum 5.551e+01 5.551e+01 -5.729e-05 -1.146e-04 3.399e-06 -6.435e-06 2.703e-05 0.000e+00 1.369e-04 0.000e+00 3.025e-05 0.000e+00	rs: Minimum Maximum 5.551e+01 5.551e+01 5.551e+01 -5.729e-05 -1.146e-04 6.435e-06 3.399e-06 -6.435e-06 1.323e-05 2.703e-05 0.000e+00 5.407e-05 1.369e-04 0.000e+00 2.739e-04 3.025e-05 0.000e+00 6.050e-05

City of Weston Well

• 65 Models found with uncertainty at 1

Phase mole transfe	ers:	Minimum	Maximum	
H2O(g)	5.551e+01	5.551e+01	5.551e+01	H2O
Calcite	-1.243e-04	-2.487e-04	6.066e-06	CaCO3
CO2 (g)	3.116e-06	-6.066e-06	1.230e-05	C02
Gypsum	6.065e-05	0.000e+00	1.213e-04	CaSO4:2H2O
Halite	9.993e-04	0.000e+00	1.999e-03	NaCl
Dolomite	6.368e-05	0.000e+00	1.274e-04	CaMg (CO3) 2

City of Weston Well Results

	$c \circ \circ$	
\bullet ΛT h		+ h
	UUL	- J.J

Phase mole transfers:		Minimum	Maximum	
H2O(g)	5.551e+01	5.551e+01	5.551e+01	H2O
Calcite	-1.780e-04	-3.560e-04	1.134e-04	CaCO3
CO2 (g)	6.598e-05	-1.134e-04	2.454e-04	CO2
Gypsum	6.065e-05	0.000e+00	1.213e-04	CaSO4:2H2O
Dolomite	1.174e-04	0.000e+00	2.3 <mark>4</mark> 7e-04	CaMg (CO3) 2

• At	pCO2 =	-4.8

Phase mole transfers:		Minimum	Maximum		
	H2O(g)	5.551e+01	5.551e+01	5.551e+01	H2O
	Calcite	-1.243e-04	-2.487e-04	6.066e-06	CaCO3
	CO2 (g)	3.116e-06	-6.066e-06	1.230e-05	C02
	Gypsum	6.065e-05	0.000e+00	1.213e-04	CaSO4:2H2O
	Halite	9.993e-04	0.000e+00	1.999e-03	NaCl
	Dolomite	6.368e-05	0.000e+00	1.274e-04	CaMg (CO3) 2

Conclusions

Every test showed precipitation of Calcite

- Greater at a higher pCO2
- Greater at City of Weston Well → deeper bedrock
- Every test showed dissolution
 - of Dolomite
 - Greater dissolution at higher pCO2
 - Greater at City of Weston Well

 $\label{eq:CaCO3} CaCO_3 + H_2O + CO_2 <--> Ca^{2+} + 2HCO_3^-$ (calcite) $CaMg(CO_3)_2 + 2H_2O + 2CO_2 <--> Ca^{2+} + Mg^{2+} + 4HCO_3^-$ (dolomite)

References

- Carroll, D., 1962, Rainwater as a chemical agent of geologic processes: a review, United States Geological Survey, Department of the Interior, Washington, D.C.
- Eberts, S. and George, L., 2000, Regional ground-water flow and geochemistry in the Midwestern basins and arches aquifer system in parts of Indiana, Ohio, Michigan, and Illinois: United States Geological Survey, U.S. Department of the Interior; Reston, Virginia.
- Faure, G., 1998, Principles and applications of geochemistry: a comprehensive textbook for geology students: New Jersey, Prentice Hall Inc.
- Thorp, J.; Lamberti, G.; Casper, A., 2005, St. Lawrence River Basin, Rivers of North America