1. Consider the Fo-An-silica diagram. Temperatures are in °C. Hint: Each area is labeled with its primary crystallization phase. The dotted line indicates the subsolidus compatibility relationships.

- a. For each of the four compounds abbreviated as Fo, En, Si and An, give the mineral name and describe the melting behavior (congruent or incongruent). [8 pts]
- b. Give the ternary eutectic temperature, and its approximate composition expressed as % end-member components. [5 pts]
- c. Sketch and label a 900°C phase diagram for this system, and label the stable mineral assemblage in all phase fields. [5 pts]
- d. Use standard nomenclature to name the rock with composition X. [5 pts]
- e. Provide a narrative of crystallization behavior for a melt of composition Y. [10 pts]
- f. Use the Gibbs Phase Rule to determine F (degrees of freedom) at the eutectic. [5 pts]
- g. From the information on the ternary diagram, draw the Fo–silica binary phase diagram.

 Be sure to include a temperature scale. [10 pts]

2.	What	are	equiv	va	lents?
----	------	-----	-------	----	--------

[5 pts]

Phaneritic	Aphanitic		
granite			
	dacite		
syenite			
gabbro			
	andesite		

- 3. Draw a neat and well-labeled generalized cross section of the shallowest 600 km of the Earth, showing a mid-ocean ridge, an island arc, a back-arc rift, an active continental subduction zone, an ocean island basalt, and an intracontinental rift.

 [15 pts]
- 4. Draw a cross section of the Earth, and include the following items (labeled):

[20 pts]

- a) inner and outer core, mantle, and crust
- b) approximate depths (in km) to each interface from the surface.
- c) general mineral composition of each layer
- 5. Consider a hypothetical set of related volcanic rocks, derived by progressive evolution from a mafic magma. Assuming the parental magma composition below, [12 pts]
 - a) draw predicted Harker diagrams for MgO-SiO₂, CaO-SiO₂, and K₂O-SiO₂. Include scales.
 - b) describe how fractionation of specific minerals could control the trends, and why.

Oxide	(wt. %)
SiO ₂	50.2
TiO ₂	1.1
Al_2O_3	14.9
$Fe_2O_3^*$	10.4
MgO	7.4
CaO	10.0
Na₂O	2.6
K_2O	1.0
LOI	1.9
Total	99.5