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CHAPTER 1

Prelude

We begin by surveying some of the “classical” aspects of homological commu-
tative algebra, which will motivate the definition of semidualizing modules. We will
focus in this section on finitely generated modules, although there are versions of
these theories for non-finitely generated modules (and for chain complexes), in an
attempt to keep things accessible. Note also that this section does not adhere to
the original chronology of the research.

1.1. Projective Dimension

Let M be a finitely generated R-module. In a sense, the nicest R-modules are
the free modules and, more generally, the projective modules. Most modules are not
projective. (For instance, when R is a local ring, every R-module is projective if and
only if R is a field.) However, there is a process by which one can “approximate”
M by projective R-modules.

Specifically, there is a finitely generated projective R-module P0 equipped with
a surjection τ : P0 → M . If M is not projective, then M1 = Ker(τ) 6= 0; this
“syzygy module” can be thought of as the error from the approximation of M by
P0. The module M1 may or may not be projective, but we can approximate it by
a projective R-module as we did with M .

Indeed, since R is noetherian and P0 is finitely generated, the submodule
M1 ⊆ P0 is also finitely generated. Repeat the above procedure inductively to
find surjections τi+1 : Pi+1 → Mi+1 for each i > 0 where Pi+1 is projective and
Mi+1 = Ker(τi) ⊆ Pi. Composing the surjections τi+1 with the inclusions Mi+1 ⊆
Pi, we obtain the following exact sequence

P+ = · · ·
∂Pi+1−−−→ Pi

∂Pi−−→ Pi−1

∂Pi−1−−−→ · · ·P1
∂P1−−→ P0

τ−→M → 0

which we call an augmented projective resolution of M . The projective resolution
of M associated to P+ is the sequence obtained by truncating:

P = · · ·
∂Pi+1−−−→ Pi

∂Pi−−→ Pi−1

∂Pi−1−−−→ · · ·P1
∂P1−−→ P0 → 0.

Note that P is not in general exact. Indeed, one has Ker(∂Pi ) = Im(∂Pi+1) for each
i > 1, but Coker(∂P1 ) ∼= M , and so P is exact if and only if M = 0. (One might say
that P is “acyclic”, but we will not use this term because it means different things
to different people.) We say that P is a free resolution of M when each Pi is free.
Note that, when R is local, an R-module is free if and only if it is projective, and so
the notions of projective resolution and free resolution are the same in this setting.

If M admits a projective resolution P such that Pi = 0 for i� 0, then we say
that M has finite projective dimension. More specifically, the projective dimension
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2 1. PRELUDE

of M is the shortest such resolution:

pdR(M) = inf{sup{n > 0 | Pn 6= 0} | P is a projective resolution of M}.

Modules with finite projective dimension are quite special, as we will see below.
One need not look far to find modules of finite projective dimension: Hilbert’s
famous Syzygy Theorem [14] says that, when k is a field, every finitely generated
module over the polynomial ring k[X1, . . . , Xd] has projective dimension at most d.
In the local setting, this is a sort of precursor to the famous theorem of Auslander,
Buchsbaum [3] and Serre [20]:

Theorem 1.1.1. Let (R,m, k) be a local ring of Krull dimension d. The following
conditions are equivalent:

(i) R is regular, that is, the maximal ideal m can be generated by d elements;
(ii) pdR(M) <∞ for each finitely generated R-module; and
(iii) pdR(k) <∞.

One important application of this result is the solution of the localization prob-
lem for regular local rings: If R is a regular local ring and p ⊂ R is a prime ideal,
then the localization Rp is also regular.

Theorem 1.1.1 substantiates the following maxim: to understand a ring is to
understand its modules. If you like, the nicer the ring, the nicer its modules, and
conversely. We shall see this maxim in action in numerous places below. One
could say, as I often do, that module theory is representation theory for rings, with
the modules taking the place of representations. This is backwards, though, since
representation theory is, in fact, nothing other than the module theory of group
rings.

Another feature of the projective dimension is the “Auslander-Buchsbaum for-
mula” [3]:

Theorem 1.1.2. Let (R,m, k) be a local ring. If M is an R-module of finite
projective dimension, then pdR(M) = depth(R) − depthR(M); in particular, if
M 6= 0, then depthR(M) 6 depth(R).

Here, the “depth” of M is the length of the longest M -regular sequence in m;
this can be expressed homologically as

depthR(M) = inf{i > 0 | ExtiR(k,M) 6= 0}.

And depth(R) = depthR(R).
Note that this result shows how to find modules of infinite projective dimension;

just find a module M 6= 0 with depthR(M) > depth(R). For instance, when k is a
field, the ring R = k[[X,Y ]]/(X2, XY ) has depth 0 and the module M = R/XR ∼=
k[[X]] has depth 1.

1.2. Complete Intersection Dimension

The class of regular local rings is not stable under specialization: if (R,m) is
a regular local ring and x ∈ m is an R-regular element, then R/xR may not be a
regular local ring. This corresponds to the geometric fact that a hypersurface in a
smooth variety need not be smooth. In a sense, this is unfortunate. However, it
leads to our next class of rings.
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Definition 1.2.1. A local ring (R,m) is a complete intersection if its m-adic com-
pletion R̂ has the form R̂ ∼= Q/(x)Q where Q is a regular local ring and x is a
Q-regular sequence.

Recall that Cohen’s Structure Theorem [10] guarantees that the completion of
any local ring is a homomorphic image of a regular local ring. Since the completion
of a regular local ring is regular, it follows that every regular local ring is a complete
intersection. It is straightforward to show that the class of complete intersection
rings is closed under specialization. Furthermore, this definition of complete in-
tersection is independent of the choice of regular local ring surjecting onto R̂: a
theorem of Grothendieck [13, (19.3.2)] says that, if R is a complete intersection
and π : A → R̂ is a ring epimorphism where A is a regular local ring, then Ker(π)
is generated by an A-regular sequence.

Avramov, Gasharov and Peeva [6] introduced the complete intersection dimen-
sion of a finitely generated R-module M , in part, to find and study modules whose
free resolutions do not grow too quickly. For the sake of simplicity, we only discuss
this invariant when R is local. Recall that a ring homomorphism of local rings
(R,m)→ (S, n) is local when mS ⊆ n.

Definition 1.2.2. Let (R,m) be a local ring. A quasi-deformation of R is a diagram
of local ring homomorphisms

R
ρ−→ R′

τ←− Q
where ρ is flat and τ is surjective with kernel generated by a Q-regular sequence.

A finitely generated R-module M has finite complete intersection dimension
when there exists a quasi-deformation R → R′ ← Q such that pdQ(R′ ⊗R M) is
finite; specifically, we have

CI-dimR(M) = inf{pdQ(R′ ⊗RM)− pdQ(R′) | R→ R′ ← Q quasi-deformation}.

When R is a local complete intersection, it follows readily from Theorem 1.1.1
that every R-module has finite complete intersection dimension: write R̂ ∼= Q/(x)Q
where Q is a regular local ring and x is a Q-regular sequence and use the quasi-
deformation R→ R̂← Q. Moreover, Avramov, Gasharov and Peeva [6] show that
the complete intersection dimension satisfies properties like those in Theorems 1.1.1
and 1.1.2:

Theorem 1.2.3. Let (R,m, k) be a local ring. The following conditions are equiv-
alent:

(i) R is a complete intersection;
(ii) CI-dimR(M) <∞ for each finitely generated R-module; and

(iii) CI-dimR(k) <∞.

Theorem 1.2.4 (AB-formula). Let R be a local ring and M a finitely generated R-
module. If R→ R′ ← Q is a quasi-deformation such that pdQ(R′⊗RM) <∞, then
pdQ(R′ ⊗R M) − pdQ(R′) = depth(R) − depthR(M). If CI-dimR(M) < ∞, then
CI-dimR(M) = depth(R)−depthR(M); in particular, if M 6= 0, then depthR(M) 6
depth(R).

The “AB” in the AB-formula stands for Auslander-Buchsbaum, naturally, and
also Auslander-Bridger, as we shall see below. As a consequence of the AB-formula,
we see that the complete intersection dimension is a refinement of the projective
dimension.
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Corollary 1.2.5. Let R be a local ring and M a finitely generated R-module. There
is an inequality CI-dimR(M) 6 pdR(M), with equality when pdR(M) <∞.

Proof. Assume without loss of generality that pdR(M) <∞. Using the trivial
quasi-deformation R→ R← R, it is straightforward to see that M has finite com-
plete intersection dimension. Theorems 1.1.2 and 1.2.4 show that CI-dimR(M) =
pdR(M), as desired. �

Using the work of Cohen [10] and Grothendieck [12], Avramov, Gasharov and
Peeva [6] show one can exert a certain amount of control on the structure of quasi-
deformations:

Proposition 1.2.6. Let (R,m) be a local ring and M an R-module of finite com-
plete intersection dimension. Then there exists a quasi-deformation R

ρ−→ R′ ← Q
such that pdQ(R′ ⊗R M) < ∞ and such that Q is complete with algebraically
closed residue field and such that the closed fibre R′/mR′ is artinian (hence, Cohen-
Macaulay).

We shall see in a theorem below how semidualizing modules allow us to improve
Proposition 1.2.6.

Here is an open question that I would very much like to answer. Note that the
corresponding result for modules of finite projective dimension is well-known.

Question 1.2.7. Let R be a local ring and consider an exact sequence 0→M1 →
M2 → M3 → 0 of finitely generated R-modules. If two of the modules Mi have
finite complete intersection dimension, must the third one also?

If one of the Mi has finite projective dimension, then Question 1.2.7 is readily
answered in the affirmative. In particular, every module of finite complete inter-
section dimension has a bounded resolution by modules of complete intersection
dimension zero, namely, an appropriate truncation of a projective resolution. On
the other hand, it is not known whether M must have finite complete intersection
dimension if it has a bounded resolution by modules of complete intersection di-
mension zero. Indeed, this is equivalent to one of the implications in Question 1.2.7.

1.3. G-Dimension

It is well known that R is always projective as an R-module. It is natural to
ask whether it is always self-injective, i.e., injective as an R-module. The answer
is “no” in general because, for instance, if a local ring R has a finitely generated
injective module, then R must be artinian. One can hope to remedy this by asking
whether R has finite injective dimension as an R-module, that is, when does there
exist an exact sequence

0→ R→ I0 → I1 → · · · → Id → 0

where each Ij is an injective R-module? Once again, the answer is “no” because,
for instance, if a local ring R has a finitely generated module of finite injective
dimension, then R must be Cohen-Macaulay.

Definition 1.3.1. A local ring R is Gorenstein if it has finite injective dimension
as an R-module.
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These rings are named after the famous group theorist Daniel Gorenstein.
It can be shown, using techniques of Auslander, Buchsbaum [3] and Serre [20],

that every finitely generated module over a regular local ring has finite injective
dimension; hence, every regular local ring is Gorenstein. Furthermore, the class
of Gorenstein rings is stable under specialization, so every complete intersection is
also Gorenstein. Thus we have the implications

regular =⇒ complete intersection =⇒ Gorenstein =⇒ Cohen-Macaulay.

Auslander and Bridger [1, 2] introduced the G-dimension of a finitely generated
module, in part, to give a module-theoretic characterization of Gorenstein rings
like that in Theorem 1.1.1. Like the projective dimension, it is defined in terms
of resolutions by certain modules with good homological properties, the “totally
reflexive” modules. To define these modules, we need the natural biduality map.

Definition 1.3.2. Let N be an R-module. The natural biduality map

δRN : N → HomR(HomR(N,R), R)

is the R-module homomorphism given by δRN (n)(ψ) = ψ(n), in other words, for
each n ∈ N the map δRN (n) : HomR(N,R)→ R is given by ψ 7→ ψ(n).

As the name suggests, a totally reflexive module is a reflexive module with
some additional properties. The addition properties have to do with the vanishing
of the Ext-modules that arise from the biduality map.

Definition 1.3.3. An R-module G is totally reflexive if it satisfies the following
conditions:

(1) G is finitely generated over R;
(2) the biduality map δRG : G→ HomR(HomR(G,R), R) is an isomorphism; and
(3) ExtiR(G,R) = 0 = ExtiR(HomR(G,R), R) for all i > 1.

We let G(R) denote the class of all totally reflexive R-modules.

Example 1.3.4. Every finitely generated projective R-module is totally reflexive;
see Proposition 2.1.13.

Definition 1.3.5. Let M be a finitely generated R-module. An augmented G-
resolution of M is an exact sequence

G+ = · · ·
∂Gi+1−−−→ Gi

∂Gi−−→ Gi−1

∂Gi−1−−−→ · · ·G1
∂G1−−→ G0

τ−→M → 0

wherein each Gi is totally reflexive. The G-resolution of M associated to G+ is the
sequence obtained by truncating:

G = · · ·
∂Gi+1−−−→ Gi

∂Gi−−→ Gi−1

∂Gi−1−−−→ · · ·G1
∂G1−−→ G0 → 0

Since every finitely generated R-module has a resolution by finitely generated
projective R-modules and every finitely generated projective R-module is totally
reflexive, it follows that every finitely generated R-module has a G-resolution.

Definition 1.3.6. Let M be a finitely generated R-module. If M admits a G-
resolution G such that Gi = 0 for i� 0, then we say that M has finite G-dimension.
More specifically, the G-dimension of M is the shortest such resolution:

G-dimR(M) = inf{sup{n > 0 | Gn 6= 0} | G is a G-resolution of M}.
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Auslander and Bridger [1, 2] show that the G-dimension satisfies properties
like those in Theorems 1.1.1 and 1.1.2:

Theorem 1.3.7. Let (R,m, k) be a local ring. The following conditions are equiv-
alent:

(i) R is Gorenstein;
(ii) G-dimR(M) <∞ for each finitely generated R-module; and
(iii) G-dimR(k) <∞.

Theorem 1.3.8 (AB-formula). Let R be a local ring and M a finitely generated
R-module. If G-dimR(M) < ∞, then G-dimR(M) = depth(R) − depthR(M); in
particular, if M 6= 0, then depthR(M) 6 depth(R).

Corollary 1.3.9. Let R be a local ring and M a finitely generated R-module. There
are inequalities G-dimR(M) 6 CI-dimR(M) 6 pdR(M), with equality to the left of
any finite quantity.

Here is another open question that I would very much like to answer. It is
a special case (though, equivalent to the general case) of Avramov and Foxby’s
Composition Question for ring homomorphisms of finite G-dimension [5, (4.8)].
Note that it is straightforward to answer the corresponding result for homomor-
phisms of finite projective dimension in the affirmative. The analogue for complete
intersection dimension is also open.

Question 1.3.10. Let R → S → T be surjective local ring homormophisms. If
G-dimR(S) and G-dimS(T ) are finite, must G-dimR(T ) also be finite?

We shall see in a theorem below how semidualizing modules allow us to give a
partial answer to Question 1.3.10.



CHAPTER 2

Semidualizing Basics

In this section, we survey the basic properties of semidualizing modules.

2.1. Definitions and Basic Properties

One can modify Definition 1.3.3 to consider dualities with respect to modules
other than R. However, not every class of modules which arises in this way is well-
suited for building a homological dimension. We shall see next that, in a sense, the
best class of modules arise from considering dualities with respect to semidualizing
modules.

Definition 2.1.1. Let M and N be R-modules. The natural biduality map

δMN : N → HomR(HomR(N,M),M)

is the R-module homomorphism given by δMN (n)(ψ) = ψ(n), in other words, for
each n ∈ N the map δMN (n) : HomR(N,M)→M is given by ψ 7→ ψ(n).

Remark 2.1.2. Let f : M → M ′ and g : N → N ′ be R-module homomorphisms.
It is straightforward to show that the map δMN from Definition 2.1.1 is a well-defined
R-module homomorphism and that the following diagram commutes:

HomR(HomR(N,M ′),M ′)
HomR(HomR(N,f),M ′) // HomR(HomR(N,M),M ′)

N
δMN //

g

��

δM
′

N

OO

HomR(HomR(N,M),M)

HomR(HomR(g,M),M)

��

HomR(HomR(N,M),f)

OO

N ′
δM
N′ // HomR(HomR(N ′,M),M).

Golod introduced the following notion, though elements of it can be traced to
Foxby and Vasconcelos.

Definition 2.1.3. Let C be a finitely generated R-module. An R-module G is
totally C-reflexive if it satisfies the following conditions:

(1) G is finitely generated over R;
(2) the biduality map δCG : G→ HomR(HomR(G,C), C) is an isomorphism; and
(3) ExtiR(G,C) = 0 = ExtiR(HomR(G,C), C) for all i > 1.

We let GC(R) denote the class of all totally C-reflexive R-modules.

Proposition 2.1.4. Let C, M and N be R-modules. Then M ⊕ N is totally C-
reflexive if and only if M and N are both totally C-reflexive.

7



8 2. SEMIDUALIZING BASICS

Proof. It is straightforward to show that M ⊕N is finitely generated if and
only if M and N are both finitely generated. The isomorphism

ExtiR(M ⊕N,C) ∼= ExtiR(M,C)⊕ ExtiR(N,C)

shows that ExtiR(M ⊕ N,C) = 0 for all i > 1 if and only if ExtiR(M,C) = 0 =
ExtiR(N,C) for all i > 1. The isomorphisms

ExtiR(HomR(M ⊕N,C), C) ∼= ExtiR(HomR(M,C)⊕HomR(N,C), C)
∼= ExtiR(HomR(M,C), C)⊕ ExtiR(HomR(N,C), C)

show that ExtiR(HomR(M,C), C) = 0 = ExtiR(HomR(N,C), C) for all i > 1 if and
only if ExtiR(HomR(M⊕N,C), C) = 0 for all i > 1. Finally, there is a commutative
diagram

M ⊕N
δCM⊕N //

δCM⊕δ
C
N

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX HomR(HomR(M ⊕N,C), C)

∼=
��

HomR(HomR(M,C), C)⊕HomR(HomR(N,C), C)

so δCM⊕N is an isomorphism if and only if δCM ⊕ δCN is an isomorphism, that is, if
and only if δCM and δCN are both isomorphisms. The desired result now follows. �

Now we are finally ready to define the main players of this article.

Definition 2.1.5. Let C be an R-module. The natural homothety map

χRC : R→ HomR(C,C)

is the R-module homomorphism given by χRC(r)(c) = rc, that is, for each r ∈ R the
map χRC(r) : C → C is given by c 7→ rc.

Remark 2.1.6. Let f : C → C ′ be an R-module homomorphism. It is straight-
forward to show that the map χRC from Definition 2.1.5 is a well-defined R-module
homomorphism and that the following diagram commutes:

R
χRC //

χR
C′

��

HomR(C,C)

HomR(C,f)

��
HomR(C ′, C ′)

HomR(f,C′) // HomR(C,C ′).

Fact 2.1.7. If C is an R-module, then AnnR(C) = Ker(χRC).

The following notion was introduced, seemingly independently and using dif-
ferent terminology, by Foxby, Golod, Wakamatsu, and Vasconcelos.

Definition 2.1.8. The R-module C is semidualizing if it satisfies the following:
(1) C is finitely generated;
(2) the homothety map χRC : R→ HomR(C,C) is an isomorphism; and
(3) ExtiR(C,C) = 0 for all i > 0.

The set of isomorphism classes of semidualizing R-modules is denoted S0(R), and
the isomorphism class of a module C is denoted [C].
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An R-module D is point-wise dualizing if it is semidualizing and idRm(Dm) <∞
for each maximal ideal m. The R-module D is dualizing if it is semidualizing and
has finite injective dimension.

Example 2.1.9. It is straightforward to show that the free R-module R1 is semid-
ualizing.

Definition 2.1.10. The ring R is point-wise Gorenstein if it is locally Gorenstein,
that is, if idRm(Rm) < ∞ for each maximal ideal m. The ring R is Gorenstein if
idR(R) <∞.

Example 2.1.11. It is straightforward to show that the free R-module R1 is (point-
wise) dualizing if and only if R is (point-wise) Gorenstein.

If R is Gorenstein, then it is point-wise Gorenstein. If D is dualizing for R, then
it is point-wise dualizing. The converses of these statements hold when dim(R) <
∞, and they fail when dim(R) =∞. Nagata’s famous example of a noetherian ring
of infinite Krull dimension is point-wise Gorenstein and not Gorenstein.

Here is what we mean when we say that duality with respect to a semidualizing
module is, in a sense, best. We shall see in Proposition 2.1.13 below that the
conditions in this result are equivalent to every finitely generated projective R-
module being totally C-reflexive.

Proposition 2.1.12. Let C be a finitely generated R-module. The following con-
ditions are equivalent:

(i) C is a semidualizing R-module;
(ii) R is a totally C-reflexive R-module; and

(iii) C is a totally C-reflexive R-module and AnnR(C) = 0.

Proof. Let f : HomR(R,C)→ C be the Hom cancellation isomorphism given
by f(ψ) = ψ(1). It is readily shown that the following diagrams commute:

R
χRC //

δCR ))TTTTTTTTTTTTTTTTTTT HomR(C,C)

HomR(f,C)∼=
��

HomR(HomR(R,C), C)

(2.1.12.1)

C
δCC //

idC

��

HomR(HomR(C,C), C)

HomR(χRC ,C)

��
C HomR(R,C).

f

∼=
oo

(2.1.12.2)

(i)⇐⇒ (ii). For i > 1, we have ExtiR(R,C) = 0 because R is projective, and

ExtiR(HomR(R,C), C) ∼= ExtiR(C,C).

In particular, we have ExtiR(HomR(R,C), C) = 0 for all i > 1 if and only if
ExtiR(C,C) = 0 for all i > 1. Furthermore, diagram (2.1.12.1) shows that δCR
is an isomorphism if and only if χRC is an isomorphism. Thus C is semidualizing if
and only if R is totally C-reflexive.

(i) =⇒ (iii). Assume that C is semidualizing. The isomorphism HomR(C,C) ∼=
R implies that AnnR(C) ⊆ AnnR(R) = 0.
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We next show that C is totally C-reflexive. For i > 1, we have

ExtiR(C,C) = 0 and ExtiR(HomC(C,C), C) ∼= ExtiR(R,C) = 0

because C is semidualizing. Since χRC is an isomorphism, diagram (2.1.12.2) shows
that δCC is an isomorphism, so C is totally C-reflexive.

(iii) =⇒ (i). Assume that C is a totally C-reflexive R-module and AnnR(C) =
0. Note that it follows that SuppR(C) = V (AnnR(C)) = V (0) = Spec(R). It also
follows that ExtiR(C,C) = 0, so it remains to show that χRC is an isomorphism. We
have 0 = AnnR(C) = Ker(χRC), so χRC is injective. Set N = Coker(χRC) and consider
the exact sequence

0→ R
χRC−−→ HomR(C,C)→ N → 0.

The associated long exact sequence in ExtR(−, C) begins as follows

0→ HomR(N,C)→ HomR(HomR(C,C), C)
HomR(χRC ,C)−−−−−−−−→∼=

HomR(R,C).

The fact that HomR(χRC , C) is an isomorphism follows from diagram (2.1.12.2)
because C is totally C-reflexive. We conclude that HomR(N,C) = 0. The next
piece of the long exact sequence has the following form

HomR(HomR(C,C), C)
∼=−→ HomR(R,C)→ Ext1

R(N,C)→ Ext1
R(HomR(C,C), C)︸ ︷︷ ︸

=0

so Ext1
R(N,C) = 0. Other pieces of the long exact sequence have the form

Exti−1
R (R,C)︸ ︷︷ ︸

=0

→ ExtiR(N,C)→ ExtiR(HomR(C,C), C)︸ ︷︷ ︸
=0

and it follows that ExtiR(N,C) = 0 for all i > 0.
We will be done once we show that N = 0, so suppose that N 6= 0 and let

p ∈ SuppR(N). It follows that p ∈ Spec(R) = SuppR(C), so Cp and Np are non-
zero finitely generated Rp-modules. From [16, (16.6)] it follows that there exists
some i > 0 such that

0 6= ExtiRp
(Np, Cp) = ExtiR(N,C)p = 0

which is clearly a contradiction. �

Proposition 2.1.13. Let C be a semidualizing R-module, and let P be a finitely
generated projective R-module.

(a) If G is totally C-reflexive, then so is G⊗R P .
(b) The modules P and C ⊗R P are totally C-reflexive.
(c) For each integer n > 0, the modules Rn and Cn are totally C-reflexive.

Proof. (a) Since P is a finitely generated projective R-module, there is a
second finitely generated projective R-module Q such that P ⊕ Q ∼= Rn for some
integer n > 0. Since G is totally C-reflexive we conclude from Proposition 2.1.4
that Gn ∼= (G⊗R P )⊕ (G⊗R Q) is totally C-reflexive and then that G⊗R P and
G⊗R Q are totally C-reflexive.

(b) Proposition 2.1.12 shows that R and C are totally C-reflexive, so the desired
conclusions follow from part (a) using G = R and G = C.

(c) This is the special case of part (b) with P = Rn. �

The following corollary is a complement to the first statement in Example 2.1.9.
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Corollary 2.1.14. If C is a cyclic semidualizing R-module, then C ∼= R.

Proof. Assuming that C is a cyclic semidualizing R-module, the equality in
the next sequence is from Proposition 2.1.12

C ∼= R/AnnR(C) = R/(0) ∼= R

and the isomorphisms are standard. �

The next example shows that when C is totally C-reflexive, one may have
AnnR(C) 6= 0. In other words, the conditions in Proposition 2.1.12 are not equiva-
lent to the condition “C is totally C-reflexive”.

Example 2.1.15. Let k be a field, and set R = k×k. The subset I = 0×k ⊆ R is
an ideal, and we set C = R/I. It is straightforward to show that the natural map
ψ : HomR(R/I,R/I) → R/I given by ψ(α) = α(1) is an R-module isomorphism.
It is routine to show that R/I is projective as an R-module. This explains the
vanishing in the next sequence

0 = ExtiR(R/I,R/I) ∼= ExtiR(HomR(R/I,R/I), R/I)

while the isomorphism is induced by ψ. There is a commutative diagram of R-
module homomorphisms

HomR(R/I,R/I)

HomR(ψ,R/I) ∼=
��

ψ

∼=
// R/I

δ
R/I

R/I
uukkkkkkkkkkkkkkkk

HomR(HomR(R/I,R/I), R/I)

and it follows that δR/IR/I is an isomorphism. By definition, this implies that C = R/I

is C-reflexive. However, we have AnnR(C) = I 6= 0, so C is not semidualizing.

Proposition 2.1.16. Let C be a semidualizing R-module.
(a) One has SuppR(C) = Spec(R) and AssR(C) = AssR(R).
(b) One has dimR(C) = dim(R) and AnnR(C) = 0.
(c) Given an ideal I ⊆ R, one has IC = C if and only if I = R.
(d) An element x ∈ R is R-regular if and only if it is C-regular.

Proof. (a) and (b) The equality AnnR(C) = 0 is shown in Proposition 2.1.12.
This implies SuppR(C) = V (AnnR(C)) = V (0) = Spec(R), and the equality
dimR(C) = dim(R) follows directly. The isomorphism HomR(C,C) ∼= R implies

AssR(R) = AssR(HomR(C,C)) = SuppR(C) ∩AssR(C)

= Spec(R) ∩AssR(C) = AssR(C).

(c) One implication is immediate. For the nontrivial implication, assume that
IC = C. It follows that, for each maximal ideal m ⊂ R, we have ImCm = Cm; since
Cm 6= 0, Nakayama’s lemma implies that Im = Rm and thus I 6⊆ m. Since this is so
for each maximal ideal, we conclude that I = R.

(d) Assume without loss of generality that x is not a unit inR, i.e., that xC 6= C.
Then x is a non-zerodivisor on R if and only if x 6∈ ∪p∈AssR(R)p = ∪p∈AssR(C)p,
that is, if and only if x is a non-zerodivisor on C. �

Corollary 2.1.17. Let M be a non-zero R-module. If C is a semidualizing R-
module, then HomR(C,M) 6= 0 and C ⊗RM 6= 0.
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Proof. Proposition 2.1.16(a) and Lemma A.2.1. �

2.2. Base Change

Proposition 2.2.1. Let ϕ : R → S be a flat ring homomorphism, and let C be a
finitely generated R-module. If C is a semidualizing R-module, then C ⊗R S is a
semidualizing S-module. The converse holds when ϕ is faithfully flat.

Proof. The S-module C ⊗R S is finitely generated because C is a finitely
generated R-module. For i > 1, we have

ExtiS(C ⊗R S,C ⊗R S) ∼= ExtiR(C,C)⊗R S.

If ExtiR(C,C) = 0, then this shows that ExtiS(C ⊗R S,C ⊗R S) = 0. The converse
holds when ϕ is faithfully flat.

Finally, there is a commutative diagram

S
∼= //

χSC⊗RS

��

R⊗R S

χRC⊗RS
��

HomS(C ⊗R S,C ⊗R S) HomR(C,C)⊗R S∼=
oo

where the unlabeled isomorphisms are the natural ones. If the homothety map χRC
is an isomorphism, then so is χRC ⊗R S, and so the diagram shows that χSC⊗RS is
an isomorphism. Conversely, if χSC⊗RS is an isomorphism, then the diagram shows
that χRC ⊗R S is an isomorphism; if we also assume that ϕ is faithfully flat, then
χRC is an isomorphism. This yields desired result. �

The next result is from unpublished notes by Foxby. See also Avramov, Iyen-
gar, and Lipman [7]. It will be quite handy, saving us from worrying about certain
commutative diagrams. Note that it can also be derived as a corollary of Proposi-
tion 5.4.1 in the special case M = R.

Proposition 2.2.2. Let C be an R-module.

(a) If there is an R-module isomorphism α : R
∼=−→ HomR(C,C), then the natural

homothety map χRC : R→ HomR(C,C) is an isomorphism.
(b) Assume that C is finitely generated. If for every maximal ideal m ⊂ R

there is an Rm-module isomorphism Rm
∼= HomR(C,C)m, then the natural

homothety map χRC : R→ HomR(C,C) is an isomorphism.

Proof. (a) Let idC : C → C be the identity map, and set u = α−1(idC). Using
the condition idC = α(u) = uα(1), it is straightforward to show that u is a unit.
Furthermore, we have χRC = uα. Since u is a unit and α is an isomorphism, it
follows that χRC is an isomorphism.

(b) The assumption Rm
∼= HomR(C,C)m

∼= HomRm(Cm, Cm) conspires with
part (a) to imply that the natural homothety map χRm

Cm
: Rm → HomRm(Cm, Cm) is

an isomorphism for each maximal ideal m ⊂ R. Furthermore, for each m there is a
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commutative diagram

Rm

χRm
Cm

∼=
//

(χRC)m

��

HomRm(Cm, Cm)

HomR(C,C)m

∼=

44iiiiiiiiiiiiiiiii

where the unspecified map is the natural isomorphism. It follows that (χRC)m is an
isomorphism for each m, and so χRC is an isomorphism. �

Here is a compliment to part of Proposition 2.2.1. It is a local-global principle.

Proposition 2.2.3. Let C be a finitely generated R-module. The following condi-
tions are equivalent:

(i) C is a semidualizing R-module;
(ii) U−1C is a semidualizing U−1R-module for each multiplicatively closed sub-

set U ⊂ R;
(iii) Cp is a semidualizing Rp-module for each prime ideal p ⊂ R; and
(iv) Cm is a semidualizing Rm-module for each maximal ideal m ⊂ R.

Proof. The implication (i) =⇒ (ii) is in Proposition 2.2.1; use the flat homo-
morphism R→ U−1R. The implications (ii) =⇒ (iii) =⇒ (iv) are straightforward.

(iv) =⇒ (i). Assume that Cm is a semidualizing Rm-module for each maximal
ideal m ⊂ R. For each i > 1 and each m this provides the vanishing

ExtiR(C,C)m
∼= ExtiRm

(Cm, Cm) = 0

where the isomorphism is standard because C is finitely generated and R is noether-
ian. Since this is so for each maximal ideal m, we conclude that ExtiR(C,C) = 0
for each i > 1. Furthermore, for each m, we have Rm

∼= HomRm(Cm, Cm) ∼=
HomR(C,C)m, so Proposition 2.2.2(b) implies that χRC is an isomorphism. Hence,
C is a semidualizing R-module, as desired. �

Remark 2.2.4. With the notation of Proposition 2.2.1, assume that C is dualizing
for R. While C ⊗R S will be semidualizing for S, it may not be dualizing for S.
For example, let R be a field and let S be a non-Gorenstein local R-algebra; then
R1 is dualizing for R, but S1 ∼= R1 ⊗R S is not dualizing for S.

On the other hand, the U−1R-module U−1C will be dualizing because of the
inequality idU−1R(U−1C) 6 idR(C) <∞.

Corollary 2.2.5. Let C be a finitely generated R-module, and let P be a finitely
generated projective R-module of rank 1.

(a) The R-module P is semidualizing.
(b) The R-module C ⊗R P is semidualizing if and only if C is semidualizing.
(c) The R-module C is (point-wise) dualizing if and only if C⊗RP is (point-wise)

dualizing.

Proof. By assumption, we have Pm
∼= Rm for each maximal ideal m ⊂ R.

Since Rm is a semidualizing Rm-module, Proposition 2.2.3 implies that P is a
semidualizing R-module. This establishes part (a). Part (b) follows similarly, using
the sequence of isomorphisms

(C ⊗R P )m
∼= Cm ⊗Rm Pm

∼= Cm ⊗Rm Rm
∼= Cm.
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Since P is projective and non-zero, we have idR(C ⊗R P ) = idR(C), and this
explains part (c). �

Part (a) of the next result generalizes Proposition 2.1.16(d). See also Corol-
lary 3.4.3.

Theorem 2.2.6. Let C be a semidualizing R-module, and let x = x1, . . . , xn ∈ R.

(a) The sequence x is C-regular if and only if x is R-regular.
(b) If x is R-regular, then C/xC is a semidualizing R/xR-module.
(c) Given a proper ideal I ( R, one has depthR(I;C) = depth(I;R). In partic-

ular, if R is local, then depthR(C) = depth(R).

Proof. Part (c) follows from part (a). We prove parts (a) and (b) by induction
on n. For the base case n = 1, part (a) is contained in Proposition 2.1.16(d). Thus,
for the base case, we assume that x1 is R-regular (and hence C-regular) and prove
that C = C/x1C is a semidualizing R-module where R = R/x1R.

We claim that ExtiR(C,C) = 0 for all i > 1. To see this, consider the following
sequence, which is exact since x1 is C-regular:

0→ C
x1−→ C → C → 0. (2.2.6.1)

Since ExtiR(C,C) = 0, the associated long exact sequence in ExtR(C,−) yields the
desired vanishing.

The fact that x1 is R-regular and C-regular yields an isomorphism

Exti
R

(C,C) ∼= ExtiR(C,C) (2.2.6.2)

for i > 0; see, e.g., [16, p. 140, Lem. 2]. Because of the previous paragraph, we
conclude that Exti

R
(C,C) = 0 for all i > 1.

There is a commutative diagram of R-module homomorphisms

0 // R
x1 //

χRC
∼=

��

R //

χRC
∼=

��

R //

γ

��

0

0 // HomR(C,C)
x1 // HomR(C,C) // HomR(C,C) // 0

where γ(r)(c) = rc. The top row of this diagram is exact because x1 is R-regular.
The bottom row is the sequence obtained by applying the functor HomR(C,−) to
the exact sequence (2.2.6.1), and it is exact because Ext1

R(C,C) = 0. Hence, the
snake lemma implies that γ is an isomorphism. This is the first step in the next
sequence, and the second step is from (2.2.6.2):

R ∼= HomR(C,C) ∼= HomR(C,C).

These are R-module isomorphisms of R-modules, hence R-module isomorphisms.
Proposition 2.2.2(a) implies that χR

C
is an isomorphism, so C is a semidualizing

R-module. This completes the base case. The induction step is routine. �

Corollary 2.2.7. Let x = x1, . . . , xn ∈ R be an R-regular sequence. If C is
a (point-wise) dualizing R-module, then C/xC is a (point-wise) dualizing R/xR-
module.
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Proof. Set R = R/xR and C = C/xC.
Assume first that C is point-wise dualizing. Theorem 2.2.6 implies that x is

C-regular and that C is a semidualizing R-module. For each maximal ideal m ⊂ R
such that x ∈ m, set m = m/xR. From [8, (3.1.15)], we have

idRm
(Cm) = idRm(Cm)− n <∞.

Since every maximal ideal of R is of the form m, it follows that C is point-wise
dualizing for R.

Assume next that C is dualizing, and set d = idR(C) <∞. For each maximal
ideal m ⊂ R, we have

idRm
(Cm) = idRm(Cm)− n 6 d− n.

As every maximal ideal of R is of the form m, we conclude that idR(C) 6 d−n <∞.
It follows that C is dualizing for R. �

Corollary 2.2.8. Let C be a semidualizing R-module of finite projective dimension.
Then C is a rank 1 projective R-module. If R is local, then C ∼= R.

Proof. Assume first that R is local. The Auslander-Buchsbaum formula ex-
plains the first equality in the next sequence

pdR(C) = depth(R)− depthR(C) = 0

and the second equality is from Corollary 2.2.6(c). This shows that C is projective,
and, since R is local, that C is free. Hence C ∼= Rn for some integer n > 1. From
the isomorphisms

R ∼= HomR(C,C) ∼= HomR(Rn, Rn) ∼= Rn
2

it follows that n = 1 and so C ∼= R.
Assume now that R is not necessarily local. For each maximal ideal m ⊂ R,

the Rm-module Cm is semidualizing and has finite projective dimension, and so we
have Cm

∼= Rm for each m. It follows that C is a rank 1 projective R-module. �

Corollary 2.2.9. The ring R is (point-wise) Gorenstein if and only if R has a
(point-wise) dualizing module of finite projective dimension.

Proof. If R is Gorenstein, then R is a dualizing module for R that has finite
projective dimension.

Conversely, assume that P is a dualizing module for R that has finite projective
dimension. Corollary 2.2.8 implies that P is a rank 1 projective module. Since P
is projective and has finite injective dimension, it follows that the module R ∼=
HomR(P, P ) has finite injective dimension, that is, that R is Gorenstein.

Since the conditions “point-wise Gorenstein” and “point-wise dualizing” are
local conditions, the equivalence of point-wise conditions follows from the non-
point-wise statements proved above. �

The next result is like [8] and has a similar proof.

Proposition 2.2.10. Let C be a finitely generated R-module. Then C is semidu-
alizing for R if and only if the following conditions are satisfied:

(1) For each p ∈ Spec(R) such that depth(Rp) > 2, one has depthRp
(Cp) > 2;

(2) For each p ∈ Spec(R) such that depth(Rp) 6 1, there is an Rp-isomorphism
Rp
∼= HomRp(Cp, Cp) is an isomorphism; and
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(3) One has ExtiR(C,C) = 0 for all i > 1.

Proof. Assume first that C is semidualizing. Then ExtiR(C,C) = 0 for all
i > 1, by definition. Proposition 2.2.1 shows that Cp is semidualizing for Rp for
each p ∈ Spec(R). So the map χRp

Cp
: Rp → HomRp(Cp, Cp) is an isomorphism, and

depthRp
(Cp) = depth(Rp) by Theorem 2.2.6(c).

Assume next that conditions (1)–(3) are satisfied. To show that C is semid-
ualizing, it suffices to show that the homothety map χRC : R → HomR(C,C) is an
isomorphism. Combining condition (2) and Proposition 2.2.2(a), we conclude that
for each p ∈ Spec(R) such that depth(Rp) 6 1, the homothety homomorphism
χ
Rp

Cp
: Rp → HomRp(Cp, Cp) is an isomorphism.
The condition Ker(χRC) ⊆ R implies that depthRp

(Ker(χRC)p) > 1 whenever

depth(Rp) > 1. On the other hand, when depth(Rp) = 0, the map χ
Rp

Cp
is an

isomorphism, so we have Ker(χRC)p
∼= Ker(χRp

Cp
) = 0 for all such primes. In par-

ticular, there are no primes p such that depthRp
(Ker(χRC)p) = 0, implying that

AssR(Ker(χRC)) = ∅. Hence, we have Ker(χRC) = 0, so χRC is injective.
To show that χRC is surjective, we similarly show that there are no primes p such

that depthRp
(Coker(χRC)p) = 0. Since χRC is injective, we have an exact sequence

0→ R
χRC−−→ HomR(C,C)→ Coker(χRC)→ 0

which we localize at a prime p to obtain the next exact sequence

0→ Rp

χ
Rp
Cp−−−→ HomRp(Cp, Cp)→ Coker(χRC)p → 0. (2.2.10.1)

If depth(Rp) 6 1, then χ
Rp

Cp
is an isomorphism, so Coker(χRC)p = 0 and it follows

that depthRp
(Coker(χRC)p) = ∞ in this case. Assume that depth(Rp) > 2. Since

depthRp
(Cp) > 2 in this case, we have

depthRp
(HomRp(Cp, Cp)) > min{2,depthRp

(Cp)} = 2.

Hence, the sequence (2.2.10.1) implies that

depthRp
(Coker(χRC)p) > min{depth(Rp)− 1,depthRp

(HomRp(Cp, Cp))} > 1

as desired. �

Definition 2.2.11. Assume that R is local with residue field k. The type of a
finitely generated R-module N is rankk(ExtdepthR(N)

R (k,N)), and N is maximal
Cohen-Macaulay if depthR(N) = dim(R).

Assume that R is Cohen-Macaulay and local. A canonical module for R is a
maximal Cohen-Macaulay R-module of finite injective dimension and type 1.

Definition 2.2.12. Assume that R is Cohen-Macaulay, though not necessarily
local. A canonical module for R is a finitely generated R-module C that is local
canonical, that is, such that, for each maximal ideal m ⊂ R, the localization Cm is
a canonical module for Rm.

Corollary 2.2.13. An R-module C is point-wise dualizing if and only if R is
Cohen-Macaulay and C is a canonical module for R.
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Proof. Since the conditions under consideration are local by definition, we
may assume for the rest of the proof that R is local. Under this assumption, note
that C is dualizing if and only if it is point-wise dualizing.

If R is Cohen-Macaulay and C is a canonical module for R, then C is dualizing
for R by [8, (3.3.4(d)) and (3.3.10(d)(ii)].

For the converse, assume that C is dualizing for R. Since C is a non-zero
finitely generated R-module of finite injective dimension, a corollary of the new
intersection theorem implies that R is Cohen-Macaulay, and it follows from The-
orem 2.2.6(c) that C is maximal Cohen-Macaulay. To show that C has type 1,
let x = x1, . . . , xn ∈ R be a maximal R-regular sequence. Set R = R/xR and
C = C/xC. Corollary 2.2.7 implies that C is a dualizing R-module. Since R is
artinian and local, this implies that C ∼= Ec for some c > 1, where E is the injective
hull of the residue field of R. Hence, we have

R ∼= HomR(C,C) ∼= HomR(Ec, Ec) ∼= R
c2

.

From this, we conclude that c = 1, so C ∼= E. In other words, the type of C is 1,
that is, the type of C is 1, as desired. �

Proposition 2.2.14. Let ϕ : R → S be a ring homomorphism such that S is a
finitely generated projective R-module. (Note that this implies that S is noetherian.)

(a) If C is a semidualizing R-module, then HomR(S,C) is a semidualizing S-
module.

(b) If D is a dualizing R-module, then HomR(S,D) is a dualizing S-module.

Proof. (a) Since S is finitely generated and projective as an R-module, it
is totally C-reflexive by Proposition 2.1.13. Since C is finitely generated, the
module HomR(S,C) is finitely generated over R. Since the S-module structure
on HomR(S,C) is compatible with the R-module structure via ϕ, it follows that
HomR(S,C) is finitely generated over S.

In the next sequence, the first isomorphism is from the natural biduality map
the second isomorphism is induced by tensor-cancellation, and the third isomor-
phism is Hom-tensor adjointness:

S ∼= HomR(HomR(S,C), C)
∼= HomR(S ⊗S HomR(S,C), C)
∼= HomS(HomR(S,C),HomR(S,C)).

It is straightforward to show that these isomorphisms are S-linear. From Proposi-
tion 2.2.2, we conclude that χSHomR(S,C) is an isomorphism.

Let I be an injective resolution of C over R. It is straightforward to show
that HomR(S, Ij) is an injective S-module for each j. Since S is projective as an
R-module and the augmented resolution +I is exact, the complex HomR(S,+I) is
exact. It follows that HomR(S, I) is an injective resolution of HomR(S,C) as an
S-module. (In particular, we have idS(HomR(S,C)) 6 idR(C).) This yields the



18 2. SEMIDUALIZING BASICS

first isomorphism in the next sequence:

ExtiS(HomR(S,C),HomR(S,C)) ∼= H−i(HomS(HomR(S,C),HomR(S, I))
∼= H−i(HomR(S ⊗S HomR(S,C), I)
∼= H−i(HomR(HomR(S,C), I)
∼= ExtiR(HomR(S,C), C).

The second isomorphism is induced by Hom-tensor adjointness. The third isomor-
phism is induced by tensor-cancellation. The fourth isomorphism follows from the
fact that I is an injective resolution of C over R. Since S is totally C-reflexive, we
have ExtiS(HomR(S,C),HomR(S,C)) ∼= ExtiR(HomR(S,C), C) = 0 for all i > 1, so
HomR(S,C) is a semidualizing S-module.

(b) Assume that D is a dualizing R-module. Part (a) implies that HomR(S,D)
is a semidualizing S-module. The proof of part (a) shows that idS(HomR(S,D)) 6
idR(D) <∞, so HomR(S,D) is dualizing for S. �

Proposition 2.2.15. Let ϕ : R→ S be a flat local ring homomorphism, and let C
be a finitely generated R-module. The S-module C ⊗R S is dualizing for S if and
only if C is dualizing for R and the ring S/mS is Gorenstein.

Proof. Proposition 2.2.1 implies that C is semidualizing for R if and only if
C⊗R S is semidualizing for S. From [8, (1.2.16(b)] we know that typeS(C⊗R S) =
typeR(C) type(S/mS), and [8, (2.1.7)] says that S is Cohen-Macaulay if and only
if R and S/mS are Cohen-Macaulay. Thus, the desired conclusion follows from
Corollary 2.2.13. �

2.3. Examples

To this point, we have not provided an example of a nontrivial semidualizing
module, that is, one that is not projective and not dualizing. The goal of this
subsection is to provide such examples.

Example 2.3.1. Let A be a local Gorenstein ring, and set R = A[X,Y ]/(X,Y )2.
Then R is a local Cohen-Macaulay ring, and it is free (of rank 3) as an A-module.
Also, we have type(R) = 2, so R is not Gorenstein. The R-modules R = R ⊗A A
and DR = HomA(R,A) are semidualizing. Moreover, the R-module DR is dualizing
by Proposition 2.2.14(b), and we have DR 6∼= R by Example 2.1.11.

Example 2.3.2. Let (R,m, k) be a local artinian ring that is not Gorenstein,
with dualizing module DR 6∼= R; for instance, if A is a field, then the ring from
Example 2.3.1 satisfies these conditions. The ring S = R[U, V ]/(U, V )2 is a local
Cohen-Macaulay ring with residue field k, and S is free (of rank 3) as an R-module.
Also, we have type(S) = 2 type(R), so S is not Gorenstein. The following S-modules
are semidualizing

S = S ⊗R R B = HomR(S,R)

C = S ⊗R DR DS = HomR(S,DR)

and DS is dualizing; see Propositions 2.2.1 and 2.2.14. We claim that the modules
B and C have infinite projective dimension and are not dualizing. (In fact, we also
have B 6∼= C, but we will not show this.) Note that DS 6∼= S by Example 2.1.11.
Moreover, since S is local, Corollary 2.2.8 implies that pdS(DS) =∞.
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Since DR 6∼= R, Corollary 2.1.14 implies that DR is not cyclic. It follows that
C = S⊗RDR is not cyclic, hence C 6∼= S. As in the previous paragraph, this implies
that pdS(C) =∞.

To show that B is not dualizing, we need to show that typeS(B) = type(R) > 2;
see Corollary 2.2.13. Since S is artinian, the equality typeS(B) = type(R) follows
from the next sequence

HomS(k,B) ∼= HomS(k,HomR(S,R)) ∼= HomR(S ⊗S k,R)
∼= HomR(k,R) ∼= ktype(R).

Of course, we have type(R) > 2 since R is not Gorenstein.
Suppose by way of contradiction that pdS(B) <∞. Corollary 2.2.8 shows that

B ∼= S, hence the second isomorphism in the next sequence:

ktype(R) ∼= HomS(k,C) ∼= HomS(k, S) ∼= ktype(S) ∼= k2 type(R).

The first isomorphism is from the previous paragraph. This implies that type(R) =
0, a contradiction, so pdS(B) =∞.

The fact that C is not dualizing for S follows from Proposition 2.2.15 because
the ring S/mS ∼= k[U, V ]/(U2, UV, V 2) is not Gorenstein.

Direct products provide another way to build nontrivial semidualizing modules.
We provide some background since we will use the ideas in a couple of places.

Fact 2.3.3. Let R1 and R2 be noetherian rings and set R = R1 × R2. Every
R-module is (isomorphic to one) of the form M1×M2 with the R-module structure
given coordinate-wise as (r1, r2)(m1,m2) = (r1m1, r2m2). Indeed, if e1 = (1, 0) and
e2 = (0, 1), then Mi = eiM .

Each prime ideal is of the form P = P1 × R2 or P = R1 × P2 for some
Pi ∈ Spec(Ri), and P is a maximal ideal of R if an only if Pi is a maximal ideal
of Ri. There is an isomorphism of local rings RP ∼= (Ri)Pi . Moreover, we have
MP

∼= (Mi)Pi . This isomorphism is verified by first showing that Rei ∼= Ri and
Mei
∼= Mi.

Proposition 2.3.4. Let R1, . . . , Rn be noetherian rings, and set R = R1×· · ·×Rn.
There is a bijection π : S0(R1)×· · ·×S0(Rn) ∼−→ S0(R) given by ([C1], . . . , [Cn]) 7→
[C1 × · · · × Cn].

Proof. We prove the case when n = 2; the case when n > 2 follows readily
by induction on n.

First, we show that the map π is well-defined. Let [Ci] ∈ S0(Ri) for i =
1, 2. We need to show that the R1 × R2-module C1 × C2 is semidualizing. (It is
straightforward to show that the class [C1 × C2] is independent of the choice of
representatives of the classes of the [Ci].) Proposition 2.2.3 says that it suffices to
show that the localization (C1 × C2)P is an (R1 × R2)P -semidualizing module for
each prime ideal P ⊂ R1 ×R2. Fact 2.3.3 says that P is of the form P = P1 ×R2

or P = R1×P2 for some Pi ∈ Spec(Ri), and there is an isomorphism (C1×C2)P ∼=
(Ci)Pi as a module over the ring (R1 ×R2)P ∼= (Ri)Pi ; since Ci is a semidualizing
Ri-module, this localization is semidualizing for (Ri)Pi .

To show that π is surjective, let [C] ∈ S0(R1 × R2). Fact 2.3.3 says that
C ∼= C1×C2 for the Ri-modules Ci = eiC. Since C is finitely generated, so are the
Ci. The argument of the previous paragraph shows that, since C is a semidualizing
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R1 × R2-module, the Ci are semidualizing Ri-modules for i = 1, 2. Thus, we have
[C] = π([C1], [C2]).

Finally, to show that π is injective, assume that π([B1], [B2]) = π([C1], [C2]),
that is, that there is an isomorphism of R1 ×R2-modules B1 ×B2

∼= C1 ×C2. For
i = 1, 2 this implies that

Bi ∼= ei(B1 ×B2) ∼= ei(C1 × C2) ∼= Ci

so we have ([B1], [B2]) = ([C1], [C2]). �

Remark 2.3.5. In the proof of the injectivity of π in Proposition 2.3.4, note that
we cannot simply check that the kernel of π is trivial. Indeed, the sets S0(Ri) and
S0(R1 × R2) do not have any meaningful group structure (that we know of) so it
does not make sense for π to be a group homomorphism.

Proposition 2.3.6. Let k be a field, and let R and S be k-algebras. If B is
a semidualizing R-module, and C is a semidualizing S-module, then B ⊗k C is
semidualizing for R⊗k S.

Proof. From Proposition A.1.5, there are R⊗k S-isomorphisms

ExtiR⊗kS(B ⊗k C,B ⊗k C) ∼= ⊕ij=0 ExtjR(B,B)⊗k Exti−jS (C,C)

for each i > 0. Hence, the condition ExtiR(B,B) = 0 = ExtiS(C,C) for i > 1
implies that ExtiR⊗kS(B ⊗k C,B ⊗k C) = 0 for i > 1. When i = 0, we have

HomR⊗kS(B ⊗k C,B ⊗k C) ∼= HomR(B,B)⊗k HomS(C,C) ∼= R⊗R S
so the desired conclusion follows from Proposition 2.2.2(a). �



CHAPTER 3

Foxby Classes

3.1. Definitions and Basic Properties

We begin with a spot of motivation.

Remark 3.1.1. An analysis of the proof of Theorem 2.2.6 shows that there are
three conditions that allow us to conclude that C is a semidualizing R-module:

(1) TorRi (C,R) = 0 for all i > 1;
(2) ExtiR(C,C ⊗R R) ∼= ExtiR(C,C) = 0 for i > 1; and
(3) there is a natural isomorphism γ : R→ HomR(C,C) = HomR(C,C ⊗R R).

These are essentially the defining conditions for membership in the Auslander class.

Definition 3.1.2. Let M and N be R-modules. The natural evaluation map

ξMN : M ⊗R HomR(M,N)→ N

is the R-module homomorphism given by ξMN (m⊗ ψ) = ψ(m). The natural map

γMN : N → HomR(M,M ⊗R N)

is the R-module homomorphism given by γMN (n)(m) = m⊗ n.

Remark 3.1.3. Let f : M → M ′ and g : N → N ′ be R-module homomorphisms.
It is straightforward to show that the maps ξMN and γMN from Definition 3.1.2 are
well-defined R-module homomorphisms and that the following diagrams commute:

M ⊗R HomR(M ′, N)
f⊗RHomR(M ′,N) //

M⊗RHomR(f,N)

��

M ′ ⊗R HomR(M ′, N)

ξM
′

N

��
M ⊗R HomR(M,N)

ξMN //

M⊗RHomR(M,g)

��

N

g

��
M ⊗R HomR(M,N ′)

ξM
N′ // N ′.

HomR(M ′,M ′ ⊗R N)
HomR(f,M ′⊗RN) // HomR(M,M ′ ⊗R N)

N
γMN //

g

��

γM
′

N

OO

HomR(M,M ⊗R N)

HomR(M,M⊗Rg)
��

HomR(M,f⊗RN)

OO

N ′
γM
N′ // HomR(M,M ⊗R N ′).

21



22 3. FOXBY CLASSES

The classes defined next are collectively known as Foxby classes. The definitions
are due to Foxby; see Avramov and Foxby [5] and Christensen [9]. Note that we
do not assume in the definition that C is semidualizing.

Definition 3.1.4. Let C be a finitely generated R-module. The Auslander class
AC(R) is the class of all R-modules M satisfying the following conditions:

(1) the natural map γCM : M → HomR(C,C ⊗RM) is an isomorphism; and
(2) TorRi (C,M) = 0 = ExtiR(C,C ⊗RM) for all i > 1.

The Bass class BC(R) is the class of all R-modules M satisfying the following:

(1) the evaluation map ξCM : C ⊗R HomR(C,M)→M is an isomorphism; and
(2) ExtiR(C,M) = 0 = TorRi (C,HomR(C,M)) for all i > 1.

The following example is readily verified.

Example 3.1.5. In the case C = R: the classes AR(R) and BR(R) are both equal
to the class of all R-module.

Here is a useful property of Foxby classes.

Proposition 3.1.6. Let C be a finitely generated R-module, and let {Mλ}λ∈Λ be
a set of R-modules.

(a) One has
∐
λ∈ΛMλ ∈ AC(R) if and only if Mλ ∈ AC(R) for all λ ∈ Λ.

(b) One has
∐
λ∈ΛMλ ∈ BC(R) if and only if Mλ ∈ BC(R) for all λ ∈ Λ.

In particular, the classes AC(R) and BC(R) are closed under coproducts and direct
summands.

Proof. (a) Recall that there is an isomorphism

α : C ⊗R (
∐
λ∈ΛMλ)

∼=−→
∐
λ∈Λ(C ⊗RMλ)

given by α(c⊗ (mλ)) = (c⊗mλ). Furthermore, we have

TorRi (C,
∐
λ∈ΛMλ) ∼=

∐
λ∈Λ TorRi (C,Mλ)

for all i. It follows that TorRi (C,
∐
λ∈ΛMλ) = 0 for all i > 1 if and only if

TorRi (C,Mλ) = 0 for all λ ∈ Λ and all i > 1.
For each µ ∈ Λ, let δµ :

∐
λ∈Λ(C ⊗R Mλ) → C ⊗R Mµ be given by δµ(xλ) =

xµ; in words, δµ is the projection onto the µth coordinate. Because C is finitely
generated and R is noetherian, the map

∆: HomR(C,
∐
λ∈Λ(C ⊗RMλ))→

∐
λ∈Λ HomR(C,C ⊗RMλ)

given by φ 7→ (δλ◦φ) is an isomorphism. A similar construction (using a degree-wise
finite free resolution of C) yields the second isomorphism in the following sequence,
while the first isomorphism is induced by α:

ExtiR(C,C ⊗R (
∐
λ∈ΛMλ)) ∼= ExtiR(C,

∐
λ∈Λ(C ⊗RMλ))

∼=
∐
λ∈Λ ExtiR(C,C ⊗RMλ).

We conclude that ExtiR(C,C ⊗R (
∐
λ∈ΛMλ)) = 0 for all i > 1 if and only if

ExtiR(C,C ⊗RMλ) = 0 for all λ ∈ Λ and all i > 1.
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Finally, there is a commutative diagram of R-module homomorphisms:

∐
λ∈ΛMλ

γC‘
λ∈Λ Mλ //

‘
λ∈Λ γ

C
Mλ

��

HomR(C,C ⊗R
∐
λ∈ΛMλ)

∼= HomR(C,α)

��∐
λ∈Λ HomR(C,C ⊗RMλ) HomR(C,

∐
λ∈Λ(C ⊗RMλ)).∆

∼=
oo

This shows that γC‘
λ∈Λ Mλ

is an isomorphism if and only if
∐
λ∈Λ γ

C
Mλ

is an isomor-

phism, that is, if and only if γCMλ
is an isomorphism for all λ ∈ Λ. This completes

the proof of part (a).
The proof of part (b) is similar. �

Here is one of the most frequently used properties of Foxby classes. It says that
the Foxby classes satisfy the two-of-three property.

Proposition 3.1.7. Let C be a semidualizing R-module, and consider an exact
sequence of R-module homomorphisms

0→M1
f−→M2

g−→M3 → 0.

(a) If two of the Mi are in AC(R), then so is the third.
(b) If two of the Mi are in BC(R), then so is the third.

Proof. Assume first that M1,M2 ∈ AC(R). Consider the long exact se-
quence in TorRi (C,−) associated to the given sequence. Since TorRi−1(C,M1) = 0 =
TorRi (C,M2) for each i > 1, we see readily that TorRi (C,M3) = 0 for each i > 1. For
the remaining Tor-module, consider the following piece of the long exact sequence

0→ TorR1 (C,M3)→ C ⊗RM1
C⊗Rf−−−−→ C ⊗RM2.

Apply HomR(C,−) to obtain the bottom exact sequence in the following commu-
tative diagram

0 // M1
f //

γCM1
∼=

��

M2

γCM2
∼=

��
Hom(C,Tor1(C,M3)) � � // Hom(C,C ⊗M1)

Hom(C,C⊗f) // Hom(C,C ⊗M2).

The top row is from our original sequence. Since f is injective, it follows that
HomR(C,C⊗f) is also injective, so HomR(C,TorR1 (C,M3)) = 0. Now apply Corol-
lary 2.1.17 to conclude that TorR1 (C,M3) = 0.

It follows that we have an exact sequence

0→ C ⊗RM1
C⊗Rf−−−−→ C ⊗RM2

C⊗Rg−−−−→ C ⊗RM3 → 0.

Consider the associated long exact sequence in ExtiR(C,−). As above, it is straight-
forward to show that the vanishing ExtiR(C,C ⊗R M1) = 0 = ExtiR(C,C ⊗R M2)
for all i > 1 implies ExtiR(C,C ⊗RM3) = 0 for all i > 1. Finally, the remainder of
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the long exact sequence fits into the bottom row of the next commutative diagram

M1
f //

γCM1
∼=

��

M2

γCM2
∼=

��

g // // M3

γCM3
��

Hom(C,C ⊗M1)
Hom(C,C⊗f) // Hom(C,C ⊗M2)

Hom(C,C⊗g) // // Hom(C,C ⊗M3)

and a diagram chase shows that γCM3
is an isomorphism.

The other cases are verified similarly. �

Corollary 3.1.8. Let C be a semidualizing R-module, and consider an exact se-
quence of R-module homomorphisms

0→M1 →M2 → · · · →Mn → 0.

(a) If Mi ∈ AC(R) for all i 6= j, then Mj ∈ AC(R).
(b) If Mi ∈ BC(R) for all i 6= j, then Mj ∈ BC(R).

Proof. By induction on n, using Proposition 3.1.7. �

Here is another frequently cited property of Foxby classes. Recall finite flat
dimension from the appendix.

Proposition 3.1.9. Let C be a fintely generated R-module. The following condi-
tions are equivalent:

(i) The R-module C is semidualizing;
(ii) The class AC(R) contains every R-module of finite flat dimension;

(iii) The class AC(R) contains every flat R-module; and
(iv) The class AC(R) contains a faithfully flat R-module.

Proof. Let F be a flat R-module, and let P be a free resolution of C such that
each Pi is finitely generated. Lemma A.1.2 provides an isomorphism of complexes

HomR(P,C ⊗R F ) ∼= HomR(P,C)⊗R F

and it follows readily that there is an isomorphism

ExtiR(C,C ⊗R F ) ∼= ExtiR(C,C)⊗R F (3.1.9.1)

for each integer i. Also, there is a commutative diagram

F
γCF //

∼=
��

HomR(C,C ⊗R F )

R⊗R F
χRC⊗RF // HomR(C,C)⊗R F

∼= ωCCF

OO
(3.1.9.2)

where the unspecified isomorphism is the tensor-cancellation isomorphism; see Def-
initions 2.1.5, 3.1.2 and A.1.1 for the other maps.

(i) =⇒ (iii) and (iv) =⇒ (i): The flatness of F implies that TorRi (C,F ) = 0 for
all i > 1. From the isomorphism (3.1.9.1) we know that if ExtiR(C,C) = 0 for all
i > 1, then ExtiR(C,C ⊗R F ) = 0 for all i > 1; and the converse holds when F is
faithfully flat. From the diagram (3.1.9.2) we know that if χRC is an isomorphism,
then γCF is an isomorphism; and the converse holds when F is faithfully flat. The
desired implications now follow.
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(iii) =⇒ (ii) Assume that C is semidualizing and that fdR(M) is finite. Consider
a flat resolution

0→ Fn → · · · → F0 →M → 0.

Since each Fi is flat, condition (iii) implies that F0, . . . , Fn ∈ AC(R). Corollary 3.1.8
implies that M ∈ AC(R).

The implication (ii) =⇒ (iv) is routine. �

The proof of the next result is similar to the proof of the previous result.

Proposition 3.1.10. Let C be a fintely generated R-module. The following condi-
tions are equivalent:

(i) The R-module C is semidualizing;
(ii) The class BC(R) contains every R-module of finite injective dimension;

(iii) The class BC(R) contains every injective R-module; and
(iv) The class BC(R) contains a faithfully injective R-module.

Corollary 3.1.11. Let C be a semidualizing R-module and let M be an R-module.
Fix a flat (e.g., projective) resolution F of M and an injective resolution I of M .

(a) One has M ∈ AC(R) if and only if Im(∂Fi ) ∈ AC(R) for some (equivalently,
every) i > 0.

(b) One has M ∈ BC(R) if and only if Im(∂Ii ) ∈ AC(R) for some (equivalently,
every) i > 0.

Here are two lemmas for later use.

Lemma 3.1.12. Let C be a semidualizing R-module, and fix an exact sequence

X = · · · ∂i+1−−−→ Xi
∂i−→ Xi−1

∂i−1−−−→ · · · .

(a) Assume that each Xi ∈ AC(R) and that some Im(∂j) ∈ AC(R). Then every
Im(∂i) ∈ AC(R), and the induced sequence C ⊗R X is exact.

(b) Assume that each Xi ∈ BC(R) and that some Im(∂j) ∈ BC(R). Then every
Im(∂i) ∈ BC(R), and the induced sequence HomR(C,X) is exact.

Proof. (a) Set Mi = Im(∂i) for each i, and consider the following exact se-
quence:

0→Mi+1 → Xi →Mi → 0. (3.1.12.1)

Since each Xi ∈ AC(R) and at least one Mj ∈ AC(R), a straightforward induction
argument using Proposition 3.1.7(a) shows that every Mi is in AC(R). Hence, ap-
plying the functor C⊗R− to the exact sequence (3.1.12.1) yields an exact sequence

0→ C ⊗RMi+1 → C ⊗R Xi → C ⊗RMi → 0.

It follows readily that the sequence C ⊗R X is exact, as desired.
The proof of part (b) is similar. �

Lemma 3.1.13. Let C be a semidualizing R-module, and let M and N be R-
modules.

(a) If TorRi (C,M) = 0 for all i > 1 (e.g., if M ∈ AC(R)) and N ∈ AC(R), then
ExtiR(C ⊗RM,C ⊗R N) ∼= ExtiR(M,N) for all i > 0.

(b) If ExtiR(C,N) = 0 for all i > 1 (e.g., if N ∈ BC(R)) and M ∈ BC(R), then
ExtiR(HomR(C,M),HomR(C,N)) ∼= ExtiR(M,N) for all i > 0.



26 3. FOXBY CLASSES

(c) If TorRi (C,M) = 0 for all i > 1 (e.g., if M ∈ AC(R)) and N ∈ BC(R), then
TorRi (C ⊗RM,HomR(C,N)) ∼= TorRi (M,N) for all i > 0.

Proof. We prove part (a); the proofs of (b) and (c) are similar.
First, the following sequence deals with the case i = 0:

HomR(C ⊗RM,C ⊗R N) ∼= HomR(M,HomR(C,C ⊗R N)) ∼= HomR(M,N).

The first isomorphism is Hom-tensor adjointness, and the second one is from the
assumption N ∈ AC(R).

Second, we consider the case where M is projective and i > 1. For this case, it
suffices to show that ExtiR(C ⊗RM,C ⊗R N) = 0. If I is an injective resolution of
C ⊗R N , then the first and fourth steps in the next sequence are by definition:

ExtiR(C ⊗RM,C ⊗R N) ∼= H−i(HomR(C ⊗RM, I))
∼= H−i(HomR(M,HomR(C, I)))
∼= HomR(M,H−i(HomR(C, I)))
∼= HomR(M,ExtiR(C,C ⊗R N))
= 0.

The second step is Hom-tensor adjointness. The third step follows from the assump-
tion that M is projective, and the last step is justified by the condition N ∈ AC(R).

For the remainder of the proof, fix an exact sequence

0→M ′
f−→ P

g−→M → 0 (3.1.13.1)

such that P is projective. From the long exact sequence in TorR(C,−), the condition
TorRi (C,M) = 0 = TorRi (C,P ) for all i > 1 implies that TorRi (C,M ′) = 0 for all
i > 1.

Finally, we prove the result by induction on i > 1.
Base case: i = 1. Since TorR1 (C,M) = 0, the long exact sequence in TorR(C,−)

associated to (3.1.13.1) yields an exact sequence

0→ C ⊗RM ′
C⊗Rf−−−−→ C ⊗R P

C⊗Rg−−−−→ C ⊗RM → 0. (3.1.13.2)
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Using the vanishing guaranteed by the second part of this proof, the long exact
sequence in ExtR(−, C ⊗R N) implies that the third column of the following com-
mutative diagram is exact:

0

��

0

��

0

��
Hom(M,N)

∼= //

Hom(g,N)

��

Hom(M,Hom(C,C ⊗N))
∼= //

Hom(g,Hom(C,C⊗N))

��

Hom(C ⊗M,C ⊗N)

Hom(C⊗g,C⊗N)

��
Hom(P,N)

∼= //

Hom(f,N)

��

Hom(P,Hom(C,C ⊗N))
∼= //

Hom(f,Hom(C,C⊗N))

��

Hom(C ⊗ P,C ⊗N)

Hom(C⊗f,C⊗N)

��
Hom(M ′, N)

∼= //

��

Hom(M ′,Hom(C,C ⊗N))
∼= //

��

Hom(C ⊗M ′, C ⊗N)

��
Ext1(M,N)

��

Ext1(M,Hom(C,C ⊗N))

��

Ext1(C ⊗M,C ⊗N)

��
0 0 0.

The first and second columns are long exact sequences associated to (3.1.13.1).
Half of the unspecified horizontal isomorphisms are induced by the isomorphism
γCn : N

∼=−→ HomR(C,C ⊗R N), and the others are Hom-tensor adjointness. The
commutativity of the diagram yields the second step in the next sequence:

Ext1(M,N) ∼= Coker(Hom(f,N))
∼= Coker(Hom(C ⊗ f, C ⊗N))
∼= Ext1(C ⊗M,C ⊗N).

The other steps follow from the exactness of the first and third columns of the
diagram.

Induction step: Assume that i > 2 and that Exti−1
R (C ⊗R M1, C ⊗R N) ∼=

Exti−1
R (M1, N) for all R-modules M1 such that TorRj (C,M1) = 0 for all j > 1.

Long exact sequences associated to (3.1.13.1) and (3.1.13.2) yield the next exact
sequences:

0 // Exti−1
R (M ′, N) // ExtiR(M,N) // 0

0 // Exti−1
R (C ⊗RM ′, C ⊗R N) // ExtiR(C ⊗RM,C ⊗R N) // 0.

These sequences explain the first and third isomorphisms in the next sequence:

ExtiR(M,N) ∼= Exti−1
R (M ′, N)

∼= Exti−1
R (C ⊗RM ′, C ⊗R N)

∼= ExtiR(C ⊗RM,C ⊗R N).

The second isomorphism is from the inductive hypothesis. �
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3.2. Foxby Equivalence

Here is Foxby equivalence.

Theorem 3.2.1. Let C be a semidualizing R-module.
(a) An R-module M is in AC(R) if and only if C ⊗RM is in BC(R).
(b) An R-module M is in BC(R) if and only if HomR(C,M) is in AC(R).
(c) The functors C⊗R− : AC(R)→ BC(R) and HomR(C,−) : BC(R)→ AC(R)

are inverse equivalences.

Proof. (a) We begin by noting the readily verified equality

ξCC⊗RM ◦ (C ⊗R γCM ) = idC⊗RM : C ⊗RM → C ⊗RM. (3.2.1.1)

For the first implication, assume that M ∈ AC(R). By definition, this means
that TorRi (C,M) = 0 = ExtiR(C,C ⊗R M) for all i > 1, and the natural map
γCM : M → HomR(C,C ⊗R M) is an isomorphism. To show that C ⊗R M is in
BC(R), we need to verify the following three conditions.

(1) ExtiR(C,C ⊗RM) = 0 for all i > 1: this is true by assumption.
(2) TorRi (C,HomR(C,C ⊗R M)) = 0 for all i > 1: this follows from our as-

sumptions because TorRi (C,HomR(C,C ⊗RM)) ∼= TorRi (C,M) = 0 for each i > 1.
(3) The natural evaluation map ξCC⊗RM : C⊗RHomR(C,C⊗RM)→ C⊗RM is

an isomorphism: Since γCM is an isomorphism by assumption, it follows that C⊗RγCM
is an isomorphism. Equation (3.2.1.1) implies that ξCC⊗RM = (C ⊗R γCM )−1 is also
an isomorphism.

For the converse, assume that C ⊗R M is in BC(R). Since this implies, in
particular, that ExtiR(C,C ⊗R M) = 0 for all i > 1, we need only check the next
two conditions to show that M ∈ AC(R):

(4) The natural map γCM : M → HomR(C,C ⊗R M) is an isomorphism: By
assumption, the map ξCC⊗RM is an isomorphism. Using equation (3.2.1.1) as in (3)
above, we conclude that C ⊗R γCM is an isomorphism. Set N = Coker(γCM ) and
consider the exact sequence

M
γCM−−→ HomR(C,C ⊗RM)→ N → 0.

The right-exactness of C ⊗R − yields the next exact sequence

C ⊗RM
C⊗RγCM−−−−−→∼= C ⊗R HomR(C,C ⊗RM)→ C ⊗R N → 0.

It follows that C ⊗R N = 0, so N = 0 by Corollary 2.1.17. Hence γCM is surjective.
Set K = Ker(γCM ) and consider the exact sequence

0→ K →M
γCM−−→ HomR(C,C ⊗RM)→ 0.

The long exact sequence in TorR(C,−) yields the next exact sequence

TorR1 (C,HomR(C,C ⊗RM))︸ ︷︷ ︸
=0

→ C⊗K → C⊗M C⊗RγCM−−−−−→∼= C⊗Hom(C,C⊗M)→ 0.

It follows that C ⊗R K = 0, and so K = 0 by Corollary 2.1.17. Hence γCM is also
injective.

(5) TorRi (C,M) = 0 for all i > 1: this follows from our assumptions along with
item (4) because TorRi (C,M) ∼= TorRi (C,HomR(C,C ⊗RM)) = 0 for all i > 1.
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This completes the proof of part (a). The proof of part (b) is similar, and
part (c) follows from parts (a) and (b). �

Corollary 3.2.2. Let C be a semidualizing R-module.
(a) If M is an R-module of finite flat dimension (e.g., if M is flat or projective),

then C ⊗RM ∈ BC(R). In particular C ∈ BC(R).
(b) If M is an R-module of finite injective dimension (e.g., if M is injective),

then HomR(C,M) ∈ AC(R).

Proof. Part (a) follows from Proposition 3.1.9 and Theorem 3.2.1(a), and
similarly for part (b). �

Proposition 3.2.3. Let C be a semidualizing R-module. Let M be an R-module,
and fix a positive integer n.

(a) One has fdR(M) 6 n if and only if C ⊗R M admits a bounded resolution
0→ C ⊗R Fn → · · · → C ⊗R F0 → C ⊗RM → 0 with each Fi flat.

(b) One has fdR(HomR(C,M)) 6 n if and only if M admits a bounded resolution
0→ C ⊗R Fn → · · · → C ⊗R F0 →M → 0 with each Fi flat.

(c) If M admits a bounded resolution 0→ C⊗R Fn → · · · → C⊗R F0 →M → 0
with each Fi flat, then M ∈ BC(R).

Proof. Step 1. Assume first that fdR(M) 6 n and fix a bounded resolution

0→ Fn
∂n−→ · · · ∂1−→ F0

∂0−→M → 0

with each Fi flat. Proposition 3.1.9 implies that each module in this sequence is in
AC(R). Lemma 3.1.12(a) implies that the induced sequence

0→ C ⊗R Fn
C⊗R∂n−−−−−→ · · · C⊗R∂1−−−−−→ C ⊗R F0

C⊗R∂0−−−−−→ C ⊗RM → 0

is exact, as desired.
Step 2. Assume next that M admits a bounded resolution

0→ C ⊗R Fn → · · · → C ⊗R F0 →M → 0 (3.2.3.1)

with each Fi flat. Since each C⊗RFi is in BC(R) by Corollary 3.2.2(a), we conclude
from Corollary 3.1.8(b) that M ∈ BC(R). Hence, Theorem 3.2.1(b) implies that
HomR(C,M) ∈ AC(R). Since each module in the sequence (3.2.3.1) is in BC(R),
Lemma 3.1.12(b) implies that the next induced sequence is exact:

0→ HomR(C,C ⊗ Fn)︸ ︷︷ ︸
∼=Fn

→ · · · → HomR(C,C ⊗ F0)︸ ︷︷ ︸
∼=F0

→ HomR(C,M)→ 0.

The isomorphisms are from the condition Fi ∈ AC(R). This sequence shows that
fdR(HomR(C,M)) 6 n, as desired.

Step 3. Assume next that fdR(HomR(C,M)) 6 n. Proposition 3.1.9 implies
that HomR(C,M) ∈ AC(R), so we have M ∈ BC(R) by Theorem 3.2.1(b). Step 1
implies that C ⊗R HomR(C,M) admits a bounded resolution

0→ C ⊗R Fn → · · · → C ⊗R F0 → C ⊗R HomR(C,M)︸ ︷︷ ︸
∼=M

→ 0

where each Fi is flat. The isomorphism M ∼= C ⊗R HomR(C,M) is from the
condition M ∈ BC(R).
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Step 4. Assume that C ⊗RM admits a bounded resolution

0→ C ⊗R Fn → · · · → C ⊗R F0 → C ⊗RM → 0

with each Fi flat. An argument as in Step 3 shows that fdR(M) 6 n. �

Remark 3.2.4. Proposition 3.2.3 augments Theorem 3.2.1 as follows. Let F(R)6n

denote the class of all R-modulesM such that fdR(M) 6 n, and let FC(R)6n denote
the class of all R-modules N that admit a bounded resolution

0→ C ⊗R Fn → · · · → C ⊗R F0 → N → 0

with each Fi flat.
Theorem 3.2.1 shows that the functors C⊗R− and HomR(C,−) provide inverse

equivalences between the Auslander and Bass classes, as we indicate in the third
row of the following diagram:

P(R)6n

C⊗R−
∼

//
� _

��

PC(R)6n
HomR(C,−)

oo � _

��
F(R)6n

C⊗R−
∼

//
� _

��

FC(R)6n
HomR(C,−)

oo � _

��
AC(R)

C⊗R−
∼

// BC(R)
HomR(C,−)

oo

IC(R)6n

C⊗R−
∼

//?�

OO

I(R)6n.
HomR(C,−)

oo
?�

OO

The class F(R)6n is contained in AC(R) by Proposition 3.1.9. From Proposi-
tion 3.2.3, we know that the image of F(R)6n in BC(R) under the equivalence is
exactly FC(R)6n and that C ⊗R − and HomR(C,−) provide inverse equivalences
between these classes; this is indicated in the second row of the preceding diagram.
The remaining aspects of the diagram are explained by the next two results; they
are proved like Proposition 3.2.3.

Proposition 3.2.5. Let C be a semidualizing R-module.
(a) One has pdR(M) 6 n if and only if C ⊗R M admits a bounded resolution

0→ C ⊗R Pn → · · · → C ⊗R P0 → C ⊗RM → 0 with each Pi projective.
(b) One has pdR(HomR(C,M)) 6 n if and only if M admits a bounded resolution

0→ C ⊗R Pn → · · · → C ⊗R P0 →M → 0 with each Pi projective.
(c) If M admits a bounded resolution 0→ C⊗R Pn → · · · → C⊗R P0 →M → 0

with each Pi projective, then M ∈ BC(R).

Proposition 3.2.6. Let C be a semidualizing R-module.
(a) One has idR(M) 6 n if and only if HomR(C,M) admits a bounded resolution

0→ HomR(C,M)→ HomR(C, J0)→ · · · → HomR(C, Jn)→ 0 with each J i

injective.
(b) One has idR(C ⊗R M) 6 n if and only if M admits a bounded resolution

0→M → HomR(C, J0)→ · · · → HomR(C, Jn)→ 0 with each J i injective.
(c) If M has a resolution 0 → M → HomR(C, J0) → · · · → HomR(C, Jn) → 0

with each J i injective, then M ∈ AC(R).
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3.3. Other Operators on Foxby Classes

Here is a dualizing equivalence for Foxby classes. See the appendix for some
information about faithfully injective modules.

Proposition 3.3.1. Let C be a semidualizing R-module, let E be an injective R-
module, and let M be an R-module.

(a) If M is in BC(R), then HomR(M,E) is in AC(R).
(b) If M is in AC(R), then HomR(M,E) is in BC(R).
(c) The converses of (a) and (b) hold when E is faithfully injective.

Proof. We prove part (a), and we prove its converse when E is faithfully
injective.

We begin by recalling the following isomomorphism for each i > 0:

TorRi (C,HomR(M,E)) ∼= HomR(ExtiR(C,M), E).

To explain the isomorphism, let P be a projective resolution of C such that each Pi
is finitely generated. The Hom-evaluation isomorphism from Lemma A.1.3 yields
an isomorphism of complexes

P ⊗R HomR(M,E) ∼= HomR(HomR(P,M), E)

and this explains the second isomorphism in the next sequence

TorRi (C,HomR(M,E)) ∼= Hi(P ⊗R HomR(M,E))
∼= Hi(HomR(HomR(P,M), E))
∼= HomR(H−i(HomR(P,M)), E)
∼= HomR(ExtiR(C,M), E).

The first and fourth isomorphisms are by definition, and the third isomorphism
follows from the injectivity of E. One concludes that, if ExtiR(C,M) = 0, then
TorRi (C,HomR(M,E)) = 0; and the converse holds when E is faithfully injective.

The case i = 0 in the previous display reads as

C ⊗R HomR(M,E) ∼= HomR(HomR(C,M), E)

and this explains the first isomorphism in the next sequence

ExtiR(C,C ⊗R HomR(M,E)) ∼= ExtiR(C,HomR(HomR(C,M), E))
∼= HomR(TorRi (C,HomR(C,M)), E).

The second isomorphism follows as in the previous paragraph, using Hom-tensor
adjointness in place of Hom-evaluation. From these isomorphisms, one concludes
that, if TorRi (C,HomR(C,M)) = 0, then ExtiR(C,C⊗RHomR(M,E)) = 0; and the
converse holds when E is faithfully injective.

It is routine to show that the following diagram commutes

HomR(M,E)
γCHom(M,E) //

Hom(ξCM ,E)

��

HomR(C,C ⊗R HomR(M,E))

Hom(C,θCME) ∼=
��

HomR(C ⊗R HomR(C,M), E) HomR(C,HomR(HomR(C,M), E)).
∼=oo
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where the unspecified isomorphism is Hom-tensor adjointness. From this, one sees
that, if ξCM is an isomorphism, then so is γCHom(M,E); and the converse holds when
E is faithfully injective. This establishes (a) and the first half of (c).

The proofs of (b) and the rest of (c) are similar. �

The next results are proved similarly to the previous one. Note that Proposi-
tion 3.3.3 uses Lemma A.1.4.

Proposition 3.3.2. Let C be a semidualizing R-module, let F be a flat R-module,
and let M be an R-module.

(a) If M is in AC(R), then M ⊗R F is in AC(R).
(b) If M is in BC(R), then M ⊗R F is in BC(R).
(c) The converses of (a) and (b) hold when F is faithfully flat.

Proposition 3.3.3. Let C be a semidualizing R-module, let P be a projective R-
module, and let M be an R-module.

(a) If M is in AC(R), then HomR(P,M) is in AC(R).
(b) If M is in BC(R), then HomR(P,M) is in BC(R).
(c) The converses of (a) and (b) hold when P is faithfully projective.

The following examples explain the need for the faithful hypotheses in the
converses of the previous results.

Example 3.3.4. Let (R,m, k) be a local Cohen-Macaulay ring that admits a semid-
ualizing module C � R. Assume that dim(R) > 1 and let z ∈ m be an R-regular el-
ement. (For instance, let k be a field and set R0 = k[X,Y ]/(X,Y )2 and R = R0[[Z]].
Then dim(R) = 1. The module C0 = Homk(R0, k) is dualizing for R0 and such
that C0 6∼= R0; see Example 2.3.1. Proposition 2.2.1 implies that the R-module
C = R⊗R0 C0 is semidualizing for R. (Actually, it is dualizing, but we do not need
that fact.) Since C0 � R0, Corollary 2.1.14 implies that C0 is not cyclic. Hence,
the R-module C is not cyclic, and it follows that C 6∼= R.)

Corollary 2.2.8 implies that pdR(C) =∞, so TorRi (C, k) 6= 0 and ExtiR(C, k) 6=
0 for all i > 0. In particular, we have k /∈ AC(R) and k /∈ BC(R). The localization
Rz is a flat R-module. Since zk = 0, we have Rz ⊗R k = 0 ∈ AC(R) ∩ BC(R).
Thus, the condition “faithfully flat” is necessary in Proposition 3.3.2(c).

Let p ⊂ R be a nonmaximal prime, and set J = ER(R/p). it follows that
HomR(k, J) = 0 ∈ AC(R) ∩ BC(R). Thus, the condition “faithfully injective” is
necessary in Proposition 3.3.1(c).

The previous example will not work to explain the need for “faithfully projec-
tive” in Proposition 3.3.3(c). Indeed, when R is local, an R-module is projective if
and only if it is free, and it follows that a module is projective if and only if it is
faithfully projective. Hence, we need a nonlocal example.

Example 3.3.5. For i = 1, 2 let (Ri,mi, ki) be a local ring with a semidualizing
module Ci. Assume that C1 � R1. Set R = R1×R2 and consider the semidualizing
R-module C = C1 × C2 � R; see Proposition 2.3.4.

The R-module P = 0 × R2 is projective. As in Example 3.3.4, the R-module
M = k1 × 0 is not in AC(R) because

TorRi (C,M) = TorR1×R2(C1 × C2, k1 × 0) ∼= TorR1
i (C1, k1)× TorR2

i (C2, 0)
∼= TorR1

i (C1, k1) 6= 0.
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A similar computation of ExtiR(C,M) shows that M /∈ BC(R). However, we have

HomR(P,M) = HomR1×R2(0×R2, k1 × 0) ∼= HomR1(0, k1)×Hom2(R2, 0) = 0

which is in AC(R) ∩ BC(R).

Next, we document some interactions between the operations thus far consid-
ered. The first one is a consequence of Hom-tensor adjointness.

Proposition 3.3.6. Let C be a semidualizing R-module, and let I be an injective
R-module. Then the following diagram commutes:

AC(R)
HomR(−,I) //

C⊗R−
��

BC(R)

HomR(C,−)

��

BC(R)

HomR(C,−)

��

HomR(−,I) // AC(R)

C⊗R−
��

BC(R)
HomR(−,I) // AC(R) AC(R)

HomR(−,I) // BC(R).

Proposition 3.3.7. Let C be a semidualizing R-module, and let F be a flat R-
module. Then the following diagram commutes:

AC(R)
−⊗RF //

C⊗R−
��

AC(R)

C⊗R−
��

BC(R)

HomR(C,−)

��

−⊗RF // BC(R)

HomR(C,−)

��
BC(R)

−⊗RF // BC(R) AC(R)
−⊗RF // AC(R).

Proposition 3.3.8. Let C be a semidualizing R-module, and let P be a projective
R-module. Then the following diagram commutes:

AC(R)
HomR(P,−)//

C⊗R−
��

AC(R)

C⊗R−
��

BC(R)

HomR(C,−)

��

HomR(P,−) // BC(R)

HomR(C,−)

��
BC(R)

HomR(P,−)// BC(R) AC(R)
HomR(P,−)// AC(R).

Remark 3.3.9. Let C be a semidualizing R-module, and let I be an injective
R-module. Using Theorem 3.2.1 and Proposition 3.3.6 one sees that the following
diagrams commute:

AC(R)
HomR(−,I) //

C⊗R−
��

BC(R) BC(R)

HomR(C,−)

��

HomR(−,I) // AC(R)

BC(R)
HomR(−,I)

// AC(R)

C⊗R−

OO

AC(R)
HomR(−,I)

// BC(R).

HomR(C,−)

OO

Similar diagrams follow from Propositions 3.3.7 and 3.3.8.

Remark 3.3.10. Let C be a semidualizing R-module, and let F,G be flat R-
modules. It is straightforward to show that the following diagrams commute:

AC(R)
−⊗RF //

−⊗RG
��

−⊗R(F⊗RG)

((QQQQQQQQQQQQQ
AC(R)

−⊗RG
��

BC(R)
−⊗RF //

−⊗RG
��

−⊗R(F⊗RG)

((QQQQQQQQQQQQQ BC(R)

−⊗RG
��

AC(R)
−⊗RF // AC(R) BC(R)

−⊗RF // BC(R).
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Similarly, if P and Q are projective R-modules, then the next diagrams commute:

AC(R)
Hom(P,−) //

Hom(Q,−)

�� Hom(P⊗Q,−) ))SSSSSSSSSSSSSSSS AC(R)

Hom(Q,−)

��

BC(R)

Hom(Q,−)

��

Hom(P,−) //

Hom(P⊗Q,−) ))SSSSSSSSSSSSSSSS BC(R)

Hom(Q,−)

��
AC(R)

Hom(P,−)
// AC(R) BC(R)

Hom(P,−)
// BC(R).

However, the next examples show that the analogous diagrams do not commute for
the operators HomR(−, I) and HomR(−, J) when I and J are injective.

Example 3.3.11. Let k be the field with two elements. Then the k-module k is
injective. We claim that the following diagrams do not commute:

Ak(k)
Homk(−,k) //

−⊗RHomk(k,k) &&NNNNNNNNNNN
Bk(k)

Hom(−,k)

��

Bk(k)
Homk(−,k) //

−⊗RHomk(k,k) ''NNNNNNNNNNN
Ak(k)

Hom(−,k)

��
Ak(k) Ak(k).

Indeed, the classes Ak(k) and Bk(k) contain every k-module, so it suffices to show
that the first diagram does not commute.

We consider the module k(N), and claim that

Homk(kN, k) � k(N).

By way of contradiction, suppose that Homk(kN, k) ∼= k(N), and consider the exact
sequence

0→ k(N) → kN → kN/k(N) → 0.
Apply the exact functor Homk(−, k) to obtain the next exact sequence

0→ Homk(kN/k(N), k)→ Homk(kN, k)︸ ︷︷ ︸
∼=k(N)

→ Homk(k(N), k)︸ ︷︷ ︸
∼=kN

→ 0.

However, this sequence can not be exact because k(N) is countable and kN is un-
countable. Thus, we have our contradiction.

Now, we compute

Homk(Homk(k(N), k), k) ∼= Homk(kN, k) � k(N) ∼= k(N) ⊗k Homk(k, k)

to see that the displayed diagrams do not commute.

Example 3.3.12. Let (R,m, k) be a complete local ring that has a prime ideal
p 6= m. We claim that neither square in the following diagram commutes:

AC(R)
Hom(−,ER(k)) //

Hom(−,ER(R/p))

��

BC(R)
Hom(−,ER(k)) //

Hom(−,ER(R/p))

��

AC(R)

Hom(−,ER(R/p))

��
BC(R)

Hom(−,ER(k))
// AC(R)

Hom(−,ER(k))
// BC(R).

For the first square, this follows from the next sequence:

HomR(HomR(R,ER(R/p)), ER(k)) ∼= HomR(ER(R/p), ER(k)) = 0

HomR(HomR(R,ER(k)), ER(R/p)) ∼= HomR(ER(k), ER(R/p)) 6= 0.
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The second square fails to commute because of the next sequence:

HomR(HomR(ER(k), ER(R/p)), ER(k)) ∼= HomR(0, ER(k)) = 0

HomR(HomR(ER(k), ER(k)), ER(R/p)) ∼= HomR(R,ER(R/p)) 6= 0.

The next result provides the diagrams that we do know to commute. That
they commute can be verified directly or by combining Theorem 3.2.1 with Propo-
sitions 3.3.6–3.3.8.

Proposition 3.3.13. Let C be a semidualizing R-module, and let I, J be injective
R-modules. Let F be a flat R-module, and let P be a projective R-module. Then
the following diagrams commute:

AC(R)
HomR(−,I) //

C⊗R−
��

BC(R)
HomR(−,J) // AC(R)

BC(R)
HomR(−,I) //

HomR(C,−)

��

AC(R)
HomR(−,J) // BC(R)

HomR(C,−)

OO

AC(R)
HomR(−,I) // BC(R)

HomR(−,J) // AC(R)

C⊗R−

OO

AC(R)
HomR(P,−) //

C⊗R−
��

AC(R)
HomR(−,J) // BC(R)

BC(R)
HomR(P,−) //

HomR(C,−)

��

BC(R)
HomR(−,J) // AC(R)

C⊗R−

OO

AC(R)
HomR(P,−) // AC(R)

HomR(−,J) // BC(R)

HomR(C,−)

OO

AC(R)
HomR(−,I) //

C⊗R−
��

BC(R)
HomR(P,−) // BC(R)

BC(R)
HomR(−,I) //

HomR(C,−)

��

AC(R)
HomR(P,−) // AC(R)

C⊗R−

OO

AC(R)
HomR(−,I) // BC(R)

HomR(P,−) // BC(R)

HomR(C,−)

OO

AC(R)
−⊗RF //

C⊗R−
��

AC(R)
HomR(−,J) // BC(R)

BC(R)
−⊗RF //

HomR(C,−)

��

BC(R)
HomR(−,J) // AC(R)

C⊗R−

OO

AC(R)
−⊗RF // AC(R)

HomR(−,J) // BC(R)

HomR(C,−)

OO
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AC(R)

C⊗R−
��

HomR(−,I) // BC(R)
−⊗RF // BC(R)

BC(R)
HomR(−,I) //

HomR(C,−)

��

AC(R)
−⊗RF // AC(R)

C⊗R−

OO

AC(R)
HomR(−,I) // BC(R)

−⊗RF // BC(R)

HomR(C,−)

OO

AC(R)
−⊗RF //

C⊗R−
��

AC(R)
HomR(P,−) // AC(R)

BC(R)
−⊗RF //

HomR(C,−)

��

BC(R)
HomR(P,−) // BC(R)

HomR(C,−)

OO

AC(R)
−⊗RF // AC(R)

HomR(P,−) // AC(R)

C⊗R−

OO

AC(R)

C⊗R−
��

HomR(P,−) // AC(R)
−⊗RF // AC(R)

BC(R)
HomR(P,−) //

HomR(C,−)

��

BC(R)
−⊗RF // BC(R)

HomR(C,−)

OO

AC(R)
HomR(P,−) // AC(R)

−⊗RF // AC(R).

C⊗R−

OO

Here are some companions for the previous results. We let J(R) denote the
Jacobson radical of R.

Proposition 3.3.14. Let C be a semidualizing R-module, let N be an R-module
of finite flat dimension, and let M be an R-module such that TorRi (M,N) = 0 for
all i > 1.

(a) If M is in AC(R), then M ⊗R N is in AC(R).
(b) If M is in BC(R), then M ⊗R N is in BC(R).
(c) The converses of (a) and (b) hold when M is finitely generated and N ∼=

R/(x) for some sequence x = x1, . . . , xn ∈ J(R) that is R-regular.

Proof. (a) Assume that M is in AC(R). The assumption fdR(N) <∞ implies
that there is an exact sequence

F+ = 0→ Fs → · · ·F0 → N → 0

such that each Fi is flat. The assumption TorRi (M,N) = 0 for all i > 1 implies
that the induced sequence

M ⊗R F+ = 0→M ⊗R Fs → · · ·M ⊗R F0 →M ⊗R N → 0
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is exact. Proposition 3.3.2(a) implies that M ⊗R Fi ∈ AC(R) for i = 0, . . . , s.
Hence, we have M ⊗R N ∈ AC(R) by Corollary 3.1.8(a).

The proof of part (b) is similar.
(c) Assume that M is finitely generated and N ∼= R/(x) for some sequence

x = x1, . . . , xn ∈ J(R) that is R-regular. Set M = M ⊗R N .
We now prove the converse of part (a); the other converse is proved similarly.
Assume that M ∈ AC(R). We prove that M ∈ AC(R) by induction on n.
Base case: n = 1. In this case, there is an exact sequence

0→ R
x1−→ R→ N → 0.

Since TorR1 (M,N) = 0, an application of the functor M ⊗R− yields the next exact
sequence:

0→M
x1−→M →M → 0.

Using the long exact sequence in TorRi (C,−), the fact that TorRi (C,M) = 0 for
i > 1 implies that the map

TorRi (C,M) x1−→ TorRi (C,M)

is surjective, that is, we have TorRi (C,M) = x1 TorRi (C,M). The R-modules M
and C are finitely generated, so TorRi (C,M) is finitely generated. Since x1 ∈ J(R),
Nakayama’s Lemma implies that TorRi (C,M) = 0 for all i > 1.

The vanishing TorR1 (C,M) = 0 implies that the next sequence is exact

0→ C ⊗RM
x1−→ C ⊗RM → C ⊗RM → 0.

As in the previous paragraph, the condition ExtiR(C,C⊗RM) = 0 for i > 1 implies
that ExtiR(C,C ⊗RM) = 0 for i > 1.

Finally, there is a commutative diagram of R-module homomorphisms where
the bottom row is gotten by applying HomR(C,−) to the previous exact sequence:

0 // M
x1 //

γCM
��

M //

γCM
��

M //

γCM⊗RN
∼=

��

0

0 // Hom(C,C ⊗M)
x1 // Hom(C,C ⊗M) // Hom(C,C ⊗M) // 0.

The top row is exact by assumption; the bottom row is exact as Ext1
R(C,C⊗RM) =

0. The snake lemma implies that the following maps are isomorphisms:

Ker(γCM ) x1−→∼= Ker(γCM ) Coker(γCM ) x1−→∼= Coker(γCM ).

From Nakayama’s lemma, we conclude that Ker(γCM ) = 0 = Coker(γCM ), so γCM is
an isomorphism. This implies that M ∈ AC(R), as desired.

Induction step: Assume that the result holds for sequences of length n−1. Let
x′ = x1, . . . , xn−1 and set N ′ = R/(x′).

We first show that M ⊗R N ′ ∈ AC(R). Indeed, since x is R-regular and
contained in J(R), we know that xn is R-regular. Furthermore, the element xn is
N ′-regular, so we have TorRi (N ′, R/(xn)) = 0 for all i > 1. Since N ′ ⊗R R/(xn) ∼=
N ∈ AC(R) the base case implies that M ⊗R N ′ ∈ AC(R).

In order to use our induction hypothesis to conclude that M ∈ AC(R), we
need to show that TorRi (M,N ′) = 0 for all i > 1. By assumption, the element xn
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is N ′-regular, so there is an exact sequence

0→ N ′
xn−−→ N ′ → N → 0.

Because of the vanishing TorRi (M,N) = 0, the associated long exact sequence in
TorRi (M,−) shows that the map

TorRi (M,N ′) xn−−→ TorRi (M,N ′)

is bijective for all i > 1. Hence, Nakayama’s Lemma implies that TorRi (M,N ′) = 0
for all i > 1. �

Remark 3.3.15. Under the hypotheses of Proposition 3.3.14(c), the sequence x is
M -regular. Indeed, since x is R-regular, the Koszul complex K = KR(x) is a free
resolution of R/(x) ∼= N . This explains the second step in the next sequence where
Hi(x;M) is the ith Koszul homology of M with respect to x:

0 = TorRi (M,N) ∼= Hi(M ⊗R K) = Hi(x;M).

The Tor-vanishing is by assumption for i > 1, and the third step is by definition.
Since x ∈ J(R), it follows that x is M -regular.

Proposition 3.3.16. Let C be a semidualizing R-module, let N be an R-module
of finite injective dimension, and let M be an R-module such that ExtiR(M,N) = 0
for all i > 1.

(a) If M is in BC(R), then HomR(M,N) is in AC(R).
(b) If M is in AC(R), then HomR(M,N) is in BC(R).
(c) The converses of (a) and (b) hold when M is finitely generated and N ∼=

HomR(R/(x), E) for some sequence x ∈ J(R) that is R-regular and some
faithfully injective R-module E.

Proof. The proofs of (a) and (b) are similar to the corresponding proofs in
Proposition 3.3.14.

(c) Assume that HomR(M,N) ∈ AC(R) where N ∼= HomR(R/(x), E) for some
sequence x ∈ J(R) that is R-regular and some faithfully injective R-module E. By
assumption, the module

HomR(M,N) ∼= HomR(M,HomR(R/(x), E)) ∼= HomR(M ⊗R R/(x), E)

is in AC(R). Since E is faithfully injective, Proposition 3.3.1(c) implies that M ⊗R
R/(x) ∈ BC(R).

As in the proof of Proposition 3.3.1, we have for all i > 1

0 = ExtiR(M,N) ∼= HomR(TorRi (M,R′), E).

The fact that E is faithfully injective implies that TorRi (M,R′) = 0 for all i > 1.
Hence, we have M ∈ BC(R) by Proposition 3.3.14(c).

Similar reasoning shows that if HomR(M,N) ∈ BC(R), then M ∈ AC(R) as
desired. �

The next result is proved like Proposition 3.3.14.

Proposition 3.3.17. Let C be a semidualizing R-module. Let M and N be R-
modules such that p = pdR(M) <∞ and ExtiR(M,N) = 0 for all i 6= p.

(a) If N ∈ AC(R), then ExtpR(M,N) ∈ AC(R).
(b) If N ∈ BC(R), then ExtpR(M,N) ∈ BC(R).
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(c) The converses of parts (a) and (b) hold when N is finitely generated and
M ∼= R/(x)R for some R-regular sequence x in the Jacobson radical of R.

Remark 3.3.18. Under the hypotheses of Proposition 3.3.16(c), the sequence x
is M -regular. Indeed, the proof shows that TorRi (M,R′) = 0 for all i > 1, and we
can apply the reasoning of Remark 3.3.15. The same conclusion holds under the
hypotheses of Proposition 3.3.17(c).

3.4. Base Change

Theorem 3.4.1. Let C be a semidualizing R-module and let ϕ : R → S be a ring
homomorphism. Then S ∈ AC(R) if and only if TorRi (C, S) = 0 for all i > 1 and
C ⊗R S is a semidualizing S-module.

Proof. Since the condition S ∈ AC(R) includes the vanishing TorRi (C, S) = 0
for all i > 1, we assume without loss of generality that TorRi (C, S) = 0 for all i > 1.
Let P be an R-free resolution of C such that each Pi is finitely generated.

In the following sequence, the first isomorphism is Hom-tensor adjointness

HomS(P ⊗R S,C ⊗R S) ∼= HomR(P,HomS(S,C ⊗R S))
∼= HomR(P,C ⊗R S)

The second isomorphism is induced by Hom-cancellation. The vanishing assump-
tion TorRi (C, S) = 0 for all i > 1 implies that the complex P ⊗R S is an S-free
resolution of C ⊗R S, and this explains the first isomorphism in the next sequence

ExtiS(C ⊗R S,C ⊗R S) ∼= H−i(HomS(P ⊗R S,C ⊗R S))
∼= H−i(HomR(P,C ⊗R S))
∼= ExtiR(C,C ⊗R S).

The second isomorphism is from the previous displayed sequence, and the third
isomorphism comes from the fact that P is an R-free resolution of C. From this,
we see that ExtiS(C⊗RS,C⊗RS) = 0 for all i > 1 if and only if ExtiR(C,C⊗RS) = 0
for all i > 1.

Let f : HomS(S,C ⊗R S) → C ⊗R S be the Hom-cancellation isomorphism
given by f(ψ) = ψ(1). This fits into a commutative diagram

S
χSC⊗RS //

γCS
��

HomS(C ⊗R S,C ⊗R S)

∼=
��

HomR(C,C ⊗R S) HomR(C,HomS(S,C ⊗R S))
HomR(C,f)

∼=
oo

where the unspecified isomorphism is Hom-tensor adjointness. This diagram shows
that χSC⊗RS is an isomorphism if and only if γCS is an isomorphism. This completes
the proof. �

The next result generalizes Proposition 2.2.1.

Corollary 3.4.2. Let C be a semidualizing R-module and let ϕ : R→ S be a ring
homomorphism of finite flat dimension. Then TorRi (C, S) = 0 for all i > 1, and
C ⊗R S is a semidualizing S-module.
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Proof. Since S has finite flat dimension as an R-module, Proposition 3.1.9
implies that S is in AC(R). Hence, the result follows from Theorem 3.4.1. �

The next result recovers Theorem 2.2.6(b).

Corollary 3.4.3. Let C be a semidualizing R-module. If x ∈ R is an R-regular
sequence, then C/xC is a semidualizing R/xR-module.

Proof. If x is R-regular, then pdR(R/xR) < ∞, so Corollary 3.4.2 implies
that and C ⊗R R/xR ∼= C/xC is a semidualizing R/xR-module. �

Here is a partial converse to Theorem 2.2.6(b), and a compliment to Proposi-
tion 2.2.1.

Proposition 3.4.4. Let x = x1, . . . , xn ∈ J(R) be an R-regular sequence. Let C be
a finitely generated R-module such that x is C-regular. If C/(x)C is a semidualizing
R/(x)R-module, then C is a semidualizing R-module.

Proof. Arguing by induction on n we may assume that n = 1. Set x = x1 and
R = R/(x)R. Note that x is HomR(C,C)-regular. Indeed, use the exact sequence

0→ C
x−→ C → C/xC → 0 (3.4.4.1)

and the left-exactness of HomR(C,−) to conclude that the sequence

0→ HomR(C,C) x−→ HomR(C,C)

is exact.
The element x is R-regular, so there is an exact sequence

0→ R
x−→ R→ R→ 0.

Part of the associated long exact sequence in TorR1 (−,HomR(C,C)) has the form

0→ TorR1 (R,HomR(C,C))→ HomR(C,C) x−→ HomR(C,C).

As the labeled map in this sequence is injective, we have TorR1 (R,HomR(C,C)) = 0.
Consider the following commutative diagram

R
χR
C⊗RR

∼=
//

∼=
��

HomR(C ⊗R R,C ⊗R R)
∼= // HomR(C,HomR(R,C ⊗R R))

∼=
��

R⊗R R
R⊗RχRC // R⊗R HomR(C,C)

ωCCR
∼=

// HomR(C,C ⊗R R)

wherein the unspecified vertical isomorphisms are induced by Hom- and tensor-
cancellation, and the unspecified horizontal isomorphism is Hom-tensor adjointness.
The diagram shows that R⊗R χRC is an isomorphism.

We claim that χRC is surjective. To see this, consider the exact sequence

R
χRC−−→ HomR(C,C)→ Coker(χRC)→ 0.

Use the right-exactness of R⊗R − to see that the next sequence is exact

R⊗R R
R⊗RχRC−−−−−→∼= R⊗R HomR(C,C)→ R⊗R Coker(χRC)→ 0.

It follows that R⊗R Coker(χRC) = 0, and the fact that x is in the Jacobson radical
of R implies that Coker(χRC) = 0 by Nakayama’s Lemma.
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We claim that χRC is injective. To see this, consider the exact sequence

0→ Ker(χRC)→ R
χRC−−→ HomR(C,C)→ 0

and take the long exact sequence in TorR(R,−):

TorR1 (R,HomR(C,C))︸ ︷︷ ︸
=0

→ R⊗R Ker(χRC)→ R⊗R R
R⊗RχRC−−−−−→∼= R⊗R Hom(C,C).

It follows that R⊗Ker(χRC) = 0 and, as above, that Ker(χRC) = 0.
We conclude the proof by showing that ExtiR(C,C) = 0 for all i > 1. In the

next sequence, the vanishing holds because C ⊗R R is a semidualizing R-module:

ExtiR(C,C/xC) ∼= ExtiR(C,C ⊗R R) ∼= Exti
R

(C ⊗R R,C ⊗R R) = 0

for each i > 1. The first step is straightforward, and the second step is from [16,
p. 140, Lemma 2]. For i > 1, part of the long exact sequence in ExtR(C,−)
associated to the sequence (3.4.4.1) has the following form:

ExtiR(C,C) x−→ ExtiR(C,C)→ ExtiR(C,C/xC)︸ ︷︷ ︸
=0

.

It follows that ExtiR(C,C) = xExtiR(C,C). Since ExtiR(C,C) is finitely generated
and x is in J(R), Nakayama’s Lemma implies that ExtiR(C,C) = 0, as desired. �

Corollary 3.4.5. Let x = x1, . . . , xn ∈ J(R) be an R-regular sequence. Let C be a
finitely generated R-module such that x is C-regular. If C/(x)C is a (point-wise)
dualizing R/(x)R-module, then C is a (point-wise) dualizing R-module.

Proof. Assume that C/(x)C is a point-wise dualizing R/(x)R-module. Then
Proposition 3.4.4 implies that C is a semidualizing R-module. The proof of Corol-
lary 2.2.7 shows that idRm(Cm) is finite for each maximal ideal m ⊂ R, so C is
point-wise dualizing for R. When C/(x)C is dualizing for R/(x), we similarly
conclude that C is dualizing for R. �

We have so far focused on the base change behavior for semidualizing modules.
Now we turn our attention to base change properties for Foxby classes.

Proposition 3.4.6. Let ϕ : R → S be a ring homomorphism, and let M be an
S-module. Let C be a semidualizing R-module such that S ∈ AC(R).

(a) One has M ∈ AC(R) if and only if M ∈ AC⊗RS(S).
(b) One has M ∈ BC(R) if and only if M ∈ BC⊗RS(S).

Proof. (a) Let F be an R-free resolution of C. The assumption S ∈ AC(R)
implies that C ⊗R S is a semidualizing S-module and that TorRi (C, S) = 0 for all
i > 1; see Theorem 3.4.1. It follows that the complex F ⊗RS is an S-free resolution
of C ⊗R S. This yields the first isomorphism in the next sequence:

TorSi (C ⊗R S,M) ∼= Hi((F ⊗R S)⊗S M) ∼= Hi(F ⊗RM) ∼= TorRi (C,M).

The second isomorphism comes from tensor cancellation, and the third isomorphism
is by definition. In particular, we have TorSi (C ⊗R S,M) = 0 for all i > 1 if and
only if TorRi (C,M) = 0 for all i > 1.

In the next sequence, the first step is Hom-tensor adjointness

HomS(F ⊗R S,C ⊗RM) ∼= HomR(F,HomS(S,C ⊗RM)) ∼= HomR(F,C ⊗RM)
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and the second step is induced by Hom cancellation. This provides the third iso-
morphism in the next sequence:

ExtiS(C ⊗R S, (C ⊗R S)⊗S M) ∼= ExtiS(C ⊗R S,C ⊗RM)
∼= H−i(HomS(F ⊗R S,C ⊗RM))
∼= H−i(HomR(F,C ⊗RM))
∼= ExtiR(C,C ⊗RM).

The first step is induced by tensor cancellation; and the second and fourth steps
are by definition. It follows that ExtiS(C ⊗R S, (C ⊗R S)⊗SM) = 0 for all i > 1 if
and only if ExtiR(C,C ⊗RM) = 0 for all i > 1.

Finally, there is a commutative diagram

M
γ
C⊗RS
M //

γCM
��

HomS(C ⊗R S, (C ⊗R S)⊗S M)

∼=

��

HomR(C,C ⊗RM)

∼=
��

HomR(C,HomS(S,C ⊗RM))
∼= // HomS(C ⊗R S,C ⊗RM).

Here the unspecified vertical isomorphisms are induced by Hom cancellation and
tensor cancellation, respectively, and the unspecified horizontal isomorphism is
Hom-tensor adjointness. It follows that γC⊗RSM is an isomorphism if and only if
γCM is an isomorphism. This completes the proof of part (a).

Part (b) is proved similarly. �

Proposition 3.4.7. Let ϕ : R → S be a ring homomorphism of finite flat dimen-
sion, and let C be a semidualizing R-module. Let M be an R-module such that
TorRi (M,S) = 0 for all i > 1. Consider the following conditions:

(i) M ∈ AC(R);
(ii) M ⊗R S ∈ AC(R); and

(iii) M ⊗R S ∈ AC⊗RS(S).
The implications (i) =⇒ (ii) ⇐⇒ (iii) always hold, and the conditions (i)–(iii) are
equivalent when one of the following is satisfied:

(1) ϕ is faithfully flat; or
(2) M is finitely generated, and ϕ is surjective with kernel generated by an R-

regular sequence in J(R).

Proof. The equivalence (ii) ⇐⇒ (iii) is from Proposition 3.4.6(a), and the
implication (i) =⇒ (ii) is from Proposition 3.3.14(a). When condition (1) is satis-
fied, the implication (ii) =⇒ (i) is from Proposition 3.3.2(c). When condition (2)
is satisfied, the implication (ii) =⇒ (i) is from Proposition 3.3.14(c). �

The next result is proved like the previous one.

Proposition 3.4.8. Let ϕ : R → S be a ring homomorphism of finite flat dimen-
sion, and let C be a semidualizing R-module. Let M be an R-module such that
TorRi (M,S) = 0 for all i > 1. Consider the following conditions:

(i) M ∈ BC(R);
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(ii) M ⊗R S ∈ BC(R); and
(iii) M ⊗R S ∈ BC⊗RS(S).

The implications (i) =⇒ (ii) ⇐⇒ (iii) always hold, and the conditions (i)–(iii) are
equivalent when one of the following is satisfied:

(1) ϕ is faithfully flat; or
(2) M is finitely generated, and ϕ is surjective with kernel generated by an R-

regular sequence in J(R).

The next result compliments Proposition 2.3.6.

Proposition 3.4.9. Let k be a field, and let R and S be k-algebras. Let B and
M be R-modules such that B is semidualizing, and let C and N be S-modules such
that C is semidualizing.

(a) If M ∈ AB(R) and N ∈ AC(S), then M ⊗k N ∈ AB⊗kC(R⊗k S).
(b) If M ∈ BB(R) and N ∈ BC(S), then M ⊗k N ∈ BB⊗kC(R⊗k S).

Proof. We prove part (a); the proof of part (b) is similar.
Assume that M ∈ AB(R) and N ∈ AC(S). Note that Proposition 2.3.6 implies

that B⊗kC is a semidualizing R⊗kS-module. Proposition A.1.5 yields the following
isomorphism for each i > 0:

TorR⊗kSi (B ⊗k C,M ⊗k N) ∼= ⊕ij=0 TorRj (B,M)⊗k TorSi−j(C,N).

Hence, the conditions TorRi (B,M) = 0 = TorSi (C,N) for i > 1 imply that

TorR⊗kSi (B ⊗k C,M ⊗k N) = 0

for all i > 1. The case i = 0 yields an R⊗k S-module isomorphism

(B ⊗k C)⊗R⊗kS (M ⊗k N) ∼= (B ⊗RM)⊗k (C ⊗S N)

and thus the first step in the next sequence:

ExtiR⊗kS(B ⊗k C, (B ⊗k C)⊗R⊗kS (M ⊗k N))
∼= ExtiR⊗kS(B ⊗k C, (B ⊗RM)⊗k (C ⊗S N))

∼= ⊕ij=0 ExtjR(B,B ⊗RM)⊗k Exti−jS (C,C ⊗S N).

The second step is from Proposition A.1.5. The conditions ExtiR(B,B ⊗R M) =
0 = ExtiS(C,C ⊗S N) for i > 1 imply that

ExtiR⊗kS(B ⊗k C, (B ⊗k C)⊗R⊗kS (M ⊗k N)) = 0

for all i > 1. The case i = 0 yields an R⊗k S-module isomorphism

HomR(B,B ⊗RM)⊗k HomS(C,C ⊗S N)
∼=−→ Homi

R⊗kS(B ⊗k C, (B ⊗k C)⊗R⊗kS (M ⊗k N)).

The proof of Proposition A.1.5 shows that this map is given by the formula φ⊗ψ 7→
φ � ψ, where φ : B → B ⊗R M and ψ : C → C ⊗S N , and φ � ψ : B ⊗k C →
(B ⊗R M) ⊗k (C ⊗S N) is given by b ⊗ c 7→ φ(b) ⊗ ψ(c). It follows that the next
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diagram commutes:

M ⊗k N
γBM⊗kγ

C
N

∼=
// HomR(B,B ⊗RM)⊗k HomS(C,C ⊗S N)

∼=
��

HomR⊗kS(B ⊗k C, (B ⊗RM)⊗k (C ⊗S N))

M ⊗k N
γ
B⊗kC
M⊗kN

// Homi
R⊗kS(B ⊗k C, (B ⊗k C)⊗R⊗kS (M ⊗k N)).

∼=

OO

Thus, the map γB⊗kCM⊗kN is an isomorphism and M ⊗k N ∈ AB⊗kC(R⊗k S). �

3.5. Local-Global Behavior and Consequences

The next two results are from unpublished notes by Foxby.

Proposition 3.5.1. Let C and M be R-modules such that M is finitely generated.

(a) If there is an R-module isomorphism α : M
∼=−→ HomR(C,C ⊗RM), then the

natural map γCM : M → HomR(C,C ⊗RM) is an isomorphism.
(b) Assume that C is finitely generated. If for every maximal ideal m ⊂ R there

is an Rm-module isomorphism M ∼= HomR(C,C ⊗R M)m, then the natural
map γCM : M → HomR(C,C ⊗RM) is an isomorphism.

Proof. (a) It is straightforward to show that the following diagram commutes:

HomR(C,C ⊗RM)
γCHomR(C,C⊗RM) //

idHomR(C,C⊗RM) ,,YYYYYYYYYYYYYYYYYYYYYYYYY
HomR(C,C ⊗R HomR(C,C ⊗RM))

HomR(C,ξCC⊗RM
)

��
HomR(C,C ⊗RM)

In particular, the map γCHomR(C,C⊗RM) is a split monomorphism. With X =
Coker(γCHomR(C,C⊗RM)), this explains the second isomorphism in the next sequence:

M ⊕X ∼= HomR(C,C ⊗RM)⊕X
∼= HomR(C,C ⊗R HomR(C,C ⊗RM))
∼= M.

The other isomorphism are induced by α. Since M is finitely generated, this implies
that X = 0, that is, that γCHomR(C,C⊗RM) is surjective. Since it is also injective, we
have the right-hand vertical isomorphism in the next diagram:

M
α
∼=

//

γCM
��

HomR(C,C ⊗RM)

γCHomR(C,C⊗RM)
∼=

��
HomR(C,C ⊗RM)

HomR(C,C⊗Rα)

∼=
// HomR(C,C ⊗R HomR(C,C ⊗RM)).

It follows that δCM is an isomorphism.
(b) This follows from part (a) as in the proof of Proposition 2.2.2. �

The next result is proved like the previous one.
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Proposition 3.5.2. Let C and M be R-modules such that M is finitely generated.

(a) If there is an R-module isomorphism α : C ⊗R HomR(C,M)
∼=−→M , then the

natural evaluation map ξCM : C ⊗R HomR(C,M)→M is an isomorphism.
(b) Assume that C is finitely generated. If for every maximal ideal m ⊂ R there

is an Rm-module isomorphism (C⊗RHomR(C,M))m
∼= Mm, then the natural

evaluation map ξCM : C ⊗R HomR(C,M)→M is an isomorphism.

Here are local-global principals for Foxby classes.

Proposition 3.5.3. Let C be a semidualizing R-module and M an R-module. The
following conditions are equivalent:

(i) M ∈ AC(R);
(ii) U−1M ∈ AU−1C(U−1R) for each multiplicatively closed subset U ⊂ R;

(iii) Mp ∈ ACp(Rp) for each prime ideal p ⊂ R; and
(iv) Mm ∈ ACm(Rm) for each maximal ideal m ⊂ R.

Proof. The implication (i) =⇒ (ii) is in Proposition 3.4.7, and the implica-
tions (ii) =⇒ (iii) =⇒ (iv) are straightforward.

(iv) =⇒ (i). For each i > 1 and each each maximal ideal m ⊂ R, we have
isomorphisms

TorRi (C,M)m
∼= TorRm

i (Cm,Mm) = 0

ExtiR(C,C ⊗RM)m
∼= ExtiRm

(Cm, Cm ⊗Rm Mm) = 0.

and a commutative diagram

Mm

γCm
Mm

∼=
//

(γCM )m

��

HomRm(Cm, Cm ⊗Rm Mm)

∼=
��

HomR(C,C ⊗RM)m

∼= // HomRm(Cm, (C ⊗RM)m).

Since this is so for each m and each i > 1, we conclude that TorRi (C,M) = 0 =
ExtiR(C,C⊗RM) for all i > 1 and that γCM is an isomorphism. Hence M ∈ AC(R)
as desired. �

Proposition 3.5.4. Let C be a semidualizing R-module and M an R-module. The
following conditions are equivalent:

(i) M ∈ BC(R);
(ii) U−1M ∈ BU−1C(U−1R) for each multiplicatively closed subset U ⊂ R;
(iii) Mp ∈ BCp(Rp) for each prime ideal p ⊂ R; and
(iv) Mm ∈ BCm(Rm) for each maximal ideal m ⊂ R.

Proof. Similar to Proposition 3.5.3. �

The next result is proved like Proposition 2.3.4, using the previous two results.

Corollary 3.5.5. Let R1, . . . , Rn be noetherian rings, and consider the product
R = R1 × · · · × Rn. For i = 1, . . . , n let Ci be a semidualizing Ri-module, and set
C = C1 × · · · × Cn. There are bijections AC(R1) × · · · × AC(Rn) ∼−→ AC(R) and
BC(R1)× · · · × BC(Rn) ∼−→ BC(R) given by (M1, . . . ,Mn) 7→M1 × · · · ×Mn.
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Corollary 3.5.6. Let C be a semidualizing R-module. Then the Auslander class
AC(R) contains every R-module locally of finite flat dimension, and the Bass class
BC(R) contains every R-module locally of finite injective dimension.

Proof. If fdRm(Mm) is finite for each maximal ideal m ⊂ R, then Mm ∈
ACm(Rm) for each m, so M ∈ AC(R) by Proposition 3.5.3. The conclusion for the
Bass class holds similarly. �



CHAPTER 4

Relations Between Semidualizing Modules

4.1. First Relations

Proposition 4.1.1. Let C be a semidualizing R-module, and let M be a finitely
generated R-module.

(a) The module M is semidualizing and in AC(R) if and only if C ⊗R M is
semidualizing and in BC(R).

(b) The module M is semidualizing and in BC(R) if and only if HomR(C,M) is
semidualizing and in AC(R).

Proof. (a) Theorem 3.2.1(a) says that M ∈ AC(R) if and only if C ⊗RM ∈
BC(R), so assume that M ∈ AC(R). Using this assumptions Lemma 3.1.13(a)
yields isomorphisms for all i > 0:

ExtiR(M,M) ∼= ExtiR(C ⊗RM,C ⊗RM).

Thus ExtiR(M,M) = 0 for all i > 1 if and only if Exti(C ⊗R M,C ⊗R M) = 0
for all i > 1. Furthermore, this implies that R ∼= HomR(M,M) if and only if
R ∼= HomR(C ⊗R M,C ⊗R M). Because of Proposition 2.2.2(a) we conclude that
the homothety map χRM is an isomorphism if and only if χRC⊗RM is an isomorphism.
Thus, the R-module M is semidualizing if and only if C ⊗RM is semidualizing.

The proof of part (b) is similar. �

Corollary 4.1.2. Let C be a semidualizing R-module and let N be an R-module
of finite flat dimension. If B = C ⊗R N is semidualizing, then N is a finitely
generated projective R-module of rank 1 and N ∼= HomR(C,B); if furthermore R
is local, then N ∼= R and B ∼= C.

Proof. Assume that C ⊗R N is semidualizing. Since fdR(N) < ∞, we have
N ∈ AC(R), and hence N ∼= HomR(C,C ⊗R N) ∼= HomR(C,B). In particular,
since C and C⊗RN are finitely generated, we conclude that N is finitely generated.
Proposition 4.1.1(a) implies that N is semidualizing. Since N is finitely generated
we have pdR(N) = fdR(N) <∞, so N is a finitely generated projective R-module
of rank 1, by Corollary 2.2.8.

When R is local, Corollary 2.2.8 implies that N ∼= R, so B = C⊗RN ∼= C. �

Corollary 4.1.3. Let C be a semidualizing R-module and let D be a point-wise du-
alizing R-module. Then the R-module HomR(C,D) is semidualizing. Furthermore,
we have ExtiR(C,D) = 0 = TorRi (C,HomR(C,D)) for all i > 1, and the natural
map ξDC : C ⊗R HomR(C,D)→ D is an isomorphism.

Proof. Since D is locally of finite injective dimension, we have D ∈ BC(R)
by Corollary 3.5.6. Proposition 4.1.1(b) implies that HomR(C,D) is semidualizing,
and the remaining conclusions follow from the definition of BC(R). �

47
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The following result characterizes the semidualizing modules that are locally
isomorphic. These are the ones that are homologically indistinguishable in the sense
that they determine the same Foxby classes. The symmetry in conditions (iii)–(viii)
implies that other conditions are also symmetric.

Proposition 4.1.4. Let B and C be semidualizing R-modules. The following con-
ditions are equivalent:

(i) B ∼= C ⊗R P for some finitely generated projective R-module of rank 1;
(ii) B ∼= C ⊗R P for some R-module of finite flat dimension;

(iii) Bp
∼= Cp for each prime ideal p ⊂ R;

(iv) Bm
∼= Cm for each maximal ideal m ⊂ R;

(v) AC(R) = AB(R);
(vi) BC(R) = BB(R);

(vii) C ∈ BB(R) and B ∈ BC(R);
(viii) HomR(B,C) ∈ AB(R) and HomR(C,B) ∈ AC(R);
(ix) HomR(C,B) is a projective R-module of rank 1;
(x) fdR(HomR(C,B)) <∞; and
(xi) B ∼= C ⊗R M and C ∼= B ⊗R N for some R-modules M and N with

M ∈ AC(R) and N ∈ AB(R).

When these conditions are satisfied, one has P ∼= HomR(C,B) and the module Q =
HomR(P,R) ∼= HomR(B,C) is a rank 1 projective R-module such that C ∼= B⊗RQ.

Proof. The implications (i) =⇒ (ii) and (iii) =⇒ (iv) and (ix) =⇒ (x) are
straightforward. The implication (ii) =⇒ (i) is from Corollary 4.1.2, and (vii)⇐⇒
(viii) is by Theorem 3.2.1.

(i) =⇒ (iii) Since P is a rank 1 projective R-module, we have Pp
∼= Rp for all

p ∈ Spec(R), so Bp
∼= Cp ⊗Rp Pp

∼= Cp for all such p.
(iv) =⇒ (v) Assume that Bm

∼= Cm for each maximal ideal m ⊂ R. Proposi-
tion 3.5.3 implies that an R-module M is in AB(R) if and only if Mm ∈ ABm(R) =
ACm(R) for each such m, that is, if and only if M ∈ AC(R).

(v) =⇒ (vi) Assume that AB(R) = AC(R), and let E be a faithfully injective
R-module. Proposition 3.3.1 implies that an R-module M is in BB(R) if and only
if HomR(M,E) ∈ AB(R) = AC(R), that is, if and only if M ∈ BC(R).

(vi) =⇒ (vii) Assume that BB(R) = BC(R). Then Corollary 3.2.2(a) implies
that B ∈ BB(R) = BC(R) and C ∈ BC(R) = BB(R).

(vii) =⇒ (ix) Assume that C ∈ BB(R) and B ∈ BC(R). This implies that

C ∼= B ⊗R HomR(B,C) ∼= C ⊗R HomR(C,B)⊗R HomR(B,C).

From Proposition 4.1.1(b), we conclude that HomR(C,B) is semidualizing, so
HomR(C,B)m is a semidualizing Rm-module for each maximal ideal m ⊂ R. Lo-
calizing the previous display yields

Cm
∼= Cm ⊗Rm [HomR(C,B)m ⊗Rm HomR(B,C)m].

Computing minimal numbers of generators, we find

µRm(Cm) = µRm(Cm)µRm(HomR(C,B)m)µRm(HomR(B,C)m)

so that µRm(HomR(C,B)m) = 1. Corollary 2.1.14 implies that HomR(C,B)m
∼= Rm

for each maximal m, that is, that HomR(C,B) is a rank 1 projective R-module.
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(vii) =⇒ (xi) The condition C ∈ BB(R) implies that N = HomR(B,C) ∈
AB(R) and C ∼= B ⊗R HomR(B,C) ∼= B ⊗R N , by Theorem 3.2.1. The condition
B ∈ BC(R) implies that M = HomR(C,B) ∈ AB(R) and B ∼= C ⊗RM .

(xi) =⇒ (vii). Assume that B ∼= C⊗RM and C ∼= B⊗RN for some R-modules
M and N with M ∈ AC(R) and N ∈ AB(R). The condition M ∈ AC(R) implies
that B ∼= C⊗RM ∈ BC(R), and the condition N ∈ AB(R) implies that C ∈ BB(R)
by Theorem 3.2.1.

This proves the equivalence of the conditions (i)–(xi).
Finally, assume that conditions (i)–(xi) are satisfied. Then P ∼= HomR(C,B)

by Corollary 4.1.2. Proposition 4.1.1(b) implies that By symmetry, we conclude
that the module

Q = HomR(B,C)
∼= HomR(C ⊗R HomR(C,B), C)
∼= HomR(HomR(C,B),HomR(C,C))
∼= HomR(P,R)

is projective of rank 1 such that C ∼= B ⊗R Q, as desired. �

Here is the local case of Proposition 4.1.4.

Corollary 4.1.5. Assume that R is local, and let B and C be semidualizing R-
modules. The following conditions are equivalent:

(i) B ∼= C;
(ii) B ∼= C ⊗R P for some R-module of finite flat dimension;
(iii) Bp

∼= Cp for each prime ideal p ⊂ R;
(iv) AC(R) = AB(R);
(v) BC(R) = BB(R);
(vi) C ∈ BB(R) and B ∈ BC(R);

(vii) HomR(B,C) ∈ AB(R) and HomR(C,B) ∈ AC(R);
(viii) HomR(C,B) ∼= R;

(ix) fdR(HomR(C,B)) <∞; and
(x) B ∼= C ⊗R M and C ∼= B ⊗R N for some R-modules M and N with

M ∈ AC(R) and N ∈ AB(R).

Proof. Since R is local, every projective R-module is free. Hence, the only
finitely generated projective R-module of rank 1 (up to isomorphism) is R. Now
apply Proposition 4.1.4. �

Corollary 4.1.6. Let C be a semidualizing R-module. The following conditions
are equivalent:

(i) C is a (rank 1) projective R-module;
(ii) AC(R) contains every R-module;
(iii) BC(R) contains every R-module;
(iv) R/m ∈ AC(R) for each maximal ideal m ⊂ R;
(v) R/m ∈ BC(R) for each maximal ideal m ⊂ R;
(vi) ER(R/m) ∈ AC(R) for each maximal ideal m ⊂ R;

(vii) AC(R) contains a faithfully injective R-module;
(viii) R ∈ BC(R); and

(ix) BC(R) contains a finitely generated projective R-module of rank 1.
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Proof. The equivalence of the conditions (i)–(iii) is from the case B = R of
Proposition 4.1.4, using Example 3.1.5. The equivalence (i)⇐⇒ (ix) holds similarly.
The implications (ii) =⇒ (iv) and (ii) =⇒ (vi) and (iii) =⇒ (v) and (iii) =⇒ (viii)
and (viii) =⇒ (ix) are routine.

(iv) =⇒ (i) Assume that R/m ∈ AC(R) for each maximal ideal m ⊂ R. It
follows that TorRi (C,R/m) = 0 for all i > 1 and for each m. Thus, C is projective,
and Corollary 2.2.8 implies that C has rank 1.

The implication (v) =⇒ (i) is verified similarly.
(vi) =⇒ (vii) If ER(R/m) ∈ AC(R) for each maximal ideal m ⊂ R, then

the faithfully injective R-module E =
∐

mER(R/m) is in AC(R) by Proposi-
tion 3.1.6(a).

(vii) =⇒ (viii) Let E be a faithfully injective R-module in AC(R). Since
E ∼= HomR(R,E) ∈ AC(R), Proposition 3.3.1(c) implies that R ∈ BC(R). �

Here is the local case of the previous result.

Corollary 4.1.7. Assume that (R,m, k) is local, and let C be a semidualizing R-
module. The following conditions are equivalent:

(i) C ∼= R;
(ii) AC(R) contains every R-module;

(iii) BC(R) contains every R-module;
(iv) k ∈ AC(R); and
(v) k ∈ BC(R).
(vi) ER(k) ∈ AC(R);

(vii) AC(R) contains a faithfully injective R-module; and
(viii) R ∈ BC(R).

Corollary 4.1.8. Let D and D′ be point-wise dualizing modules for R.
(a) The duals P = HomR(D′, D) and Q = HomR(D,D′) are rank 1 projective

R-modules such that D ∼= D′ ⊗R P and D′ ∼= D ⊗R Q.
(b) The R-module D′ is dualizing if and only if D is dualizing.
(c) If R is local, then D′ ∼= D.

Proof. Corollary 3.5.6 implies that D′ ∈ BD(R) and D ∈ BD′(R), so part (a)
follows from Proposition 4.1.4. Part (b) is a consequence of Corollary 2.2.5(c), and
part (c) follows from Corollary 4.1.5. �

We next show that semidualizing modules over Gorenstein rings are trivial.

Corollary 4.1.9. Assume that R is (point-wise) Gorenstein, and let C be a semid-
ualizing R-module. Then C is a rank 1 projective R-module and is (point-wise)
dualizing for R. If R is local, then C is isomorphic to R and is dualizing.

Proof. Assume that R is point-wise Gorenstein, that is, that R is locally of
finite injective dimension as an R-module. Corollary 3.5.6 implies that R ∈ BC(R).
On the other hand, every R-module is in BR(R), so C ∈ BR(R). Propositions 4.1.4
implies that C ∼= HomR(R,C) is a rank 1 projective R-module. That is, we have
Cm
∼= Rm for each maximal ideal m ⊂ R. Since R is locally of finite injective

dimension, the same is true of C, that is C is a point-wise dualizing R-module.
If R is Gorenstein, then we have

idR(C) = sup
m
{idRm(Cm)} = sup

m
{idRm(Rm)} = idR(R) <∞
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so C is dualizing for R. If R is local, then both R and C are dualizing for R, so
C ∼= R by Corollary 4.1.8. �

Corollary 4.1.10. Assume that D is (point-wise) dualizing for R. Then the fol-
lowing conditions are equivalent:

(i) R is (point-wise) Gorenstein;
(ii) every semidualizing R-module is projective;

(iii) D is a projective R-module;
(iv) AD(R) contains every R-module;
(v) BD(R) contains every R-module;
(vi) R/m ∈ AD(R) for each maximal ideal m ⊂ R;

(vii) R/m ∈ BD(R) for each maximal ideal m ⊂ R;
(viii) ER(R/m) ∈ AD(R) for each maximal ideal m ⊂ R;
(ix) AD(R) contains a faithfully injective R-module;
(x) R ∈ BD(R); and
(xi) BD(R) contains a finitely generated projective R-module of rank 1.

Proof. The equivalence of the conditions (iii)–(xi) is from Corollary 4.1.6,
since a projective semiduaizing module must have rank 1. The implication (i) =⇒
(ii) is from Corollary 4.1.9. The implication (ii) =⇒ (iii) is routine, and Corol-
lary 2.2.9 justifies the implication (iii) =⇒ (i). �

Here is the local case of the previous result.

Corollary 4.1.11. Assume that (R,m, k) is local and that D is dualizing for R.
Then the following conditions are equivalent:

(i) R is Gorenstein;
(ii) every semidualizing R-module is free;
(iii) D is a free R-module;
(iv) AD(R) contains every R-module;
(v) BD(R) contains every R-module;
(vi) k ∈ AD(R);

(vii) k ∈ BD(R);
(viii) ER(k) ∈ AD(R);

(ix) AD(R) contains a faithfully injective R-module;
(x) R ∈ BD(R).

Corollary 4.1.12. Let C be a semidualizing R-module. Then C is (point-wise)
dualizing for R if and only if R has a (point-wise) dualizing D such that C ∈ BD(R).

Proof. One implication follows from the condition C ∈ BC(R) found in Corol-
lary 3.2.2(a).

For the converse, assume that R has a (point-wise) dualizing D such that
C ∈ BD(R). Corollary 3.5.6 implies that D ∈ BC(R), so Proposition 4.1.4 yields a
finitely generated projective R-module P of rank 1 such that C ∼= P ⊗R D. Since
D is (point-wise) dualizing, it follows from Corollary 2.2.5(c) that C is (point-wise)
dualizing. �

4.2. Picard Group Action and Ordering

Definition 4.2.1. The Picard group of R is the set Pic(R) of all isomorphism
classes of finitely generated projective R-modules of rank 1. The isomorphism class
of a given finitely generated projective R-module P of rank 1 is denoted [P ].
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Remark 4.2.2. As its name suggests, the set Pic(R) has the structure of an abelian
group, which we write multiplicatively: [P ][Q] = [P ⊗R Q]. The identity element
of Pic(R) is [R], and inverses are given by the formula [P ]−1 = [HomR(P,R)]. It
follows that [P ]−1[Q] = [HomR(P,Q)].

Properties 4.2.3.

4.2.3.1. If R is local, then Pic(R) = {[R]}.

4.2.3.2. Corollary 2.2.5(a) implies that Pic(R) ⊆ S0(R).

4.2.3.3. If R is point-wise Gorenstein, then Pic(R) = S0(R) by Corollary 4.1.9.

4.2.3.4. Assuming that R has a (point-wise) dualizing module, Corollary 4.1.8
implies that the set of isomorphism classes of (point-wise) dualizing modules is in
bijection with Pic(R).

The next result expands on Corollary 2.2.5(b).

Proposition 4.2.4. There is a well-defined action of Pic(R) on S0(R) action of
the group Pic(R) on the set S0(R) given by [P ][C] = [P ⊗R C].

Proof. Corollary 2.2.5(b) shows that the formula [P ][C] = [P ⊗R C] is well-
defined. The identity [R] ∈ Pic(R) acts trivially because R ⊗R C ∼= C, and the
associative law follows from the associativity of tensor product. �

The next result says that this group action is free.

Proposition 4.2.5. For each [C] ∈ S0(R), the stabilizer of [C] in Pic(R) is {[R]}.

Proof. If [P ] ∈ Pic(R) is in the stabilizer of [C], then we have C ∼= P ⊗R C,
so Proposition 4.1.4 implies that P ∼= HomR(C,C) ∼= R. �

Definition 4.2.6. Let S0(R) denote the set of orbits in S0(R) under the action
of Pic(R). The orbit of a given element [C] ∈ S0(R) is denoted 〈C〉 ∈ S0(R).

Remark 4.2.7. If R is local, then the triviality of Pic(R) implies that the natural
map S0(R)→ S0(R) is a bijection.

Lemma 4.2.8. For [B], [C] ∈ S0(R) the following conditions are equivalent:
(i) 〈B〉 = 〈C〉 in S0(R);
(ii) B ∼= P ⊗R C for some [P ] ∈ Pic(R);

(iii) Bm
∼= Cm for each maximal ideal m ⊂ R;

(iv) AB(R) = AC(R);
(v) BB(R) = BC(R); and
(vi) C ∈ BB(R) and B ∈ BC(R).

When Pic(R) = {[R]}, e.g., when R is local, these conditions are equivalent to
(i′) [B] = [C] in S0(R).

Proof. The equivalence (i)⇐⇒ (ii) is by definition, and the equivalence of the
conditions (ii)–(vi) is from Proposition 4.1.4. When Pic(R) = {[R]}, the equivalence
(i)⇐⇒ (i′) is from Remark 4.2.7. �

Definition 4.2.9. For 〈B〉, 〈C〉 ∈ S0(R) we write 〈B〉 E 〈C〉 when B ∈ BC(R).
When Pic(R) = {[R]}, e.g., when R is local, we write [B] E [C] for [B], [C] ∈

S0(R) when B ∈ BC(R).
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Proposition 4.2.10. The ordering E on S0(R) is well-defined, reflexive, and an-
tisymmetric. When Pic(R) = {[R]}, e.g., when R is local, the ordering E on S0(R)
is well-defined, reflexive, and antisymmetric.

Proof. In view of Remark 4.2.7, it suffices to prove the first statement.
For well-definedness, let 〈B〉 = 〈B′〉 and 〈C〉 = 〈C ′〉 in S0(R). Lemma 4.2.8

implies that BC(R) = BC′(R) and that there is an element [P ] ∈ Pic(R) such
that B′ ∼= P ⊗R B. Thus, if B ∈ BC(R), then Proposition 3.3.2(b) implies that
B′ ∼= P ⊗R B ∈ BC(R) = BC′(R), as desired.

Reflexivity follows from the condition C ∈ BC(R) in Corollary 3.2.2(a). For
antisymmetry, assume that 〈B〉 E 〈C〉 and 〈C〉 E 〈B〉; that is, we have C ∈ BB(R)
and B ∈ BC(R), so Lemma 4.2.8 implies that 〈B〉 = 〈C〉. �

Here are some of the big open questions in this area:

Question 4.2.11.

(a) Is the set S0(R) finite? If Pic(R) = {[R]}, e.g., if R is local, is the set S0(R)
finite?

(b) Is there a non-negative integer n such that
∣∣S0(R)

∣∣ = 2n? If Pic(R) = {[R]},
e.g., if R is local, is there a non-negative integer n such that |S0(R)| = 2n?

(c) Is the ordering E on S0(R) transitive? If Pic(R) = {[R]}, e.g., if R is local,
is the ordering E on S0(R) transitive?

Remark 4.2.12. There exist rings R with infinite Picard group. (Moreover, a
theorem of Claiborn says that, for every abelian group G, there is a ring R such
that S0(R) = Pic(R) ∼= G.) Thus, the versions of Question 4.2.11(a)–(b) for S0(R)
are only reasonable when Pic(R) = {[R]}.

Property 4.2.3.3 shows that, if R is point-wise Gorenstein then S0(R) = {〈R〉},
so we have

∣∣S0(R)
∣∣ = 1 = 20. Corollary 4.3.6 gives some motivation for Ques-

tion 4.2.11(b). The next examples give affirmative answers to the questions in 4.2.11
for some special classes of rings.

Example 4.2.13. Let (R,m, k) be a local ring with m2 = 0. Let D be a dualizing
R-module. (We will prove later that R does in fact admit a dualizing module
because it is complete and Cohen-Macaulay.) Then S0(R) = {[R], [D]}. Indeed,
let [C] ∈ S0(R) such that C � R. Corollary 2.2.8 implies that pdR(C) = ∞. Let
P be a minimal free resolution of C, and let C ′ be the first syzygy in P . Then
there is an exact sequence

0→ C ′ → P0 → C → 0.

Since P is minimal, we have C ′ ⊆ mP0, so the condition m2 = 0 implies that
mC ′ = 0. That is, we have C ′ ∼= kn for some n > 1. Since ExtiR(C,C) = 0 =
ExtiR(P0, C) for all i > 1, the long exact sequence in ExtR(−, C) associated to the
displayed sequence implies that = 0 ExtiR(C ′, C) ∼= ExtiR(k,C)n for all i > 1. Since
n 6= 0, we have ExtiR(k,C) = 0 for all i > 1. Thus, C is injective, i.e., dualizing, so
Corollary 4.1.8(c) implies that C ∼= D.

Example 4.2.14. Let (R,m) be a local Cohen-Macaulay ring of minimal multiplic-
ity. This means that there is a flat local ring homomorphism ϕ : (R,m)→ (R′,m′)
such that mR′ = m′ where R′ has a regular sequence x ∈ m′ such that the local
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ring (R′,m′) = (R′/(x),m′/(x)) satisfies m′
2

= 0. We claim that

S0(R) =

{
{[R], [D]} if R admits a dualizing module D
{[R]} if R does not admit a dualizing module.

Assume that [C] ∈ S0(R) such that C � R. We show that C is dualizing for R.
Corollary 2.1.14 implies that C is not cyclic. Since the homomorphism ϕ is local,
the module C ′ = C ⊗R R′ is not cyclic. This module is also semidualizing for S
by Proposition 2.2.1. Corollary 3.4.3 implies that C ′ = C ′/(x)C ′ is semidualizing
for R′, and C ′ is not cyclic by Nakayama’s lemma. Since m′

2
= 0, Example 4.2.13

implies that C ′ is dualizing for R′. Theorem 2.2.6(a) guarantees that the sequence
x is C ′-regular, so we conclude from Corollary 3.4.5 that C ′ is dualizing for R′.
Finally, Proposition 2.2.15 implies that C is dualizing for R, as desired.

Fact 4.2.15. Let ϕ : R → S be a ring homomorphism. If [P ] ∈ Pic(R), then the
S-module P ⊗R S is finitely generated and projective of rank 1. That is, there
is a well-defined map Pic(ϕ) : Pic(R) → Pic(S) given by [P ] 7→ [P ⊗R S]. It is
straightforward to show that this map is in fact a group homomorphism; see the
proof of Proposition 4.2.17(a).

Definition 4.2.16. Let ϕ : R → S be a ring homomorphism of finite flat dimen-
sion. Define S0(ϕ) : S0(R) → S0(S) by the formula [C] 7→ [C ⊗R S]. Define
S0(ϕ) : S0(R)→ S0(S) by the formula 〈C〉 7→ 〈C ⊗R S〉.

Proposition 4.2.17. Let ϕ : R→ S be a ring homomorphism of finite flat dimen-
sion.

(a) The map S0(ϕ) : S0(R) → S0(S) is well-defined and respects the Picard
group actions: S0(ϕ)([P ][C]) = Pic(ϕ)([P ])S0(ϕ)([C]).

(b) There is a commutative diagram

Pic(R)� _

��

Pic(ϕ) // Pic(S)� _

��
S0(R)

S0(ϕ) // S0(S)

where the vertical maps are the natural inclusions. In particular, if S0(ϕ) is
injective, then so is Pic(ϕ).

(c) If Pic(ϕ) is injective, then so is S0(ϕ) when one of the following is satisfied:
(1) ϕ is faithfully flat; or
(2) ϕ is surjective with kernel generated by an R-regular sequence in J(R).

Proof. (a) The well-definedness of S0(ϕ) is a consequence of Corollary 3.4.2.
The fact that S0(ϕ) respects the Picard group actions follows from the S-module
isomorphism (P ⊗R S)⊗S (C ⊗R S) ∼= (P ⊗R C)⊗R S.

(b) The commutativity of the diagram is by definition, and the second state-
ment follows from the diagram.

(c) Assume that Pic(ϕ) is injective and that ϕ satisfies condition (1) or (2).
Let [B], [C] ∈ S0(R) such that S0(ϕ)([B]) = S0(ϕ)([C]), that is, such that there
is an S-module isomorphism B ⊗R S ∼= C ⊗R S. Corollary 3.2.2(a) implies that
B ⊗R S ∈ BB⊗RS(S) = BC⊗RS(S), so we conclude from Proposition 3.4.8 that
B ∈ BC(R). (Note that this is where we use the assumption that ϕ satisfies
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condition (1) or (2).) Similarly, we have C ∈ BB(R), so Proposition 4.1.4 implies
that HomR(B,C) is a projective R-module of rank 1 such that

C ∼= B ⊗R HomR(B,C). (4.2.17.1)

Since fdR(S) is finite, tensor evaluation yields the fourth step in the next sequence:

S ∼= HomS(B ⊗R S,C ⊗R S) ∼= HomR(B,HomS(S,C ⊗R S))
∼= HomR(B,C ⊗R S) ∼= HomR(B,C)⊗R S.

The first step is from the assumption B ⊗R S ∼= C ⊗R S, using the fact that
B ⊗R S is a semidualizing S-module. The other steps are Hom-tensor adjointness
and Hom-cancellation.

This sequence implies that Pic(ϕ)([HomR(B,C)]) = [S], so the injectivity of
Pic(ϕ) implies that HomR(B,C) ∼= R. From (4.2.17.1), we conclude that C ∼=
B ⊗R R ∼= B, as desired. �

Here is an application.

Proposition 4.2.18. Let B and C be semidualizing R-modules, and let x ∈ J(R)
be an R-regular sequence. If C/xC ∼= C ′/xC ′, then C ∼= C ′.

Proof. Let ϕ : R → R/(x) denote the natural surjection. It suffices to show
that the induced group homomorphism Pic(ϕ) : Pic(R) → Pic(R/(x)) is injective,
by Proposition 4.2.17(c). Let [P ] ∈ Ker(Pic(ϕ)). Then P is a finitely generated rank
1 projective R-module such that P/xP ∼= R/(x). Let p ∈ P/xP be a generator.
Consider the exact sequence

R
τ−→ P → Coker(τ)→ 0

where τ(r) = rp for all r ∈ R. This induces an exact sequence

[R/(x)]⊗R R
[R/(x)]⊗Rτ−−−−−−−→∼=

[R/(x)]⊗R P → [R/(x)]⊗R Coker(τ)→ 0

and hence [R/(x)] ⊗R Coker(τ) = 0. Since x ∈ J(R) it follows that Coker(τ) = 0,
that is, the map τ is surjective. Because P is projective, this implies that R ∼=
P ⊕Ker(τ). Since P has rank 1, we have Pm

∼= Rm for each maximal ideal m ⊂ R,
and it follows that Ker(τ)m = 0 for each m. In other words, we have Ker(τ) = 0,
so τ is an isomorphism. �

Proposition 4.2.19. Let ϕ : R→ S be a ring homomorphism of finite flat dimen-
sion.

(a) The map S0(ϕ) : S0(R) → S0(S) is well-defined and respects the order-
ings on S0(R) and S0(S): if 〈B〉 E 〈C〉 in S0(R), then S0(ϕ)(〈B〉) E
S0(ϕ)(〈C〉) in S0(S).

(b) Assume that one of the following is satisfied:
(1) ϕ is faithfully flat; or
(2) ϕ is surjective with kernel generated by an R-regular sequence in J(R).

Then the map S0(ϕ) is injective and perfectly order-respecting: 〈B〉 E 〈C〉
in S0(R) if and only if S0(ϕ)(〈B〉) E S0(ϕ)(〈C〉) in S0(S).

Proof. (a) The well-definedness of S0(ϕ) follows from Proposition 4.2.17(a):
if 〈B〉 = 〈C〉 in S0(R), then there is an element [P ] ∈ Pic(R) such that [B] = [P ][C]
in S0(R); this implies that [B ⊗R S] = [P ⊗R S][C ⊗R S] in S0(S), so 〈B ⊗R S〉 =
〈C ⊗R S〉 in S0(S).
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To show that S0(ϕ) respects the ordering, let 〈B〉, 〈C〉 ∈ S0(R) such that
〈B〉 E 〈C〉. This means that B ∈ BC(R), so Proposition 3.4.8 implies that B⊗RS ∈
BC⊗RS(S). That is 〈B ⊗R S〉 E 〈C ⊗R S〉 in S0(S).

(b) Assume that ϕ satisfies condition (1) or (2), and let 〈B〉, 〈C〉 ∈ S0(R).
We first prove that S0(ϕ) is perfectly order-respecting. One implication is from
part (a), so assume that S0(ϕ)(〈B〉) E S0(ϕ)(〈C〉) in S0(S). This means that
〈B ⊗R S〉 E 〈C ⊗R S〉, that is B ⊗R S ∈ BC⊗RS(S). As in the proof of Proposi-
tion 4.2.17(b), we conclude that B ∈ BC(R), and hence 〈B〉 E 〈C〉.

The injectivity of S0(ϕ) now follows. Indeed, assume that S0(ϕ)(〈B〉) =
S0(ϕ)(〈C〉) in S0(S), that is, that S0(ϕ)(〈B〉) E S0(ϕ)(〈C〉) and S0(ϕ)(〈C〉) E
S0(ϕ)(〈B〉). It follows that 〈B〉 E 〈C〉 and 〈C〉 E 〈B〉 in S0(R), and thus
〈B〉 = 〈C〉. �

Here is a compliment to Proposition 2.3.4.

Proposition 4.2.20. Let R1, . . . , Rn be noetherian rings, and set R =
∏n
i=1Ri.

There is a bijection S0(R1)× · · · ×S0(Rn) ∼−→ S0(R) given by (〈C1〉, . . . , 〈Cn〉) 7→
〈
∏n
i=1 Ci〉. Furthermore, this bijection is perfectly order respecting in the sense

that 〈
∏n
i=1Bi〉 E 〈

∏n
i=1 Ci〉 in S0(R) if and only if 〈Bi〉 E 〈Ci〉 in S0(Ri) for each

i = 1, . . . , n.

Proof. Arguing as in the proof of Proposition 2.3.4, one concludes that there
is a group isomorphism Pic(R1) ⊕ · · · ⊕ Pic(Rn)

∼=−→ Pic(R) given by the formula
([P1], . . . , [Pn]) 7→ [

∏n
i=1 Pi]. Furthermore, this isomorphism respects the appropri-

ate group actions on the sets S0(R1) × · · · × S0(Rn) ∼−→ S0(R). The fact that
the map S0(R1) × · · · × S0(Rn) ∼−→ S0(R) is well defined and bijective follows
from a routine argument. The fact that it is perfectly order respecting follows from
Corollary 3.5.5. �

The next result is very helpful for locating semidualizing modules. It requires
some background.

Definition 4.2.21. A finitely generated R-module N is reflexive if the natural
biduality map δRN : N → HomR(HomR(N,R), R) is an isomorphism.

Let R be a normal domain, that is, an integrally closed integral domain. The
divisor class group of R, denoted Cl(R), is the set of isomorphism classes of rank
1 reflexive R-modules. As usual, the isomorphism class of a given rank 1 reflexive
R-module a is denoted [a].

Fact 4.2.22. Let R be a normal domain. Then the set Cl(R) is a group with
operation [a][b] = [HomR(HomR(a⊗R b, R), R)]. The identity element in this group
is [R], and inverses are given by the formula [a]−1 = [HomR(a, R)]. Moreover, one
has [a]−1[b] = [HomR(a, b)] for all [a], [b] ∈ Cl(R). This is comparable with the
operation in Pic(R). In fact, the group Pic(R) is a subgroup of Cl(R). If R is a
unique factorization domain (e.g., if R is a regular local ring), then Cl(R) = {[R]}.

From [8, (1.4.1(a))] we know that a finitely generated R-module N is reflexive
if and only if

(1) Np is a reflexive Rp-module for all prime ideals p ⊂ R such that depth(Rp) 6
1, and

(2) depthRp
(Np) > 2 for all prime ideals p ⊂ R such that depth(Rp) > 2.
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Proposition 4.2.23. Assume that R is a normal domain. Then every semidual-
izing R-module is reflexive, so there are containments Pic(R) ⊆ S0(R) ⊆ Cl(R).

Proof. Let C be a semidualizing R-module, and fix a prime p ∈ Spec(R). If
depth(Rp) > 2, then Proposition 2.2.10 implies that depthRp

(Cp) > 2. Assume that
depth(Rp) 6 1. Since R is a normal domain, it satisfies Serre’s conditions (R1). In
particular, the ring Rp is regular. Since Cp is semidualizing for Rp, Corollary 4.1.11
implies that Cp

∼= Rp, so Cp is a reflexive Rp-module. We conclude from Fact 4.2.22
that C is a reflexive R-module.

The containment S0(R) ⊆ Cl(R) now follows. The other containment Pic(R) ⊆
S0(R) is from Property 4.2.3.2. �

Corollary 4.2.24. Assume that R is a unique factorization domain. If C is a
semidualizing R-module, then C ∼= R. If R has a dualizing module, then R is
Gorenstein.

Proof. Since R is a unique factorization domain, we have {[R]} ⊆ S0(R) ⊆
Cl(R) = {[R]}, so S0(R) = {[R]}. This yields the first of our desired conclusions.
The second one follows from Corollary 4.1.11. �

The following example shows the utility of Proposition 4.2.23. It also shows
that the set S0(R) does not have the structure of a subgroup of Cl(R). For details,
see [18].

Example 4.2.25. Fix integers m,n, r such that 0 6 r < m 6 n Let k be a field,
and let X = (Xi,j) be an m× n matrix of variables. Set R = k[X]/Ir+1(X) where
Ir+1(X) is the ideal of k[X] generated by the size r + 1 minors of the matrix X.
Then R is a normal Cohen-Macaulay domain admitting a dualizing module D. It
is Gorenstein if and only if either m = n or r = 0.

Assume that r > 1, and let p ⊂ R be the ideal generated by the size r minors
of the matrix x of residues in R. Then Cl(R) ∼= Z with generator [p]. There is
an isomorphism D ∼= pm−n, and we have S0(R) = {[R], [D]} ⊆ Cl(R) ∼= Z. In
particular, if R is not Gorenstein, then S0(R) is a two element set, so it cannot be
isomorphic to a subgroup of Z.

Fact 4.2.26. Let ϕ : R → S be a ring homomorphism of finite flat dimension
between normal domains. Sather-Wagstaff and Spiroff [19] it is shown that there
is an abelian group homomorphism Cl(ϕ) : Cl(R) → Cl(S) given by the formula
[a] 7→ [HomS(HomS(a⊗R S, S), S)]. Furthermore, there is a commutative diagram

S0(R)� _

��

S0(ϕ) // S0(S)� _

��
Cl(R)

Cl(ϕ) // Cl(S)

complimenting the diagram from Proposition 4.2.17(b).

4.3. More Relations

This section contains some results of Frankild and Sather-Wagstaff [11].

Proposition 4.3.1. Let C and N be finitely generated R-modules such that the
homothety map χRC⊗RC⊗RN : R → HomR(C ⊗R C ⊗R N,C ⊗R C ⊗R N) is an
isomorphism. Then C is a rank 1 projective R-module. If R is local, then C ∼= R.
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Proof. Case 1: (R,m, k) is local. Let θ : C ⊗R C → C ⊗R C be the com-
mutativity isomorphism, given by the formula c ⊗ c′ 7→ c′ ⊗ c. The induced
map θ ⊗R N : C ⊗R C ⊗R N → C ⊗R C ⊗R N is also an isomorphism. Since
the map χRC⊗RC⊗RN is an isomorphism, there is an element r ∈ R such that
θ⊗RN = χRC⊗RC⊗RN (r), that is, such that (θ⊗RN)(η) = rη for all η ∈ C⊗RC⊗RN .
Since C⊗RC⊗RN is finitely generated and θ is an isomorphism, Nakayama’s lemma
implies that r is a unit.

Consider minimal finite free presentations

Rb1
∂−→ Rb0

τ−→ C → 0 and Rc1
d−→ Rc0

π−→ N → 0.

Since HomR(C ⊗R C ⊗R N,C ⊗R C ⊗R N) ∼= R 6= 0, we have C,N 6= 0 and thus
b0, c0 > 1.

The right-exactness of tensor product yields the following exact sequence

Rb1 ⊗R Rb0 ⊗R Rc0
⊕

Rb0 ⊗R Rb1 ⊗R Rc0
⊕

Rb0 ⊗R Rb0 ⊗R Rc1

δ−→ Rb0 ⊗R Rb0 ⊗R Rc0
τ⊗τ⊗π−−−−−→ C ⊗R C ⊗R N → 0

where

δ =
(
∂ ⊗R Rb0 ⊗R Rc0 Rb0 ⊗R ∂ ⊗R Rc0 Rb0 ⊗R Rb0 ⊗R d

)
.

Since Im(∂) ⊆ mRb0 and Im(d) ⊆ mRc0 , we have Im(δ) ⊆ m(Rb0 ⊗R Rb0 ⊗R Rc0).
Let θ′ : Rb0 ⊗R Rb0 → Rb0 ⊗R Rb0 be the commutativity isomorphism given by

e⊗e′ 7→ e′⊗e. The induced map θ′⊗RRc0 : Rb0⊗RRb0⊗RRc0 → Rb0⊗RRb0⊗RRc0
is also an isomorphism. Let µr : Rb0 ⊗RRb0 ⊗RRc0 → Rb0 ⊗RRb0 ⊗RRc0 be given
by multiplication by r. For each ζ ∈ Rb0 ⊗R Rb0 ⊗R Rc0 , the first step in the next
sequence follows from the definitions of θ and θ′:

(τ ⊗ τ ⊗ π)((θ′ ⊗Rc0)(ζ)) = (θ ⊗Rc0)((τ ⊗ τ ⊗ π)(ζ))

= r(τ ⊗ τ ⊗ π)(ζ)

= (τ ⊗ τ ⊗ π)(rζ)

= (τ ⊗ τ ⊗ π)(µr(ζ)).

The other steps are by construction. It follows that

Im((θ′⊗Rc0)−µr) ⊆ Ker(τ ⊗ τ ⊗π) = Im(δ) ⊆ m(Rb0 ⊗RRb0 ⊗RRc0). (4.3.1.1)

We claim that b0 = 1. Suppose that b0 6= 1. Since b0 > 1, we then have b0 > 2.
Consider a basis e1, e2, . . . , eb0 ∈ Rb0 . We know that in (Rb0 ⊗R Rb0) ⊗R k ∼=
kb0 ⊗k kb0 , the vectors e2⊗ e1, e1⊗ e2 are linearly independent. Letting f ∈ Rc0 be
any basis vector, we conclude similarly that the vectors e2 ⊗ e1 ⊗ f, e1 ⊗ e2 ⊗ f ∈
kb0 ⊗k kb0 ⊗k kc0 are linearly independent.

The display (4.3.1.1) implies that in Rb0 ⊗R Rb0 ⊗R Rc0 we have

e2⊗ e1⊗ f − re1⊗ e2⊗ f = ((θ′⊗Rc0)−µr)(e1⊗ e2⊗ f) ∈ m(Rb0 ⊗RRb0 ⊗RRc0).

Reducing modulo m, this implies that

e2 ⊗ e1 ⊗ f − r e1 ⊗ e2 ⊗ f ∈ kb0 ⊗k kb0 ⊗k kc0 .
This implies that the vectors e2⊗ e1⊗ f, e1⊗ e2⊗ f ∈ kb0 ⊗k kb0 ⊗k kc0 are linearly
dependent. This is a contradiction, establishing the claim b0 = 1.
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It follows that C is cyclic, say C ∼= R/I. It follows that I(C ⊗R C ⊗R N) = 0,
and thus

I ⊆ AnnR(C ⊗R C ⊗R N) = Ker(χRC⊗R) = 0.
We conclude that C ∼= R, and this concludes the proof when R is local.

Case 2: the general case. As in the proof of Proposition 2.2.2(b), the fact that
the homothety map χRC⊗RC⊗RN : R → HomR(C ⊗R C ⊗R N,C ⊗R C ⊗R N) is an
isomorphism implies that for each maximal ideal m ⊂ R that the homothety map
χRm

Cm⊗RmCm⊗RmNm
: Rm → HomRm(Cm ⊗Rm Cm ⊗Rm Nm, Cm ⊗Rm Cm ⊗Rm Nm) is

an isomorphism. Thus, Case 1 implies that Cm
∼= Rm for all m, that is, that C is a

projective R-module of rank 1. �

Corollary 4.3.2. Let C be a semidualizing R-module. Then C ∈ AC(R) if and
only if C is projective.

Proof. If C is projective, then Proposition 4.1.4 implies that every R-module
(in particular C) is in AC(R). Conversely, if C ∈ AC(R), then we conclude from
Proposition 4.1.1(a) that C⊗RC is semidualizing, so the desired conclusion follows
from Proposition 4.3.1. �

Corollary 4.3.3. Let 〈B〉, 〈C〉 ∈ S0(R) such that 〈B〉 E 〈C〉.
(a) If 〈C〉 E 〈HomR(C,B)〉, then 〈C〉 = 〈B〉.
(b) If 〈HomR(C,B)〉 E 〈C〉, then 〈C〉 = 〈R〉.
(c) If 〈B〉 6= 〈C〉 6= 〈R〉, then 〈C〉 and 〈HomR(C,B)〉 are not comparable under

the ordering on S0(R).

Proof. Recall that the condition 〈B〉 E 〈C〉means that B ∈ BC(R), so Propo-
sition 4.1.1(b) implies that HomR(C,B) is semidualizing.

(a) Assume that 〈C〉 E 〈HomR(C,B)〉, that is, that C ∈ BHomR(C,B)(R). Two
applications of the defining property for membership in the Bass class imply that

B ∼= C ⊗R HomR(C,B)
∼= [HomR(C,B)⊗R HomR(HomR(C,B), C)]⊗R HomR(C,B)
∼= [HomR(C,B)⊗R HomR(C,B)]⊗R HomR(HomR(C,B), C).

Since B is semidualizing, Proposition 4.3.1 implies that HomR(C,B) is a rank 1
projective R-module. Thus, the first line of the previous sequence implies that
〈B〉 = 〈C〉.

(b) Assume that 〈HomR(C,B)〉 E 〈C〉. As in the proof of part (a), this yields

B ∼= C ⊗R HomR(C,B) ∼= C ⊗R C ⊗R HomR(C,HomR(C,B)).

Since B is semidualizing, Proposition 4.3.1 implies that C is a rank 1 projective
R-module, that is, that 〈C〉 = 〈R〉.

(c) Assume that 〈B〉 6= 〈C〉 6= 〈R〉. If 〈C〉 E 〈HomR(C,B)〉, then part (a)
implies that 〈C〉 = 〈B〉, a contradiction. If 〈HomR(C,B)〉 E 〈C〉, then part (b)
implies that 〈C〉 = 〈R〉, a contradiction. �

Proposition 4.3.4. Assume that R admits a point-wise dualizing module D.
(a) The operation ∆: S0(R) → S0(R) given by [C] 7→ [HomR(C,D)] is an

involution (i.e., ∆2 is the identity map).
(b) The operation ∆: S0(R) → S0(R) given by 〈C〉 7→ 〈HomR(C,D)〉 is an

involution.
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(c) If R is not point-wise Gorenstein, then ∆ has no fixed points.

Proof. Since D is a point-wise dualizing module for R, Corollary 2.2.13 im-
plies that R is Cohen-Macaualy and D is a canonical module for R. Corollary 4.1.3
implies that HomR(C,D) is semidualizing for R. From this, we conclude that ∆ is
well-defined.

To see that ∆ is well defined, assume that 〈B〉 = 〈C〉 in S0(R). Lemma 4.2.8
implies that Bm

∼= Cm for each maximal ideal, so we have

HomR(C,D)m
∼= HomRm(Cm, Dm) ∼= HomRm(Bm, Dm) ∼= HomR(C,D)m

for each m. Another application of Lemma 4.2.8 shows that 〈HomR(C,D)〉 =
〈HomR(B,D)〉, so ∆ is well defined.

Proposition 2.2.3 implies that Cm is a semidualizing Rm-module for each max-
imal ideal m ⊂ R, so Theorem 2.2.6(c) implies that Cm is a maximal Cohen-
Macaulay Rm-module for each m. From [8, (3.3.10)] we conclude that the natural
biduality map δDm

Cm
: Cm → HomRm(HomRm(Cm, Dm), Dm) is an isomorphism for

each m, and we conclude that the biduality map δDC : C → HomR(HomR(C,D), D)
is an isomorphism. This shows that ∆ and ∆ are involutions.

Lastly, assume that R is not point-wise Gorenstein, and suppose that 〈C〉 is
a fixed point for ∆. This means that 〈C〉 = 〈HomR(C,D)〉 in S0(R), that is,
that 〈C〉 E 〈HomR(C,D)〉 E 〈C〉. Recalling that 〈D〉 E 〈C〉, we conclude from
Corollary 4.3.3(a) that 〈C〉 = 〈D〉, Corollary 4.3.3(b) implies that 〈C〉 = 〈R〉. It
follows that 〈D〉 = 〈R〉, that is, that there is a projective R-module such that
D ∼= P ⊗R R ∼= P . Corollary 4.1.10 implies that R is point-wise Gorenstein, a
contradiction. �

Corollary 4.3.5. The following conditions are equivalent:
(i) R is (point-wise) Gorenstein;

(ii) R admits a (point-wise) dualizing module D and a semidualizing module C
such that 〈C〉 = 〈HomR(C,D)〉 in S0(R); and

(iii) R admits a (point-wise) dualizing module D, and S0(R) is finite with odd
cardinality.

Proof. (i) =⇒ (iii) If R is (point-wise) Gorenstein, then R is (point-wise)
dualizing for R, and Property (4.2.3.3) implies that S0(R) = {〈R〉}.

(iii) =⇒ (ii) Assume that R admits a (point-wise) dualizing module D, and
S0(R) is finite with odd cardinality. Suppose that 〈C〉 6= 〈HomR(C,D)〉 for each
〈C〉 ∈ S0(R). Since the map ∆: S0(R) → S0(R) is an involution, this implies
that S0(R) is a disjoint union of sets of cardinality 2, namely the sets of the
form {〈C〉, 〈HomR(C,D)〉}. Since S0(R) is finite, it follows that S0(R) has even
cardinality, a contradiction.

(ii) =⇒ (i) Assume that R admits a point-wise dualizing module D and a semid-
ualizing module C such that 〈C〉 = 〈HomR(C,D)〉 in S0(R). Then the element
〈C〉 is a fixed point of ∆, so Proposition c implies that R is point-wise Gorenstein.

Assume moreover that D is dualizing for R. Since R is point-wise Gorenstein,
Corollary 4.1.10 implies that D is projective. The fact that D is dualizing for R
then implies that R is Gorenstein, again by Corollary 4.1.10. �

The next result is a restatement of the equivalence (i) ⇐⇒ (iii) from Corol-
lary 4.3.5.
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Corollary 4.3.6. Assume that R admits a point-wise dualizing module D. If R is
not point-wise Gorenstein, then S0(R) is either infinite or has even cardinality.

Corollary 4.3.7. The following conditions are equivalent:
(i) there exist elements of S0(R) that are not comparable; and
(ii) S0(R) has cardinality at least 3.

Proof. (i) =⇒ (ii) Assume that 〈C〉, 〈B〉 ∈ S0(R) are incomparable elements.
It follows that 〈C〉 6= 〈B〉. Since 〈C〉 E 〈R〉 and 〈B〉 E 〈R〉 it follows that 〈C〉 6=
〈R〉 6= 〈B〉. Thus, the elements 〈C〉, 〈B〉, 〈R〉 are three distinct elements of S0(R).

(ii) =⇒ (i) Let 〈C〉, 〈B〉, 〈C ′〉 be distinct elements of S0(R). Assume without
loss of generality that 〈C ′〉 = 〈R〉. Suppose that all elements of S0(R) are com-
parable. Thus, we may assume without loss of generality that 〈C〉 E 〈B〉 E 〈C ′〉
and 〈C〉 6= 〈B〉 6= 〈C ′〉. Corollary 4.3.3(c) implies that the elements 〈C〉 and
〈HomR(C,B)〉 are incomparable, a contradition. �





CHAPTER 5

Totally C-reflexive Modules

This chapter is about duality.

5.1. Basic Properties of Totally C-reflexive Modules

The term “totally C-reflexive” is defined in 2.1.3.

Proposition 5.1.1. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules

0→M ′
f−→M

g−→M ′′ → 0

such that M ′′ is totally C-reflexive. Then M ′ is totally C-reflexive if and only if
M is totally C-reflexive.

Proof. Set (−)† = HomR(−, C).
Since M ′′ is totally C-reflexive, we have ExtiR(M ′′, C) = 0 for all i > 1. Using

the long exact sequence in ExtiR(−, C) associated to the given sequence, we conclude
that ExtiR(M ′, C) = 0 for all i > 1 if and only if ExtiR(M,C) = 0 for all i > 1.
Furthermore, the condition Ext1

R(M ′′, C) = 0 yields a second exact sequence

0→ (M ′′)†
g†−→M†

f†−→ (M ′)† → 0. (5.1.1.1)

Since M ′′ is totally C-reflexive, we have ExtiR((M ′′)†, C) = 0 for all i > 1. Us-
ing the long exact sequence in ExtiR(−, C) for the sequence (5.1.1.1), we see that
ExtiR((M ′)†, C) = 0 for all i > 2 if and only if ExtiR(M†, C) = 0 for all i > 2. The
naturality of the biduality maps yields a commutative diagram

0 // M ′
f //

δC
M′

��

M
g //

δCM
��

M ′′ //

δC
M′′

∼=
��

0

0 // (M ′)††
f†† // M††

g†† // (M ′′)†† // Ext1
R((M ′)†, C) // Ext1

R(M†, C) // 0.

The top row is exact by assumption, and the bottom row is the long exact sequence
in ExtR(−, C) associated to (5.1.1.1). Since g and δCM ′′ are surjective, we conclude
that g†† is surjective as well. It follows that Ext1

R((M ′)†, C) ∼= ExtiR(M†, C), so
Ext1

R((M ′)†, C) = 0 for all i > 1 if and only if ExtiR(M†, C) = 0 for all i > 1. The
surjectivity of g†† implies that the bottom row of the next diagram is exact:

0 // M ′
f //

δC
M′

��

M
g //

δCM
��

M ′′ //

δC
M′′

∼=
��

0

0 // (M ′)††
f†† // M††

g†† // (M ′′)†† // 0.

63
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The snake lemma shows that δCM ′ is an isomorphism if and only if δCM is an isomor-
phism. This completes the proof. �

The next example shows that, given an exact sequence 0→M ′ →M →M ′′ →
0, if M ′ and M are totally C-reflexive, then M ′′ need not be totally C-reflexive.
See however Proposition 5.1.3 below.

Example 5.1.2. Let k be a field and R = k[[X]] a formal power series ring in one
variable. Consider the exact sequence

0→ R
X−→ R→ k → 0.

The module R is totally reflexive, but k is not because Ext1
R(k,R) ∼= k 6= 0.

For the next result, argue as in the proof of Proposition 5.1.1.

Proposition 5.1.3. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules

0→M ′
f−→M

g−→M ′′ → 0

such that M ′ and M are totally C-reflexive. Then M ′′ is totally C-reflexive if and
only if Ext1

R(M ′′, C) = 0.

The next result is proved by induction on n. The base case n = 1 is in Propo-
sition 5.1.3.

Proposition 5.1.4. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules

0→ Gn
∂n−→ · · · ∂1−→ G0 →M → 0

such that each module Gi is totally C-reflexive. Then M is totally C-reflexive if
and only if ExtiR(M ′′, C) = 0 for i = 1, . . . , n.

Proposition 5.1.5. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. Then M is totally C-reflexive if and only if HomR(M,C) is
totally C-reflexive and ExtiR(M,C) = 0 for all i > 1.

Proof. For the forward implication, assume that M is totally C-reflexive.
Then ExtiR(M,C) = 0 = ExtiR(HomR(M,C), C) for all i > 1. The biduality map
δCM is an isomorphism, and hence so is HomR(δCM , C). From the readily verified
equality

HomR(δCM , C) ◦ δCHomR(M,C) = idHomR(M,C) (5.1.5.1)

we conclude that δCHomR(M,C) is an isomorphism as well. Furthermore, we have

ExtiR(HomR(HomR(M,C), C), C) ∼= ExtiR(M,C) = 0

for all i > 1, so HomR(M,C) is totally C-reflexive.
For the reverse implication, assume that HomR(M,C) is totally C-reflexive and

ExtiR(M,C) = 0 for all i > 1. Consider an exact sequence

0→M1
ε−→ P →M → 0 (5.1.5.2)

where P is a finitely generated projective R-module. Since ExtiR(M,C) = 0 =
ExtiR(P,C) for all i > 1, the associated long exact sequence in ExtR(−, C) shows
that ExtiR(M1, C) = 0 for all i > 1. Furthermore, this yields an exact sequence

0→ HomR(M,C)→ HomR(P,C)→ HomR(M1, C)→ 0.
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Since HomR(M,C) and HomR(P,C) are totally C-reflexive, Proposition 5.1.3 im-
plies that HomR(M1, C) is totally C-reflexive.

We claim that M1 is totally C-reflexive. (Once this is proved, an application
of Proposition 5.1.3 to the sequence (5.1.5.2) implies that M is totally C-reflexive.
Since HomR(M1, C) is totally C-reflexive, we have ExtiR(HomR(M1, C), C) = 0
for all i > 1. We have already shown that ExtiR(M1, C) = 0 for all i > 1, so it
remains to show that the biduality map δCM1

: M1 → HomR(HomR(M1, C), C) is
an isomorphism. The fact that δCM1

is injective follows from the next commutative
diagram:

M1
� � ε //

δCM1
��

P

δCP
∼=

��
HomR(HomR(M1, C), C)

HomR(HomR(ε,C),C) // HomR(HomR(P,C), C).

To show that δCM1
is surjective, set (−)† = HomR(−, C) and consider the next exact

sequence:

0→M1

δCM1−−→M††1 → Coker(δCM1
)→ 0.

For each i > 1 we have ExtiR(M††1 , C) = 0 since M†1 is totally C-reflexive. Hence,
the long exact sequence in ExtR(−, C) shows that, for i > 2 we have

ExtiR(Coker(δCM1
), C) ∼= Exti−1

R (M1, C) = 0. (5.1.5.3)

The initial piece of this long exact sequence has the form

0→ Coker(δCM1
)† → (M††1 )†

(δCM1
)†

−−−−→∼= M†1 → Ext1
R(Coker(δCM1

, C)→ 0.

The fact that (δCM1
)† is an isomorphism follows from equation (5.1.5.1) since δC

M†1
is

an isomorphism. The exactness of this sequence shows that Ext1
R(Coker(δCM1

, C) =
0 = Coker(δCM1

)†. Coupled with (5.1.5.3) this implies that ExtiR(Coker(δCM1
), C) =

0 for all i > 0. Since C and Coker(δCM1
) are finitely generated and C 6= 0, we con-

clude that Coker(δCM1
) = 0; see, e.g. [16, (16.6)]. Hence, the map δCM1

is surjective,
as desired. �

We next present a result of Holm and Jørgensen [15]. It uses the notion of a
“trivial extension” popularized by Nagata.

Remark 5.1.6. Let C be a semidualizing R-module. The trivial extension of R
by C (also known as the idealization of C) is denoted R n C. As an R-module,
we have R n C = R ⊕ C. And we endow R n C with a ring structure given by
(r, d)(r′d′) = (rr′, rd′ + r′d). This makes R n C into a (commutative noetherian)
ring. Furthermore, there is a commutative diagram of ring homomorphisms

R
fC //

idR ##FFFFFFFFF Rn C
gC

��
R

where f(r) = (r, 0) and g(r, c) = r.
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Proposition 5.1.7. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. Consider M as an R n C-module via the natural surjection
gC : R n C → R. Then M is totally C-reflexive as an R-module if and only if M
is totally reflexive as an Rn C-module.

Proof. We begin with the following isomorphisms of R-modules:

HomR(RnC,C) ∼= HomR(R⊕C,C) ∼= HomR(C,C)⊕HomR(R,C) ∼= R⊕C ∼= RnC.
It is straightforward to show that the R-module isomorphism HomR(R n C,C) ∼=
Rn C is in fact an Rn C-module isomorphism.

Let I be an injective resolution of C as an R-module. Let fC : R → R n C
be the natural inclusion. Since R and C are totally C-reflexive, the same is true
of R ⊕ C ∼= R n C. In particular, we have ExtiR(R n C,C) = 0 for all i > 1,
so the complex HomR(R n C, I) is an injective resolution of the R n C-module
HomR(Rn C,C) ∼= Rn C. This explains the first step in the next sequence:

ExtiRnC(M,Rn C) ∼= H−i(HomRnC(M,HomR(Rn C, I)))
∼= H−i(HomR(Rn C ⊗RnC M, I))
∼= H−i(HomR(M, I))
∼= ExtiR(M,C).

The second step is Hom-tensor adjointness, the third step is tensor cancellation,
and the fourth step is by definition. It follows that ExtiRnC(M,R n C) = 0 for
all i > 1 if and only if ExtiR(M,R) = 0 for all i > 1. Furthermore, it shows that
HomRnC(M,RnC) ∼= HomR(M,C), and hence the first step in the next sequence:

ExtiRnC(HomRnC(M,Rn C), Rn C) ∼= ExtiRnC(HomR(M,C), Rn C)
∼= ExtiR(HomR(M,C), C).

The second step here follows from the previous display, using HomR(M,C) in place
of M . It follows that ExtiRnC(HomRnC(M,RnC), RnC) = 0 for all i > 1 if and
only if ExtiR(HomR(M,R), R) = 0 for all i > 1. Furthermore, it shows that there is
an RnC-module isomorphism M ∼= HomRnC(HomRnC(M,RnC), RnC) if and
only if there is an R-module isomorphism M ∼= HomR(HomR(M,C), C). Using
Proposition 2.2.2(a) this means that the biduality map δRnC

M is an isomorphism if
and only if δRM is an isomorphism. The desired result now follows. �

The next result is proved like Lemma 3.1.13.

Lemma 5.1.8. Let C be a semidualizing R-module. Let M and N be R-modules
such that ExtiR(N,C) = 0 for all i > 1 (e.g., such that N is totally C-reflexive) and
M is totally C-reflexive. Then ExtiR(HomR(M,C),HomR(N,C)) ∼= ExtiR(N,M)
for all i > 0.

5.2. Complete PPC-resolutions

Definition 5.2.1. A complete PPC resolution is an exact sequence

X = · · · → P1 → P0
∂X0−−→ C ⊗R Q0 → C ⊗R Q1 → · · ·

such that each Pi and Qj is a finitely generated projective R-module and such
that HomR(X,C) is exact. Such a sequence is a complete PPC resolution of an
R-module M when M ∼= Im(∂X0 ).
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Remark 5.2.2. Consider a complete PPC resolution

X = · · · → P1 → P0
∂X0−−→ C ⊗R Q0 → C ⊗R Q1 → · · · .

Proposition 2.1.13 implies that each module Pi and C ⊗R Qj is totally C-reflexive.
It follows that the natural biduality map X → HomR(HomR(X,C), C) is an iso-
morphism. In particular, the sequence HomR(HomR(X,C), C) is exact.

Set (−)∗ = HomR(−, R). Note that the modules P ∗i and Q∗j are finitely gen-
erated and projective. (For instance, if Pi is a direct summand of Rn, then P ∗i is
a direct summand of (Rn)∗ ∼= Rn.) Since each module Pi is finitely generated and
projective, it is totally R-reflexive, so we have Pi ∼= P ∗∗i . This explains the first
step in the next sequence:

HomR(Pi, C) ∼= HomR(P ∗∗i , C) ∼= HomR(R,C)⊗R P ∗i ∼= C ⊗R P ∗i (5.2.2.1)

HomR(C ⊗R Qj , C) ∼= HomR(Qj ,HomR(C,C)) ∼= HomR(Qj , R) ∼= Q∗j . (5.2.2.2)

The second step is Hom-evaluation, and the third step is Hom-cancellation. The
fourth step is Hom-tensor adjointness, and the fifth step follows from the fact that
C is semidualizing. It follows that we have

HomR(X,C) ∼= · · · → Q∗1 → Q∗0 → C ⊗R P ∗0 → C ⊗R P ∗1 → · · ·

so HomR(X,C) is a complete PPC resolution.

Here is a result of White [21].

Theorem 5.2.3. For an R-module M , the following conditions are equivalent:

(i) M is totally C-reflexive;
(ii) M has a complete PPC resolution; and
(iii) M has a complete PPC resolution of the form

X = · · · → Rb1 → Rb0 → Ca0 → Ca1 → · · · .

Proof. Set (−)† = HomR(−, C). The implication (iii) =⇒ (ii) is routine.
(i) =⇒ (iii) Assume that M is totally C-reflexive, and consider free resolutions

P+ = · · · → Rb1 → Rb0 →M → 0

Q+ = · · · → Ra1 → Ra0 →M† → 0.

Since M is totally C-reflexive, we have ExtiR(M†, C) = 0 for all i > 1, so the
following sequence is exact:

(Q+)† ∼= 0→M†† → Ca0 → Ca1 → · · · .

Splicing P+ and (Q+)† along the isomorphism δCM : M
∼=−→ M†† yields the next

commutative diagram with exact row

X = · · · // Rb1 // Rb0
∂ //

!! !!CC
CC

CC
CC

Ca0 // Ca1 // · · ·

M
. �

=={{{{{{{{

such that M ∼= Im(∂).
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We need to show that the complex X† in the row of the next commutative
diagram is exact:

X† = · · · // Ra1 // Ra0
∂† //

"" ""EEEEEEEE Cb0 // Cb1 // · · ·

M†.
- 


<<yyyyyyyy

It is straightforward to show that this diagram is isomorphic to the one obtained
by splicing Q+ and (P+)† along the identity M† =−→M†. The sequence Q+ is exact
by assumption, and the sequence (P+)† is exact because ExtiR(M,C) = 0 for all
i > 1. It follows that X† is exact as desired.

(ii) =⇒ (i) Assume that M has a complete PPC resolution

X = · · · // P1
// P0

∂ //

�� ��>
>>

>>
>>

C ⊗R Q0
// C ⊗R Q1

// · · ·

M
- 


;;wwwwwwwww

Since X is exact, it follows that the complex

P+ = · · · → Rb1 → Rb0 →M → 0

is exact, that is, that P+ is an augmented projective resolution of M . Since X† is
exact, it follows that (P+)† is exact, so we have ExtiR(M,C) = 0 for all i > 1.

As in Remark 5.2.2, the sequence X† has the following form

X† = · · · // Q∗1 // Q∗0
∂† //

�� ��@
@@

@@
@@

C ⊗R P ∗0 // C ⊗R P ∗1 // · · ·

M†
- 


;;wwwwwwwww

where (−)∗ = HomR(−, R). Furthermore, we have X ∼= X††. Since X† is exact, we
conclude that the next sequence

Q̃+ = · · · → Q∗1 → Q∗0 →M† → 0

is an augmented projective resolution of M†. Since X†† ∼= X is exact, it follows
that ExtiR(M†, C) = 0 for all i > 1.

Finally, there is a commutative diagram with exact rows:

Q+ = 0 // M //

δCM

��

C ⊗R Q0
//

δCC⊗RQ0
∼=

��

C ⊗R Q1
//

δCC⊗RQ1
∼=

��

· · ·

(Q̃+)† 0 // M†† // (C ⊗R Q0)†† // (C ⊗R Q1)†† // · · · .

Since the maps δCC⊗RQi are isomorphisms, so is δCM , so M is totally C-reflexive. �

Proposition 5.2.4. Let C be a semidualizing R-module, and let P be a finitely gen-
erated projective R-module. Let G be a totally C-reflexive R-module with complete
PPC resolution

X = · · · → P1 → P0
∂X0−−→ C ⊗R Q0 → C ⊗R Q1 → · · · .
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(a) The R-module HomR(P,G) is totally C-reflexive with complete PPC resolu-
tion HomR(P,X).

(b) The R-module P ⊗R G is totally C-reflexive with complete PPC resolution
P ⊗R X.

(c) The R-module HomR(G,C ⊗R P ) is totally C-reflexive with complete PPC
resolution HomR(X,C ⊗R P ). In particular, the module HomR(G,C) is to-
tally C-reflexive with complete PPC resolution HomR(X,C).

Proof. (a) Since P is a finitely generated projective, the modules HomR(P, Pi)
and HomR(P,Qj) are projective. Hence, the sequence

HomR(P,X) ∼= · · · → HomR(P, P0)
HomR(P,∂X0 )−−−−−−−−→ C ⊗R (HomR(P,Q0))→ · · ·

has the form of a complete PPC resolution. (The isomorphisms HomR(P,C ⊗R
Qj) ∼= C ⊗R HomR(P,Qj) are by tensor evaluation.) This sequence is exact and
has HomR(P,G) ∼= Im(HomR(P, ∂X0 )) because the functor HomR(P,−) is exact.
Hom evaluation explains the next isomorphism

HomR(HomR(P,X), C) ∼= P ⊗R HomR(X,C)

so this sequence is exact because the sequence HomR(X,C) and the functor P⊗R−
are exact. This concludes the proof of part (a).

Parts (b) and (c) are proved similarly. �

Proposition 5.2.5. Let C be a semidualizing R-module, and let G be a totally
C-reflexive R-module with complete PPC resolution

X = · · · ∂
X
2−−→ P1

∂X1−−→ P0
∂X0−−→ C ⊗R Q0

∂X−1−−→ C ⊗R Q1

∂X−2−−→ · · · .

Then for each i ∈ Z, the module Im(∂Xi ) is totally C-reflexive.

Proof. When i = 0, this is by assumption since G ∼= Im(∂X0 ); see Theo-
rem 5.2.3. For i > 1, this follows from an induction argument using Proposi-
tion 5.1.1 with the fact that each Pj is totally C-reflexive; see Proposition 2.1.13.

Assume that i 6 0. We claim that ExtjR(Im(∂Xi ), C) = 0 for all j > 1. For
i = 0, this is by assumption. For i < 0, this follows by induction on i using the
long exact sequence in ExtR(−, C) associated to the sequence

0→ Im(∂Xi+1)→ C ⊗R Qi → Im(∂Xi )→ 0

since ExtjR(C ⊗R Qi, C) = 0 for all j > 1 by Proposition 2.1.13.
Now the desired conclusion follows from Proposition 5.1.4 applied to the exact

sequence 0→ G→ C ⊗R Q0 → · · · → C ⊗R Qi → Im(∂Xi+1)→ 0. �

5.3. Base Change for Totally C-reflexive Modules

This section is similar to section 3.4

Proposition 5.3.1. Let C be a semidualizing R-module, let ϕ : R → S be a flat
ring homomorphism, and Let M be a finitely generated R-module. If M is totally
C-reflexive, then the S-module S ⊗R M is totally S ⊗R C-reflexive; the converse
holds when ϕ is faithfully flat.
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Proof. Because ϕ is flat, Corollary 3.4.2 implies that S⊗RC is a semidualizing
S-module. Since M is finitely generated and ϕ is flat, we have isomorphisms

ExtiS(S ⊗RM,S ⊗R C) ∼= S ⊗R ExtiR(M,C)

ExtiS(HomS(S ⊗RM,S ⊗R C), S ⊗R C) ∼= S ⊗R ExtiR(HomR(M,C), C).

Hence, if ExtiR(M,C) = 0 = ExtiR(HomR(M,C), C) for all i > 1, then we conclude
that ExtiS(S ⊗RM,S ⊗R C) = 0 = ExtiS(HomS(S ⊗RM,S ⊗R C), S ⊗R C) for all
i > 1; and the converse holds when ϕ is faithfully flat. We also have a commutative
diagram

S ⊗RM
δ
S⊗RC
S⊗RM //

S⊗RδCM
��

HomS(HomS(S ⊗RM,S ⊗R C), S ⊗R C)

∼=
��

S ⊗R HomR(HomR(M,C), C)
∼= // HomS(S ⊗R HomS(M,C), S ⊗R C)

where the unspecified isomorphisms are the natural ones. Hence, if the biduality
map δCM is an isomorphism, then so is δS⊗RCS⊗RM ; and the converse holds when ϕ is
faithfully flat. �

Proposition 5.3.2. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. Let x = x1, . . . , xd ∈ R be a sequence that is R-regular and
such that xM 6= M , and set R = R/(x)R. If M is is totally C-reflexive, then x
is M -regular and the R-module R⊗RM is totally R⊗R C-reflexive. The converse
holds when x is in the Jacobson radical J(R).

Proof. We argue by induction on d. We prove the base case d = 1 and leave
the inductive step as a routine exercise.

For notational simplicity, set x = x1 and (−) = R ⊗R −. Recall that if N is a
finitely generated R-module such that x is N -regular, then we have

ExtiR(N,C) ∼= Exti
R

(N,C) (5.3.2.1)

for all i > 1; see, e.g. [16, p. 140, Lemma 2]. Also, there is an exact sequence

0→ C
x−→ C → C → 0. (5.3.2.2)

since x is C-regular.

Step 1: We show that if M is totally C-reflexive, then x is M -regular. For this,
we use the following sequence:

AssR(M) = AssR(HomR(HomR(M,C), C))

= SuppR(HomR(M,C)) ∩AssR(C)

⊆ AssR(C)

= Ass(R).

The first step is by assumption, and the second step is a result of Bourbaki. The
third step is routine, and the fourth step is from Proposition 2.1.16(a). Since x is
R-regular, it is not in any associated prime ideal of R. Thus, the previous sequence
shows that x is not in any associated prime ideal of M , so x is M -regular. This
completes Step 1.
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Because of Step 1, we may assume without loss of generality for the rest of the
proof that x is M -regular.

Step 2: We show that (a) if ExtiR(M,C) = 0 for all i > 1, then Exti
R

(M,C) = 0
for all i > 1, and (b) the converse holds when x ∈ J(R).

(a) If ExtiR(M,C) = 0 for all i > 1, then the long exact sequence in ExtiR(M,−)
associated to the sequence (5.3.2.2) shows that 0 = ExtiR(M,C) ∼= Exti

R
(M,C) for

all i > 1; the isomorphism is from (5.3.2.1).
(b) Conversely, assume that Exti

R
(M,C) = 0 for all i > 1 and that x ∈ J(R).

From (5.3.2.1) we conclude that ExtiR(M,C) = 0 for all i > 1. Hence, part of the
the long exact sequence in ExtiR(M,−) associated to (5.3.2.2) has the form

ExtiR(M,C) x−→ ExtiR(M,C)→ 0

for all i > 1. This implies that ExtiR(M,C) = xExtiR(M,C), so Nakayama’s
Lemma implies that ExtiR(M,C) = 0. This completes Step 2.

Because of Step 2, we may assume without loss of generality for the rest of the
proof that ExtiR(M,C) = 0 for all i > 1.

Step 3: We show that HomR(M,C) ∼= HomR(M,C) and that x is HomR(M,C)-
regular.

Because we have ExtiR(M,C) = 0, the long exact sequence in ExtiR(M,−)
associated to (5.3.2.2) begins as

0→ HomR(M,C) x−→ HomR(M,C)→ HomR(M,C)→ 0.

This shows that x is a non-zero-divisor on HomR(M,C). It also explains the first
isomorphism in the next display

HomR(M,C) ∼= HomR(M,C) ∼= HomR(M,C)

while the second isomorphism is from (5.3.2.1).
Thus, to complete Step 3, it remains to show that HomR(M,C) 6= 0, that is,

that HomR(M,C) 6= 0. Suppose by way of contradiction that HomR(M,C) = 0.
Since C is a semidualizing R-module, we have SuppR(C) = Spec(R) by Proposi-
tion 2.1.16(a). Step 2 shows that Exti

R
(M,C) = 0 for all i > 0. We conclude that

M = 0, contradicting the assumption that x is M -regular. This completes Step 3.

Step 4: We show that (a) if ExtiR(HomR(M,C), C) = 0 for all i > 1, then
Exti

R
(HomR(M,C), C) = 0 for all i > 1, (b) the converse holds when x ∈ J(R).

From Step 3, we know that x is HomR(M,C)-regular, and that HomR(M,C) ∼=
HomR(M,C). Thus, Step 2 shows that (a) if ExtiR(HomR(M,C), C) = 0 for all
i > 1, then 0 = Exti

R
(HomR(M,C), C) ∼= Exti

R
(HomR(M,C), C) = 0 for all i > 1,

and (b) the converse holds when x ∈ J(R). This concludes Step 4.

Because of Step 4, we may assume that ExtiR(HomR(M,C), C) = 0 for i > 1.

Step 5: We show that HomR(HomR(M,C), C) ∼= HomR(HomR(M,C), C) and
that x is HomR(HomR(M,C), C)-regular. As in Step 4, this follows from an appli-
cation of Step 3 to the module HomR(M,C).
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Step 6: We show that (a) if the biduality map δCM is an isomorphism, then the
biduality map δC

M
is an isomorphism, and (b) the converse holds when x ∈ J(R).

For this, consider the following commutative diagram:

M
δC
M //

δMC
��

HomR(HomR(M,C), C)

∼=
��

HomR(HomR(M,C), C)
∼= // HomR(HomR(M,C), C).

The unspecified isomorphisms are from Steps 3 and 5.
(a) If δCM is an isomorphism, then so is δCM , and the diagram shows that δC

M
is

an isomorphism.
(b) Assume that δC

M
is an isomorphism and x ∈ J(R). The diagram above

shows that δCM is an isomorphism. Consider the exact sequence

M
δCM−−→ HomR(HomR(M,C), C)→ Coker(δCM )→ 0

and apply the right-exact functor (−) to obtain the exact sequence

M
δCM−−→∼= HomR(HomR(M,C), C)→ Coker(δCM )→ 0.

Since δCM is an isomorphism, it follows that Coker(δCM ) = 0. Nakayama’s Lemma
implies that Coker(δCM ) = 0, that is, that δCM is surjective.

Now, consider the exact sequence

0→ Ker(δCM )→M
δCM−−→ HomR(HomR(M,C), C)→ 0.

Since x is HomR(HomR(M,C), C)-regular, we have

TorR1 (R,HomR(HomR(M,C), C)) = 0

so the following sequence is exact:

0→ Ker(δCM )→M
δCM−−→∼= HomR(HomR(M,C), C)→ 0.

Since δCM is an isomorphism, it follows that Ker(δCM ) = 0. Nakayama’s Lemma
implies that Ker(δCM ) = 0, that is, that δCM is injective. This completes Step 6 and
the proof of the result. �

The next result is proved like Proposition 3.4.9.

Proposition 5.3.3. Let k be a field, and let R and S be k-algebras. Let B and
M be R-modules such that B is semidualizing, and let C and N be S-modules such
that C is semidualizing. If M is totally B-reflexive and N is totally C-reflexive,
then M ⊗k N is totally B ⊗k C-reflexive.
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5.4. Local-Global Principle for Totally C-reflexive Modules

The next result is from unpublished notes by Foxby. See also Avramov, Iyengar,
and Lipman [7].

Proposition 5.4.1. Let C and M be R-modules such that M is finitely generated.

(a) If there is an R-module isomorphism α : M
∼=−→ HomR(HomR(M,C), C), then

the natural biduality map δCM : M → HomR(HomR(M,C), C) is an isomor-
phism.

(b) Assume that C is finitely generated. If for every maximal ideal m ⊂ R there
is an Rm-module isomorphism Mm

∼= HomR(HomR(M,C), C)m, then the
natural biduality map δCM : M → HomR(HomR(M,C), C) is an isomorphism.

Proof. (a) It is straightforward to show that the following diagram commutes

HomR(HomR(M,C), C) δ′ //

idHomR(HomR(M,C),C) ,,XXXXXXXXXXXXXXXXXXXXXXX
HomR(HomR(HomR(HomR(M,C), C), C), C)

HomR(δCHomR(M,C),C)

��
HomR(HomR(M,C), C)

where δ′ = δCHomR(HomR(M,C),C). In particular, the map δ′ is a split monomorphism.
With X = Coker(δ′), this explains the second isomorphism in the next sequence:

M ⊕X ∼= HomR(HomR(M,C), C)⊕X
∼= HomR(HomR(HomR(HomR(M,C), C), C), C)
∼= M.

The other isomorphism are induced by α. Since M is finitely generated, this implies
that X = 0, that is, that δ′ is surjective. Since it is also injective, we have the right-
hand vertical isomorphism in the next diagram:

M
α
∼=

//

δCM
��

HomR(HomR(M,C), C)

δ′∼=
��

HomR(HomR(M,C), C) α′

∼=
// HomR(HomR(HomR(HomR(M,C), C), C), C).

Here α′ = HomR(HomR(α,C), C), and it follows that δCM is an isomorphism.
(b) This follows from part (a) as in the proof of Proposition 2.2.2. �

Here is a local global principal for totally reflexive modules. Its proof is similar
to that of Proposition 3.5.3.

Proposition 5.4.2. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. The following conditions are equivalent:

(i) M is a totally C-reflexive R-module;
(ii) U−1M is a totally U−1C-reflexive U−1R-module for each multiplicatively

closed subset U ⊂ R;
(iii) Mp is a totally Cp-reflexive Rp-module for each prime ideal p ⊂ R; and
(iv) Mm is a totally Cm-reflexive Rm-module for each maximal ideal m ⊂ R.

If X is a complete PPC resolution of M over R, then U−1X is a complete PPU−1C

resolution of U−1M over U−1R for each multiplicatively closed subset U ⊂ R.
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The next result contains partial converses of Proposition 5.2.4(a)–(b).

Proposition 5.4.3. Let C be a semidualizing R-module, let P be a finitely gener-
ated faithfully projective R-module, and let M be a finitely generated R-module. If
M ⊗R P or HomR(P,M) is totally C-reflexive, then M is is totally C-reflexive.

Proof. The assumption that P is a finitely generated faithfully projective R-
module implies that, for each maximal ideal m ⊂ R, there is an integer em > 1 such
that Pm

∼= Rem
m . If M ⊗R P is totally C-reflexive, then Proposition 5.4.2 implies

that the Rm-module

(M ⊗R P )m
∼= Mm ⊗Rm Pm

∼= Mm ⊗Rm Rem
m
∼= Mem

m

is totally Cm-reflexive for each m. Since em > 1, Proposition 2.1.4 implies that Mm

is totally Cm-reflexive for each m, so we conclude from Proposition 5.4.2 that M is
is totally C-reflexive.

The proof is similar when HomR(P,M) is assume to be totally C-reflexive. �

The next result is proved like Proposition 2.3.4, using Proposition 5.4.2.

Corollary 5.4.4. Let R1, . . . , Rn be noetherian rings, and consider the product
R = R1 × · · · × Rn. For i = 1, . . . , n let Ci be a semidualizing Ri-module, and set
C = C1× · · · ×Cn. There is a bijection GC(R1)× · · · × GC(Rn) ∼−→ GC(R) given by
(M1, . . . ,Mn) 7→M1 × · · · ×Mn.

The following example shows why we need P to be faithfully projective in
Proposition 5.4.3.

Example 5.4.5. Let (R1,m1, k1) be an artinian local ring that has a semidualizing
module C1 that is not dualizing; see Example 2.3.1. Let R2 be a field and set
R = R1 × R2. The module C = C1 × R2 is semidualizing for R. Set P = 0 ×
R2 and M = k × 0. It follows that P ⊗R M = 0 = HomR(P,M), and thus
P ⊗RM and HomR(P,M) are totally C-reflexive. However, the module M is not
totally C-reflexive. Indeed, we have ExtiR1

(k1, C1) 6= 0 for all i > 0 since R1 is
artinian and idR1(C1) =∞. Thus, the R1-module k1 is not totally C1-reflexive, so
Corollary 5.4.4 implies that M is not totally C-reflexive.

The next result is like [8] and has a similar proof. See also Proposition 2.2.10.

Proposition 5.4.6. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. Then M is totally C-reflexive if and only if the following
conditions are satisfied:

(1) For each p ∈ Spec(R) such that depth(Rp) > 2, one has depthRp
(Mp) > 2;

(2) For each p ∈ Spec(R) such that depth(Rp) 6 1, there is an Rp-module
isomorphism Mp

∼= HomRp(HomRp(Mp, Cp), Cp); and
(3) One has ExtiR(M,C) = 0 = Exti(R(HomR(M,C), C) for all i > 1.

Corollary 5.4.7. Assume that R is a normal domain. Let C be a semidualizing
R-module, and let M be a finitely generated R-module. Then the biduality map
δCM : M → HomR(HomR(M,C), C) is an isomorphism if and only if the biduality
map δRM : M → HomR(HomR(M,R), R) is an isomorphism, that is, if and only if
M is reflexive.
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Proof. The fact that R is a normal domain implies that R satisfies Serre’s
conditions (R1) and (S2). Thus, for each p ∈ Spec(R) with depth(Rp) 6 1, the ring
Rp is regular. In particular, for these primes we have Cp

∼= Rp by Corollary 4.1.9.
The proof of Proposition 5.4.6 shows that the biduality map δCM is an isomor-

phism if and only if the following conditions are satisfied:

(C1) For each p ∈ Spec(R) with depth(Rp) > 2, one has depthRp
(Mp) > 2; and

(C2) For each p ∈ Spec(R) with depth(Rp) 6 1, there is an Rp-module isomor-
phism Mp

∼= HomRp(HomRp(Mp, Cp), Cp).

Similarly, (or using [8]) the biduality map δRM is an isomorphism if and only if the
following conditions are satisfied:

(R1) For each p ∈ Spec(R) with depth(Rp) > 2, one has depthRp
(Mp) > 2; and

(R2) For each p ∈ Spec(R) with depth(Rp) 6 1, there is an Rp-module isomor-
phism Mp

∼= HomRp(HomRp(Mp, Rp), Rp).

It is clear that (C1)=(R1). From the first paragraph of this proof, we have (C2)⇐⇒
(R2), hence the desired equivalence. �

Proposition 5.4.8. Let C be a semidualizing R-module, and let G be a totally
C-reflexive R-module. If N is an R-module locally of finite flat dimension, then

TorRi (G,N) = 0 = ExtiR(G,C ⊗R N)

for all i > 1.

Proof. Case 1: assume that R is local. Since N is locally of finite flat dimen-
sion, this implies that f = fdR(N) <∞. Fix a complete PPC resolution of G:

X = · · · ∂
X
2−−→ P1

∂X1−−→ P0
∂X0−−→ C ⊗R Q0

∂X−1−−→ C ⊗R Q1

∂X−2−−→ · · · .

Since Qi is projective, we have TorRi (C ⊗R Qi, N) ∼= TorRi (C,N) ⊗R Qi. As
N ∈ AC(R) by Corollary 3.5.6, we have TorRi (C,N) = 0 for all i > 1, and thus
TorRi (C ⊗R Qi, N) = 0 for all i > 1.

For each i > 0 set Gi = Im(∂X−i). Then we have G ∼= G0, and there are exact
sequences

0→ Gi → C ⊗R Qi → Gi+1 → 0

for each i > 0. Using the vanishing from the previous paragraph, a dimension-
shifting argument yields the isomorphism TorRi (G,N) ∼= TorRi+f (Gf , N) = 0 for
i > 1, while the vanishing is from the condition i+ f > f = fdR(N). This justifies
the first of our desired vanishing conclusions.

For the second desired vanishing conclusion, we argue by induction on f .
Base case: f = 0. In this case the R-module N is flat. Hence, using tensor

evaluation, we have the isomorphism in the next sequence

ExtiR(G,C ⊗R N) ∼= ExtiR(G,C)⊗R N = 0

for all i > 1; the vanishing follows because G is totally C-reflexive.
Induction step: Assume that f > 1 and that the result holds for modules of

flat dimension f − 1. Consider an exact sequence

0→ N ′ → F → N → 0
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wherein F is flat and fdR(N ′) = f − 1. The condition N ∈ AC(R) implies that
TorR1 (C,N) = 0, so the induced sequence

0→ C ⊗R N ′ → C ⊗R F → C ⊗R N → 0

is exact. The base case implies that ExtiR(G,C ⊗R F ) = 0 for all i > 1, so a
dimension-shifting argument implies that

ExtiR(G,C ⊗R N) ∼= Exti+1
R (G,C ⊗R N ′) = 0

for all i > 1; the vanishing is from our induction hypothesis.
Case 2: the general case. For each maximal ideal m ⊂ R, the Rm-module Gm

is totally Cm-reflexive, and we have fdRm(Nm) < ∞. This explains the vanishing
in the next sequence for i > 1:

TorRi (G,N)m
∼= TorRm

i (Gm, Nm) = 0

ExtiR(G,C ⊗R N)m
∼= ExtiRm

(Gm, Cm ⊗Rm Nm) = 0.

Since we have TorRi (G,N)m = 0 = ExtiR(G,C ⊗R N)m for each m, the desired
conclusion TorRi (G,N) = 0 = ExtiR(G,C ⊗R N) follows. �

The next result is proved like the previous one.

Proposition 5.4.9. Let C be a semidualizing R-module, and let G be a totally
C-reflexive R-module. If N is an R-module locally of finite injective dimension,
then

ExtiR(G,N) = 0 = TorRi (G,HomR(C,N))
for all i > 1.

Here is where we put the “dual” in a dualizing module.

Proposition 5.4.10. Let D be a point-wise dualizing R-module, and let M be a
finitely generated R-module.

(a) If for each maximal ideal m ⊂ R the Rm-module Mm is either 0 or maximal
Cohen-Macaulay, then M is totally D-reflexive.

(b) For each resolution P of M by finitely generated projective R-modules, the
ith syzygy Coker(∂Pi+1) is totally D-reflexive for each i > dim(R) + 1.

Proof. (a) Corollary 2.2.13 says that R is Cohen-Macaulay and D is a canon-
ical module for R, that is, that Rm is Cohen-Macaulay and Dm is a canonical
Rm-module for each maximal ideal m ⊂ R. Since Mm is either 0 or a maximal
Cohen-Macaulay Rm-module, we conclude from [8, (3.3.10)] that Mm is totally
Dm-reflexive. As this is so for each maximal ideal m, Proposition 5.4.2 implies that
M is totally D-reflexive.

(b) Assume without loss of generality that d = dim(R) < ∞. For each m, the
complex Pm is a resolution of Mm by finitely generated free Rm-modules. Hence, for
each i > dim(R) + 1 > dim(Rm) + 1, the Rm-module Coker(∂Pm

i+1) ∼= Coker(∂Pi+1)m

is either 0 or maximal Cohen-Macaulay; see, e.g., [4, (1.2.8)]. Part (a) implies that
Coker(∂Pi+1) is totally D-reflexive. �

Corollary 5.4.11. Assume that R is point-wise Gorenstein, and let M be a finitely
generated R-module.

(a) If for each maximal ideal m ⊂ R the Rm-module Mm is either 0 or maximal
Cohen-Macaulay, then M is totally reflexive.
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(b) For each resolution F of M by finitely generated free R-modules, the ith
syzygy Coker(∂Fi+1) is totally reflexive for each i > dim(R) + 1.

Proof. This is the case D = R of Proposition 5.4.10. �

Corollary 5.4.12. Let D be a point-wise dualizing R-module. If C is a semidual-
izing R-module, then C is totally D-reflexive and C ∈ AHomR(C,D)(R).

Proof. The ring Rm is Cohen-Macaulay for each maximal ideal m ⊂ R by
Corollary 2.2.13. Hence, we conclude that Cm is a maximal Cohen-Macaulay Rm-
module for each m; see Propositions 2.2.3 and 2.1.16(b) and Theorem 2.2.6(c). The
fact that C is totally D-reflexive now follows from Proposition 5.4.10(a).

Set C† = HomR(C,D), which is semidualizing by Corollary 4.1.3. Corol-
lary 3.5.6 implies that D ∈ BC†(R), so we have HomR(C†, D) ∈ AC†(R) by
Proposition 4.1.1(b). Since C is totally D-reflexive, we have C ∼= HomR(C†, D) ∈
AC†(R). �

The next result augments Propositions 5.3.1 and 5.3.2.

Theorem 5.4.13. Let ϕ : R→ S be a ring homomorphism of finite flat dimension.
Let C be a semidualizing R-module, and let G be a totally C-reflexive R-module with
complete PPC resolution

X = · · · → P1 → P0
∂X0−−→ C ⊗R Q0 → C ⊗R Q1 → · · · .

Then the S-module S ⊗R G is totally S ⊗R C-reflexive with complete PPS⊗RC-
resolution S ⊗R X, and TorRi (S,G) = 0 for all i > 1.

Proof. Write

X = · · ·
∂Xi+1−−−→ Xi

∂Xi−−→ Xi−1

∂Xi−1−−−→ · · · .

For each integer j, set Gj = Im(∂Xj ). In particular, each Gj is totally C-reflexive,
and we have G0

∼= G. Proposition 5.4.8 implies that TorRi (S,Gj) = 0 for each j ∈ Z
and all i > 1. Hence, we have TorRi (S,G) = 0 for all i > 1.

Because of the exact sequence

0→ Gj+1 → Xj → Gj → 0

the Tor-vanishing TorRi (S,Gj) = 0 implies that the induced sequence

0→ S ⊗R Gj+1 → S ⊗R Xj → S ⊗R Gj → 0

is exact for each j, and it follows from a standard argument that S ⊗R X is exact.
Proposition 5.2.4 shows that the complex HomR(X,C) is a complete PPC reso-

lution of HomR(G,C) over R, so it also follows that the complex S⊗RHomR(X,C)
is exact.

Since each Pi and Qj is a finitely generated projective R-module, each S⊗R Pi
and S ⊗R Qj is a finitely generated projective R-module. Thus, the sequence

S ⊗R X = · · · → S ⊗R P0
S⊗R∂X0−−−−−→ (S ⊗R C)⊗S (S ⊗R Q0)→ · · ·
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has the form of a complete PPS⊗RC-resolution S ⊗R G. To complete the proof, it
remains to observe that the following complex is exact:

HomS(S ⊗R X,S ⊗R C) ∼= HomR(X,HomS(S, S ⊗R C))
∼= HomR(X,S ⊗R C)
∼= S ⊗R HomR(X,C).

The first isomorphism is Hom tensor adjointness, and the second isomorphism is
induced by Hom cancellation. The third isomorphism is tensor evaluation, using
the finiteness of fdR(S), and the exactness is from the previous paragraph. �

The next example shows that, in Theorem 5.4.13 one cannot replace the finite
flat dimension hypothesis with the assumption S ∈ AC(R).

Example 5.4.14. Let k be a field, and set R = k[[X,Y ]]/(XY ). We work with
the semidualizing R-module R. It is straightforward to show that the R-module
M = R/XR with complete PPR-resolutions

Z = · · · X−→ R
Y−→ R

X−→ R
Y−→ · · · .

Consider the natural surjection ϕ : R → S = R/Y R ∼= k[[X]]. Then we have
S ∈ AR(R) by Example 3.1.5, and we have

S ⊗RM ∼= R/Y R⊗R R/XR ∼= R/(X,Y ) ∼= k.

This module is not totally reflexive as an S-module (using the semidualizing S-
module S ∼= S⊗RS) because Ext1

S(k, S) ∼= Ext1
k[[X]](k, k[[X]]) ∼= k 6= 0. Furthermore,

the complex

S ⊗R Z = · · · X−→ S
0−→ S

X−→ S
0−→ · · ·

is not a complete resolution since it is not exact. (Every other homology module
is non-zero.) Since the left-most half of Z is a free resolution of M , this also shows
that TorRi (S,M) 6= 0 for infinitely many values of i > 1.

5.5. Co-base Change

The next result augments Proposition 2.2.14.

Proposition 5.5.1. Let ϕ : R→ S be a ring homomorphism such that S is finitely
generated as an R-module, and let C be a semidualizing R-module. Then S is
totally C-reflexive as an R-module if and only if HomR(S,C) is a semidualizing
S-module and ExtiR(S,C) = 0 for all i > 1.

Proof. Since one of the defining conditions for S to be totally C-reflexive is
ExtiR(S,C) = 0 for all i > 1, we assume this condition for the rest of the proof. Also,
because C is finitely generated, the module HomR(S,C) is finitely generated over
R. As the S-module structure on HomR(S,C) is compatible with the R-module
structure via ϕ, it follows that HomR(S,C) is finitely generated over S.

Let I be an injective resolution of C over R. It is straightforward to show that
HomR(S, Ij) is an injective S-module for each j. Since ExtiR(S,C) = 0 for all i > 1,
the complex HomR(S, I) is an injective resolution of HomR(S,C) as an S-module.
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This yields the first isomorphism in the next sequence:

ExtiS(HomR(S,C),HomR(S,C)) ∼= H−i(HomS(HomR(S,C),HomR(S, I))
∼= H−i(HomR(S ⊗S HomR(S,C), I)
∼= H−i(HomR(HomR(S,C), I)
∼= ExtiR(HomR(S,C), C).

The second isomorphism is induced by Hom-tensor adjointness. The third isomor-
phism is induced by tensor-cancellation. The fourth isomorphism is by definition.
We conclude that ExtiS(HomR(S,C),HomR(S,C)) = 0 for all i > 1 if and only if
ExtiR(HomR(S,C), C) = 0 for all i > 1.

In the next commutative diagram, the unspecified isomorphisms are by tensor-
cancellation and Hom-tensor adjointness:

S
δCS //

χSHomR(S,C)

��

HomR(HomR(S,C), C)

∼=
��

HomR(S ⊗S HomR(S,C), C)
∼= // HomS(HomR(S,C),HomR(S,C)).

It is straightforward to show that these maps are S-linear. In particular, the map
δCS is an isomorphism if and only if χSHomR(S,C) is an isomorphism. �

Proposition 5.5.2. Let ϕ : R → S be a ring homomorphism, and let C be a
semidualizing R-module. Assume that S is totally C-reflexive as an R-module, and
let M be a finitely generated S-module. Then M is totally HomR(S,C)-reflexive
over S if and only if it is totally C-reflexive over R.

Proof. Let I be an R-injective resolution of C. As in the proof of Proposi-
tion 5.5.1, the assumption ExtiR(S,C) = 0 for all i > 1 implies that HomR(S, I) is
an S-injective resolution of the semidualizing S-module HomR(S,C). This explains
the first isomorphism in the next sequence:

ExtiS(M,HomR(S,C)) ∼= H−i(HomS(M,HomR(S, I)))
∼= H−i(HomR(S ⊗S M, I))
∼= H−i(HomR(M, I))
∼= ExtiR(M,C).

The other isomorphism are by Hom-tensor adjointness, tensor cancellation, and
definition. It follows that ExtiS(M,HomR(S,C)) = 0 for all i > 1 if and only if
ExtiR(M,C) = 0 for all i > 1. Furthermore, the case i = 0 explains the second step
in the next sequence

ExtiS(HomS(M,HomR(S,C)),HomR(S,C)) ∼= ExtiR(HomS(M,HomR(S,C)), C)
∼= ExtiR(HomR(M,C), C).

The first step follows from an application of the previous sequence to the S-module
HomS(M,HomR(S,C)). Thus ExtiS(HomS(M,HomR(S,C)),HomR(S,C)) = 0 for
all i > 1 if and only if ExtiR(HomR(M,C), C) = 0 for all i > 1.
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Finally, there is a commutative diagram

M
δ
HomR(S,C)
M //

δCM
��

HomS(HomS(M,HomR(S,C)),HomR(S,C))

∼=
��

HomR(HomR(M,C), C)
∼= // HomR(HomS(M,HomR(S,C)), C)

where the unspecified isomorphisms are combinations of Hom tensor adjointness
and tensor cancellation. It follows that δHomR(S,C)

M is an isomorphism if and only if
δCM is an isomorphism. �



CHAPTER 6

GC-Dimension

6.1. Definitions and Basic Properties of GC-dimension

Definition 6.1.1. Let C be a semidualizing R-module and M a finitely generated
R-module. An augmented GC-resolution of M is an exact sequence

G+ = · · ·
∂Gi+1−−−→ Gi

∂Gi−−→ Gi−1

∂Gi−1−−−→ · · ·G1
∂G1−−→ G0

τ−→M → 0

wherein each Gi is totally C-reflexive. The GC-resolution of M associated to G+

is the sequence obtained by truncating:

G+ = · · ·
∂Gi+1−−−→ Gi

∂Gi−−→ Gi−1

∂Gi−1−−−→ · · ·G1
∂G1−−→ G0 → 0

Definition 6.1.2. Let C be a semidualizing R-module and M a finitely generated
R-module. If M admits a GC-resolution G such that Gi = 0 for i� 0, then we say
that M has finite GC-dimension. More specifically, the GC-dimension of M is the
shortest such resolution:

GC-dimR(M) = inf{sup{n > 0 | Gn 6= 0} | G is a GC-resolution of M}.

Example 6.1.3. Let C be a semidualizing R-module. A non-zero finitely generated
R-module is totally reflexive if and only if it has GC-dimension 0. By definition,
we have GC-dimR(M) = −∞ if and only if M = 0.

Since every finitely generated projective R-module is totally C-reflexive, it fol-
lows that every (augmented) resolution by finitely generated projective R-modules
is an (augmented) GC-resolution.

Proposition 6.1.4. If D is a dualizing R-module, then GD-dimR(M) < ∞ for
each finitely generated R-module M .

Proof. Example 2.1.11 implies that d = dim(R) <∞. Let F be a resolution
of M by finitely generated free R-module,. and let i > d+ 1. Proposition 5.4.10(b)
implies that Coker(∂Fi+1) is totally D-reflexive. It follows that the exact sequence

0→ Coker(∂Fi+1)→ Fi−1 → · · · → F0 →M → 0

is an augmented GD-resolution of length i, so we have GD-dimR(M) 6 i <∞. �

Corollary 6.1.5. If R is Gorenstein, then G-dimR(M) < ∞ for each finitely
generated R-module M .

Proof. This is the case D = R of Proposition 6.1.4. �

Here is a version of Schanuel’s Lemma for GC-resolutions.

81
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Lemma 6.1.6. Let C be a semidualizing R-module, and let M be a finitely gener-
ated R-module. Assume that there are exact sequences

0 // Kn
// Gn−1

// · · · // G0
// M // 0

0 // Ln // Hn−1
// · · · // H0

// M // 0

such that each Gi, Hi is totally C-reflexive. Then Kn is totally C-reflexive if and
only if Ln is totally C-reflexive.

Proof. The case n = 0 is straightforward, so we assume that n > 1.
Assume first that each Hi is finitely generated and projective. The proof of

Schanuel’s Lemma [17] shows that there is an exact sequence

0→ Ln → Kn ⊕Hn−1
∂−→ Gn−1 ⊕Hn−2 → · · · → G1 ⊕H0 → G0 → 0.

Set N = Im(∂) and consider the exact sequence

0→ N → Gn−1 ⊕Hn−2 → · · · → G1 ⊕H0 → G0 → 0.

Since each of the modules Gn−1, Hn−2, . . . , G1, H0, G0 is totally C-reflexive, Propo-
sition 5.1.1 implies that N is totally C-reflexive. Now, using the exact sequence

0→ Ln → Kn ⊕Hn−1 → N → 0

another application of Proposition 5.1.1 shows that Ln is totally C-reflexive if and
only if Kn ⊕ Hn−1 is totally C-reflexive, that is, if and only if Kn is totally C-
reflexive; see Proposition 2.1.4.

Now, for the general case. Consider an exact sequence

0→ Zn → Pn−1 → · · ·P0 →M → 0

obtained from an augmented resolution of M by finitely generated projective R-
modules. The previous paragraph shows that Ln is totally C-reflexive if and only
if Zn is totally C-reflexive if and only if Kn is totally C-reflexive, as desired. �

Proposition 6.1.7. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. For each integer n > 0, the following conditions are equivalent:

(i) GC-dimR(M) 6 n;
(ii) M has a GC-resolution G such that Gi = 0 for all i > n;
(iii) M has a GC-resolution G such that Gn+1 = 0;
(iv) for each GC-resolution G of M , the module Coker(∂Gi ) is totally C-reflexive

for each i > n;
(v) there is a resolution F of M by finitely generated free R-modules such that

Coker(∂Fn+1) is totally C-reflexive; and
(vi) GC-dimR(M) <∞ and ExtmR (M,C) = 0 for all m > n.

In particular, if GC-dimR(M) <∞, then

GC-dimR(M) = sup{i > 0 | ExtiR(M,C) 6= 0}.

Proof. The equivalence (i) ⇐⇒ (ii) is by definition, and the equivalence
(ii) ⇐⇒ (iii) is routine. The implication (iv) =⇒ (v) follows from the fact that
M has a resolution by finitely generated free R-modules and that every such reso-
lution is a GC-resolution. For the implication (v) =⇒ (ii), argue as in the proof of
Proposition 6.1.4. Also, once the equivalence (i) ⇐⇒ (vi) is shown, the displayed
equality follows directly.
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For the remainder of the proof, let G be a GC-resolution of M . For each i > 0,
set Mi = Coker(∂Gi+1), and consider the exact sequences

0→Mi → Gi−1 → · · · → G0 →M → 0. (6.1.7.1)

Since ExtmR (Gj , C) = 0 for each j and each m > 1, a standard dimension shifting
argument implies that

ExtmR (M,C) ∼= Extm−iR (Mi, C) (6.1.7.2)

for each m > i.
(iii) =⇒ (vi) Assume that Gn+1 = 0. It follows that Mn

∼= Gn. With i = n,
the exact sequence (6.1.7.1) has the form

0→ Gn → · · · → G0 →M → 0.

so we have GC-dimR(M) 6 n. Furthermore, the isomorphism (6.1.7.2) implies that

ExtmR (M,C) ∼= Extm−nR (Mn, C) ∼= Extm−nR (Gn, C) = 0

for all m > n.
(vi) =⇒ (iv) Assume that g = GC-dimR(M) <∞ and ExtmR (M,C) = 0 for all

m > n. Then M has a GC-resolution H such that Hi = 0 for all i > g.
We claim that g 6 n. Suppose by way of contradiction that g > n. Let

M ′ = Coker(∂Hg ). As we noted above, the exact sequence

0→M ′ → Hg−2 → · · · → H0 →M → 0. (6.1.7.3)

implies that ExtmR (M ′, C) = 0 for all m > 1. Hence, because of the exact

0→ Hg → Hg−1 →M ′ → 0

Proposition 5.1.3 implies that M ′ is totally C-reflexive. The sequence (6.1.7.3) is
thus an augmented GC-resolution of length g−1. This implies that GC-dimR(M) 6
g − 1 = GC-dimR(M)− 1, a contradiction.

We now show that Mg is totally C-reflexive. Indeed, we have exact sequences

0 // Mn
// Gn−1

// · · · // G0
// M // 0

0 // Hn
// Hn−1

// · · · // H0
// M // 0

such that the modules Gi, Hi are totally C reflexive for i = 0, . . . , g − 1. Since Hg

is also totally C-reflexive, Lemma 6.1.6 implies that Mg is also totally C-reflexive.
Finally, for each i > n, we have i > g. Because of the exact sequence

0→Mi → Gi−1 → · · · → Gg →Mg → 0

the fact that the modules Gi−1, . . . , Gg,Mg are totally C-reflexive implies that Mi

is totally C-reflexive by Proposition 5.1.1. �

The next result says that the class of R-modules of finite GC-dimension satisfies
the two-of-three property.

Proposition 6.1.8. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules:

0→M1 →M2 →M3 → 0.

If two of the Mi have finite GC-dimension, then so does the third.
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Proof. Let P 1 and P 3 be resolutions of M1 and M3, respectively, by finitely
generated projective R-modules. For each n > 0, the horseshoe lemma yields a
commutative diagram

0

��

0

��

0

��
0 // M1

n
//

��

M2
n

//

��

M3
n

//

��

0

0 // P 1
n−1

//

��

P 1
n−1 ⊕ P 3

n−1
//

��

P 3
n−1

//

��

0

...

��

...

��

...

��
0 // P 1

0
//

��

P 1
0 ⊕ P 3

0
//

��

P 3
0

//

��

0

0 // M1 //

��

M2 //

��

M3 //

��

0

0 0 0

with exact columns and rows.
Assume that GC-dimR(M2),GC-dimR(M3) 6 n. Then Proposition 6.1.7 im-

plies that M2
n and M3

n are totally C-reflexive. From the top row of the diagram,
we conclude that M1

n is totally C-reflexive; see Proposition 5.1.1. Hence, the first
column of the diagram is a bounded augmented GC resolution of M1, so we have
GC-dimR(M1) 6 n.

A similar argument shows that, if GC-dimR(M1),GC-dimR(M3) 6 n, then
GC-dimR(M2) 6 n.

Assume that GC-dimR(M1),GC-dimR(M2) 6 n. Again, it follows that M1
n

and M2
n are totally C-reflexive. Thus, the top row of the diagram shows that

GC-dimR(M3
n) 6 1. Furthermore, by combining the top row and the right-most

column of this diagram, we obtain an exact sequence

0→M1
n →M2

n → P 3
n−1 → · · · → P 3

0 →M3 → 0.

This is an augmented GC resolution of M3 of length n + 1, so we conclude that
GC-dimR(M3) 6 n+ 1. �

Remark 6.1.9. Let C be a semidualizing R-module, and consider an exact se-
quence of finitely generated R-modules:

0→M1 →M2 →M3 → 0.



6.1. DEFINITIONS AND BASIC PROPERTIES OF GC -DIMENSION 85

The proof of Proposition 6.1.8 shows the following:

GC-dimR(M1) 6 sup{GC-dimR(M2),GC-dimR(M3)}
GC-dimR(M2) 6 sup{GC-dimR(M1),GC-dimR(M3)}
GC-dimR(M3) 6 sup{GC-dimR(M1),GC-dimR(M2)}+ 1.

The next result shows how the third displayed can be improved.

Proposition 6.1.10. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules of finite GC-dimension:

0→M1 →M2 →M3 → 0.

(a) If GC-dimR(M1) > GC-dimR(M3) or GC-dimR(M2) > GC-dimR(M3),
then GC-dimR(M1) = GC-dimR(M2).

(b) If GC-dimR(M3) > 1 and M2 is totally C-reflexive, then GC-dimR(M1) =
GC-dimR(M3)− 1.

Proof. (a) Assume that GC-dimR(M1) > GC-dimR(M3). Suppose by way of
contradiction that GC-dimR(M3) > GC-dimR(M2). Remark 6.1.9 then yields

GC-dimR(M1) 6 sup{GC-dimR(M2),GC-dimR(M3)}
= GC-dimR(M3)

< GC-dimR(M1)

which is a contradiction.
Hence, we have GC-dimR(M3) 6 GC-dimR(M2). This yields the next sequence

GC-dimR(M2) 6 sup{GC-dimR(M1),GC-dimR(M3)}
= GC-dimR(M1)

6 sup{GC-dimR(M2),GC-dimR(M3)}
= GC-dimR(M2)

and hence the equality GC-dimR(M1) = GC-dimR(M2).
The case where GC-dimR(M2) > GC-dimR(M3) is handled similarly.
(b) Assume that GC-dimR(M3) > 1. We then have ExtiR(M3, C) 6= 0 for some

i > 1, specifically for i = GC-dimR(M3), by Proposition 6.1.7.
By assumption, we have ExtiR(M2, C) = 0 for all i > 1. Hence, a dimension

shifting argument shows that

ExtiR(M1, C) ∼= Exti+1
R (M3, C)

for all i > 1. Proposition 6.1.7 explains the first and last steps in the next sequence

GC-dimR(M1) = sup{i > 0 | ExtiR(M1, C) 6= 0}

= sup{i > 0 | Exti+1
R (M3, C) 6= 0}

= sup{i > 1 | ExtiR(M3, C) 6= 0} − 1

= sup{i > 0 | ExtiR(M3, C) 6= 0} − 1

= GC-dimR(M3)− 1.

The fourth step is due to the previous paragraph. �
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6.2. Stability Results

The next two results compliment Propositions 5.4.8 and 5.4.9.

Proposition 6.2.1. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. If N is an R-module locally of finite flat dimension, then

TorRi (M,N) = 0 = ExtiR(M,C ⊗R N)

for all i > GC-dimR(M).

Proof. Assume without loss of generality that g = GC-dimR(M) < ∞. We
proceed by induction on g. The case g = 0 is in Proposition 5.4.8. For the inductive
step, assume that g > 1 and that the result holds for all R-modules of GC-dimension
n− 1. There is an exact sequence

0→M ′ → G→M → 0

such that G is totally C-reflexive and GC-dimR(M ′) = g−1. The base case implies
that TorRi (G,N) = 0 = ExtiR(G,C⊗RN) for all i > 1. Hence, a dimension-shifting
argument yields the following isomorphisms for i > 2:

TorRi (M,N) ∼= TorRi−1(M ′, N)

ExtiR(M,C ⊗R N) ∼= Exti−1
R (M ′, C ⊗R N)

The induction hypothesis implies that TorRi−1(M ′, N) = 0 = Exti−1
R (M ′, C ⊗R N)

when i−1 > g−1. For i > g, we have i > g+1 > 2, so the displayed isomorphisms
imply that TorRi (M,N) = 0 = ExtiR(M,C ⊗R N) when i > g. �

The next result is proved like the previous one.

Proposition 6.2.2. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. If N is an R-module locally of finite injective dimension, then

ExtiR(M,N) = 0 = TorRi (M,HomR(C,N))

for all i > GC-dimR(M).

Proposition 6.2.3. Let C be a semidualizing R-module, and let N be an R-module.
Let G be a GC-resolution of a finitely generated R-module M .

(a) If ExtiR(H,N) = 0 for all i > 1 and for each totally C-reflexive R-module
H, then ExtiR(M,N) ∼= H−i(HomR(G,N)) for each i > 0.

(b) If TorRi (H,N) = 0 for all i > 1 and for each totally C-reflexive R-module
H, then TorRi (M,N) ∼= Hi(G⊗R N) for each i > 0.

Proof. (a) The assumption ExtiR(H,N) = 0 for all i > 1 and for each
totally C-reflexive R-module H says that the totally C-reflexive R-modules are
ExtR(−, N)-acyclic. So the desired result follows from standard homological non-
sense.

The proof of part (b) is similar. �

Corollary 6.2.4. Let C be a semidualizing R-module, and let N be an R-module.
Let G be a GC-resolution of a finitely generated R-module M .

(a) If N is locally of finite flat dimension, then TorRi (M,N) ∼= Hi(G⊗R N) and
ExtiR(M,C ⊗R N) ∼= H−i(HomR(G,C ⊗R N)) for each i > 0.

(b) One has ExtiR(M,C) ∼= H−i(HomR(G,C)) for each i > 0.
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(c) If N is locally of finite injective dimension, then one has ExtiR(M,N) ∼=
H−i(HomR(G,N)) and TorRi (M,HomR(C,N)) ∼= Hi(G ⊗R (HomR(C,N)))
for i > 0.

Proof. Combine Propositions 6.2.1–6.2.3. �

Proposition 6.2.5. Let C be a semidualizing R-module. Let M and N be finitely
generated R-modules such that the quantities g = GC-dimR(M) and p = pdR(N)
are finite. If TorRi (N,M) = 0 for i = 1, . . . , g, then GC-dimR(N ⊗R M) 6 p + g,
with equality when R is local. Also, there is an isomorphism

Extp+gR (N ⊗RM,C) ∼= ExtpR(N,R)⊗R ExtgR(M,C). (6.2.5.1)

Proof. Our assumptions imply that g, p > −∞, and hence M 6= 0 6= N .
Assuming that TorRi (N,M) = 0 for i = 1, . . . , g, Proposition 6.2.1 implies that
TorRi (N,M) = 0 for all i > 1.

Let P be a resolution of N by finitely generated projective R-modules, and let
G be a GC-resolution of M such that Pi = 0 = Gj for i > p and for j > g. The
Tor-vanishing assumption implies that the complex P ⊗R G is acyclic, that is, it
is a GC-resolution of N ⊗RM . Since this resolution has length at most g + p, we
have the inequality GC-dimR(N ⊗RM) 6 p+ g.

Furthermore, Corollary 6.2.4 yields the first step in the next sequence:

ExtiR(N ⊗RM,C) ∼= H−i(HomR(P ⊗R G,C))
∼= H−i(HomR(P,HomR(G,C)))
∼= H−i(HomR(HomR(HomR(P,R), R),HomR(G,C)))
∼= H−i(HomR(P,R)⊗R HomR(R,HomR(G,C)))
∼= H−i(HomR(P,R)⊗R HomR(G,C)).

The second step is Hom-tensor adjointness. The third step follows from the fact
that finitely generated projective R-modules are reflexive. The fourth step is Hom-
evaluation, and the fifth step is Hom-cancellation.

Note that the complex HomR(P,R) lives in homological degrees 0 to −p, and
HomR(M,C) lives in homological degrees 0 to −g. It follows that the complex
HomR(P,R)⊗RHomR(G,C) lives in homological degrees 0 to −(p+g). Hence, the
second step in the next sequence is from the right-exactness of tensor product:

Extp+gR (N ⊗RM,C) ∼= H−(p+g)(HomR(P,R)⊗R HomR(G,C))
∼= H−p(HomR(P,R))⊗R H−g(HomR(G,C))
∼= ExtpR(N,R)⊗R ExtgR(M,C).

The previous display explains the first step, and the third step is from Corol-
lary 6.2.4. This explains the isomorphism (6.2.5.1).

Finally, assume that R is local. To prove that GC-dimR(N ⊗RM) = p+ g, we
need to show that Extp+gR (N ⊗RM,C) 6= 0; see Proposition 6.1.7. Using a minimal
free resolution of N , we know that ExtpR(N,R) 6= 0. Since ExtgR(M,C) 6= 0 by
Proposition 6.1.7, Nakayama’s Lemma implies that ExtpR(N,R)⊗RExtgR(M,C) 6= 0,
so the condition Extp+gR (N ⊗RM,C) 6= 0 follows from (6.2.5.1). �

The proof of the next result is similar.
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Proposition 6.2.6. Let C be a semidualizing R-module. Let M and N be finitely
generated R-modules such that the quantities g = GC-dimR(M) and p = pdR(N)
are finite. If ExtiR(N,M) = 0 for all i < p, then GC-dimR(ExtpR(N,M)) 6 p + g,
with equality when R is local. Also, there is an isomorphism

Extp+gR (ExtpR(N,M), C) ∼= N ⊗R ExtgR(M,C).

Proposition 6.2.7. Let C be a semidualizing R-module. Let M be a finitely gen-
erated R-module such that g = GC-dimR(M) is finite. If ExtiR(M,C) = 0 for all
i < g, then there is an equality GC-dimR(ExtgR(M,C)) = g, and one has

ExtiR(ExtgR(M,C), C) ∼=

{
0 if i 6= g

M if i = g.

Proof. Again note that our assumptions imply that M 6= 0.
Let G be a GC-resolution of M such that Gi = 0 for all i > g. The assumption

ExtiR(M,C) = 0 for all i < g implies that the induced complex Σg HomR(G,C) is a
GC-resolution of ExtgR(M,C); see Corollary 6.2.4(b). (Here the operator Σg shifts
a complex g steps to the left. That is, we have (ΣgX)i = Xi−g for each integer i.)
Since this resolution has length g, we have GC-dimR(ExtgR(M,C)) 6 g. Once we
show that ExtgR(ExtgR(M,C), C) ∼= M , we have GC-dimR(ExtgR(M,C)) = g since
M 6= 0; see Proposition 6.1.7.

Corollary 6.2.4(b) provides the first step in the next sequence:

ExtiR(ExtgR(M,C), C) ∼= H−i(HomR(Σg HomR(G,C), C))
∼= Hi(Σ−g HomR(HomR(G,C), C))
∼= Hg−i(HomR(HomR(G,C), C))
∼= Hg−i(G)

∼=

{
0 if i 6= g

M if i = g.

The second and third steps are straightforward. The fourth step is due to the fact
that each Gi is totally C-reflexive, and the fifth step follows because G is a GC-
resolution of M . This proves the desired isomorphisms and hence the result. �

Proposition 6.2.8. Let C be a semidualizing R-module. Let M and N be finitely
generated R-modules such that the quantities g = GC-dimR(M) and p = pdR(N)
are finite. If ExtiR(M,C ⊗R N) = 0 for all i < g, then there is an inequality
GC-dimR(ExtgR(M,C ⊗R N)) 6 p+ g, with equality when R is local. Also, there is
an isomorphism

Extp+gR (ExtgR(M,C ⊗R N), C) ∼= ExtpR(N,M). (6.2.8.1)

Proof. Let P be a resolution of N by finitely generated projective R-modules,
and let G be a GC-resolution of M such that Pi = 0 = Gj for i > p and for j > g.

Step 1: We prove that the complex HomR(P,G) has homology

H−i(HomR(P,G)) ∼= ExtiR(N,M) (6.2.8.2)

for all i ∈ Z. (This is somewhat routine. However, it is good preparation for
the next step.) The augmented resolution G+ is essentially a mapping cone: G+ ∼=
Σ−1 Cone(G α−→M) where α is the quasi-isomorphism induced by the augmentation



6.2. STABILITY RESULTS 89

map G0 → M . The complex G+ is exact. Since P is a bounded below complex
of projective R-modules, it follows that the complex HomR(P,G+) is exact. There
are isomorphisms

HomR(P,G+) ∼= HomR(P,Σ−1 Cone(α)) ∼= Σ−1 Cone(HomR(P, α))

and it follows that HomR(P, α) is an isomorphism. In particular, we have

H−i(HomR(P,G)) ∼= H−i(HomR(P,M)) ∼= ExtiR(N,M)

as desired.
Step 2: We prove that the complex HomR(G,C ⊗R P ) has homology

H−i(HomR(G,C ⊗R P )) ∼= ExtiR(M,C ⊗R N) (6.2.8.3)

for all i ∈ Z. Let β : P '−→ N be the quasi-isomorphism induced by the aug-
mentation map P0 → N . Proposition 3.1.9 implies that N ∈ AC(R), and hence
TorRi (C,N) = 0 for all i > 1. It follows that the morphism

C ⊗R β : C ⊗R P → C ⊗R N
is a quasiisomorphism. Thus, the complex

(C ⊗R P )+ ∼= Σ−1 Cone(C ⊗R β)

is exact.
For each i, set Ni = Coker(∂Pi+1). Thus, we have N ∼= N0, and the exactness

of P+ yields exact sequences

0→ Ni+1 → Pi → Ni → 0

for each i. Each module Ni has finite flat dimension, and hence TorR1 (C,Ni) = 0
for each i. Thus, the induced sequence

0→ C ⊗R Ni+1 → C ⊗R Pi → C ⊗R Ni → 0

is exact. Corollary 6.2.4(a) implies that Ext1
R(Gj , C ⊗R Ni+1) = 0 for each i and

j. Hence, the sequence

0→ HomR(Gj , C ⊗R Ni+1)→ HomR(Gj , C ⊗R Pi)→ HomR(Gj , C ⊗R Ni)→ 0

is exact for each i and each j. It follows that the sequence HomR(Gj , (C ⊗R P )+)
is exact for each j, and hence that the following sequence is exact:

HomR(G, (C ⊗R P )+) ∼= HomR(G,Σ−1 Cone(C ⊗R β))
∼= Σ−1 HomR(G,Cone(C ⊗R β))
∼= Σ−1 Cone(HomR(G,C ⊗R β)).

It follows that the morphism

HomR(G,C ⊗R β) : HomR(G,C ⊗R P )→ HomR(G,C ⊗R N)

is a quasi-isomorphism, and hence the first step in the next sequence:

H−i(HomR(G,C ⊗R P )) ∼= H−i(HomR(G,C ⊗R N))
∼= ExtiR(M,C ⊗R N).

The second step is from Corollary 6.2.4(a).
Step 3: We verify the isomorphism (6.2.8.1). The complex P lives in homolog-

ical degrees p to 0, hence so does C ⊗R P . Since G lives in homological degrees g
to 0, it follows that HomR(G,C ⊗R P ) lives in homological degrees p to −g. Since
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each module HomR(Gi, C ⊗R Pj) is totally C-reflexive by Proposition 5.2.4(c), it
follows from (6.2.8.3) that the complex Σg HomR(G,C ⊗R P ) is a GC-resolution of
ExtgR(M,C ⊗R N) of length at most p+ g. This explains the inequality

GC-dimR(ExtgR(M,C ⊗R N)) 6 p+ g.

We compute:

Extp+gR (ExtgR(M,C ⊗R N), C) ∼= H−(p+g)(HomR(Σg HomR(G,C ⊗R P ), C))
∼= H−p(HomR(HomR(G,C ⊗R P ), C))
∼= H−p(HomR(HomR(G,C)⊗R P,C))
∼= H−p(HomR(P,HomR(HomR(G,C), C)))
∼= H−p(HomR(P,G))
∼= H−p(HomR(P,M))
∼= ExtpR(N,M).

The first step is by Corollary 6.2.4(b), and the second step is routine. The third
step is tensor-evaluation, and the fourth step is Hom-tensor adjointness. The fifth
step is due to the fact that each Gi is totally C-reflexive, and the sixth step is
from (6.2.8.2).

Step 4: We complete the proof. Assume that R is local. Since pdR(N) = p and
M 6= 0, it can be shown using a minimal free resolution of N that ExtpR(N,M) 6=
0. Thus, the equality GC-dimR(ExtgR(M,C ⊗R N)) = p + g follows from the
isomorphism (6.2.8.1) and Proposition 6.1.7. �

Remark 6.2.9. The astute reader will note that Proposition 6.2.7 is a special case
of Proposition 6.2.8. We include a separate proof of Proposition 6.2.7 because it is
slightly simpler than the proof of Proposition 6.2.8.

6.3. Base Change for GC-dimension

The Tor-vanishing hypothesis in the next result is automatic when ϕ is flat.

Proposition 6.3.1. Let ϕ : R → S be a ring homomorphism of finite flat di-
mension, and let C be a semidualizing R-module. Let M be a finitely generated
R-module such that TorRi (S,M) = 0 for all i > 1. Then one has

GS⊗RC-dimS(S ⊗RM) 6 GC-dimR(M)

with equality when ϕ is faithfully flat or when ϕ is surjective with kernel generated
by an R-regular sequence.

Proof. Let P be a resolution of M by finitely generated free R-modules. The
Tor-vanishing hypothesis implies that the complex S⊗RP is a resolution of S⊗RM
by finitely generated free S-modules. For each n > 0, there is an isomorphism

Coker(∂S⊗RPn+1 ) ∼= S ⊗R Coker(∂Pn+1).

Using Theorem 5.4.13, we conclude that if Coker(∂Pn+1) is totally C-reflexive, then
Coker(∂S⊗RPn+1 ) is totally S⊗RC-reflexive; the converse holds when ϕ is faithfully flat
by Proposition 5.3.1; the converse holds when ϕ is surjective with kernel generated
by an R-regular sequence by Proposition 5.3.2. The desired conclusions now follow
from Proposition 6.1.7. �
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Here is a local-global principle.

Proposition 6.3.2. Let C be a semidualizing R-module, and let M be a finitely
generated R-modules. For an integer n > 0, the following conditions are equivalent:

(i) GC-dimR(M) 6 n;
(ii) GU−1C-dimU−1R(U−1M) 6 n for each multiplicatively closed subset U ⊂ R;

(iii) GCp-dimRp(Mp) 6 n for each prime ideal p ⊂ R; and
(iv) GCm-dimRm(Mm) 6 n for each maximal ideal m ⊂ R.

In particular, there are equalities

GC-dimR(M) = sup{GCm-dimRm(Mm) | m ⊂ R is maximal}
= sup{GCm-dimRm(Mm) | m ∈ SuppR(M) is maximal}.

Proof. As usual, the implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) are routine.
Furthermore, once we verify the implication (iv) =⇒ (i), the displayed equality
follows from a routine argument.

(iv) =⇒ (i) Assume that GCm -dimRm(Mm) 6 n for each maximal ideal m ⊂ R.
Let P be a resolution of M by finitely generated free R-modules. for each maximal
ideal m ⊂ R, the complex Pm is a resolution of Mm by finitely generated free
Rm-modules such that

Coker(∂Pm
n+1) ∼= Coker(∂Pn+1)m.

Proposition 6.1.7 then implies that Coker(∂Pn+1)m is totally Cm-reflexive for each
m, so we conclude from Proposition 5.4.2 that Coker(∂Pn+1) is totally C-reflexive.
Another application of Proposition 6.1.7 implies that GC-dimR(M) 6 n. �

Corollary 6.3.3. Let C be a semidualizing R-module, and let M be a finitely
generated R-modules. For an integer n > 0, we have GC-dimR(M) 6 n if and only
if GCm-dimRm(Mm) < ∞ for each maximal ideal m ⊂ R and ExtiR(M,C) = 0 for
all i > n.

Proof. The forward implication follows from Propositions 6.1.7 and 6.3.2. For
the reverse implication, assume that GCm-dimRm(Mm) <∞ for each maximal ideal
m ⊂ R and ExtiR(M,C) = 0 for all i > n. As M is finitely generated, we have

0 = ExtiR(M,C)m = ExtiRm
(Mm, Cm)

for each m and each i > m. Proposition 6.1.7 implies that GCm -dimRm(Mm) 6 n
for each m, so the inequality GC-dimR(M) 6 n follows from Proposition 6.3.2. �

Remark 6.3.4. Avramov, Iyengar, and Lipman [7, (3.3)] prove the following result
that is stronger than Corollary 6.3.3: Let C be a semidualizing R-module, and let
M be a finitely generated R-modules. Then GC-dimR(M) < ∞ if and only if
GCm -dimRm(Mm) <∞ for each maximal ideal m ⊂ R. Unfortunately, the proof of
this result is beyond the scope of this manuscript.

6.4. The AB-formula and Some Consequences

The next result is the case depth(R) = 0 of the AB-formula for GC-dimension.

Proposition 6.4.1. Assume that R is local with depth(R) = 0, and let C be
a semidualizing R-module. If M is a finitely generated R-module of finite GC-
dimension, then M is totally C-reflexive.
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Proof. Set (−)† = HomR(−, C). We have depthR(C) = depth(R) = 0.
Hence, a routine argument shows that for a finitely generated R-module N one
has N† = 0 if and only if N = 0.

Let n > 1 such that GC-dimR(M) 6 n. We prove by induction on n that M is
totally C-reflexive.

Base case: n = 1. This implies that there is an exact sequence

0→ G1 → G0 →M → 0

such that G1 and G0 are totally C-reflexive. The associated long exact sequence in
ExtR(−, C) begins as follows:

0→M† → G†0 → G†0 → Ext1
R(M,C)→ 0.

Applying the left exact functor (−)† to this sequence yields the exact sequence in
the bottom row of the next commutative diagram:

0 // G1
//

δCG1
∼=

��

G0

δCG0
∼=

��
0 // Ext1

R(M,C)† // G††1
// G††0 .

It follows that Ext1
R(M,C)† = 0, so the first paragraph of this proof shows that

Ext1
R(M,C) = 0. Since GC-dimR(M) 6 1, we also have ExtiR(M,C) = 0 for all

i > 2, hence Proposition 6.3.2 implies that GC-dimR(M) = 0, that is, that M is
totally C-reflexive.

Induction step: Assume that n > 1 and that every finitely generated R-module
N with GC-dimR(N) < n is totally C-reflexive. The assumption GC-dimR(M) 6 n
yields an exact sequence

0→ Gn → · · · → G1
∂−→ G0 →M → 0.

Setting M ′ = Im(∂) this yields two exact sequences

0 // Gn // · · · // G1
// M ′ // 0

0 // M ′ // G0
// M // 0.

The first of these sequences implies that GC-dimR(M ′) < n, so our induction
hypothesis implies that M ′ is totally C-reflexive. Thus, the second sequence implies
that GC-dimR(M) 6 1, so the base case implies that M is totally C-reflexive. �

Here is the AB-formula for GC-dimension.

Proposition 6.4.2. Assume that R is local, and let C be a semidualizing R-module.
If M is a finitely generated R-module of finite GC-dimension, then

GC-dimR(M) = depth(R)− depthR(M).

Proof. Let M be a finitely generated R-module of finite GC-dimension. (In
particular, this implies that M 6= 0.) We prove the result by induction on d =
depth(R).

Base case: d = 0. Proposition 6.4.1 implies that M is totally C-reflexive, hence
the first equality in the next sequence:

GC-dimR(M) = 0 = depth(R)− depthR(M).
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For the second equality, we need to show that depthR(M) = 0, that is, that the
maximal ideal m of R is an associated prime of M . We compute:

AssR(M) = AssR(HomR(HomR(M,C), C) = SuppR(HomR(M,C)) ∩AssR(C).

Since M 6= 0 is totally C-reflexive, we have HomR(M,C) 6= 0, and thus m ∈
SuppR(HomR(M,C)). Because depth(R) = 0, we have m ∈ Ass(R) = AssR(C); see
Proposition 2.1.16(a). Hence, the displayed sequence implies that m ∈ AssR(M),
as desired.

Induction step: Assume that d > 1 and that the result holds for local rings S
with depth(S) < d.

Case 1: depthR(M) > 1. Since d = depth(R) > 1, a prime avoidance argument
yields an element x ∈ m that is R-regular and M -regular. In particular, the natural
map R → R/xR has finite flat dimension and TorRi (R/xR,M) = 0 for all i > 1.
Thus, Proposition 6.3.1 yields the first equality in the next sequence

GC-dimR(M) = GR/xR⊗RC-dimR/xR(R/xR⊗RM)

= depth(R/xR)− depthR/xR(R/xR⊗RM)

= (depth(R)− 1)− (depthR(M)− 1)

= depth(R)− depth(M).

The second equality is from our induction hypothesis since

GR/xR⊗RC-dimR/xR(R/xR⊗RM) = GC-dimR(M) <∞.

The third equality follows from the fact that x is R-regular and M -regular.
Case 2: depthR(M) = 0. We first note that M is not totally C-reflexive.

Indeed, from a previous computation, if M were totally C-reflexive, we would have
AssR(M) ⊆ AssR(C) = Ass(R). Since depthR(M) = 0, we have m ∈ AssR(M),
and hence m ∈ Ass(R). This contradicts the fact that depth(R) > 1.

Consider an exact sequence

0→M ′ → P →M → 0

wherein P is a finitely generated free R-module. In particular, the R-module P
is totally C-reflexive. Furthermore, since depthR(P ) = depth(R) > 1, we have
depthR(M ′) > 1. Since depthR(M) = 0 a standard argument using the long exact
sequence in ExtR(R/m,−) shows that depthR(M ′) = 1 = 1 + depthR(M). This
explains the third step in the next sequence:

GC-dimR(M) = GC-dimR(M ′) + 1

= [depth(R)− depthR(M ′)] + 1

= [depth(R)− (depthR(M) + 1)] + 1

= depth(R)− depthR(M).

The first step is by Proposition 6.1.10(b), and Step 1 explains the second step. �

Corollary 6.4.3. Let C be a semidualizing R-module. If M is a finitely generated
R-module of finite GC-dimension, then depthRp

(Mp) 6 depth(Rp) for each p ∈
SuppR(M).
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Proof. Assume that GC-dimR(M) < ∞. For each p ∈ SuppR(M), we have
GCp -dimRp(Mp) <∞ by Proposition 6.3.2, so the AB-formula explains the second
step in the next sequence:

0 6 GCp -dimRp(Mp) = depth(Rp)− depthRp
(Mp).

The desired inequality now follows. �

Corollary 6.4.4. Let C be a semidualizing R-module. If M is a finitely generated
R-module of finite GC-dimension, then GC-dimR(M) 6 dim(R).

Proof. For each maximal ideal, the first step in the next sequence is by the
AB-formula 6.4.2:

GCm -dimRm(Mm) = depth(Rm)− depthRm
(Mm)

6 depth(Rm)

6 dim(Rm)

6 dim(R).

The remaining steps are standard. Hence, the inequality GC-dimR(M) 6 dim(R)
follows from Proposition 6.3.2. �

Corollary 6.4.5. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. There is an inequality

GC-dimR(M) 6 pdR(M)

with equality when pdR(M) <∞.

Proof. Assume without loss of generality that pdR(M) <∞. For each max-
imal ideal m ⊂ R, a bounded resolution of Mm by finitely generated projective
Rm-modules is also a bounded GCm -resolution of Mm. Thus, we have

GCm-dimRm(Mm) 6 pdRm
(Mm) 6 pdR(M) <∞

for each maximal ideal m ⊂ R. Thus, the AB-formulas for GC-dimension and
projective dimension explain the second and third equality in the next sequence:

GC-dimR(M) = sup{GCm -dimRm(Mm) | m ⊂ R is maximal}
= sup{depth(Rm)− depthRm

(Mm) | m ⊂ R is maximal}
= sup{pdRm

(Mm) | m ⊂ R is maximal}
= pdR(M).

The first step is from Proposition 6.3.2, and the last step is standard. �

Proposition 6.4.6. Let C be a semidualizing R-module, and let n > 0. The
following conditions are equivalent:

(i) C is dualizing for R and dim(R) 6 n;
(ii) every finitely generated R-module M has GC-dimR(M) 6 n;

(iii) for each prime ideal p ⊂ R, one has GC-dimR(R/p) 6 n;
(iv) for each maximal ideal m ⊂ R, one has GC-dimR(R/m) 6 n.

Proof. The implications (ii) =⇒ (iii) =⇒ (iv) are straightforward.
(i) =⇒ (ii) If C is dualizing, then Proposition 6.1.4 says that GC-dimR(M) <∞

for each finitely generated M . So, Corollary 6.4.4 implies that GC-dimR(M) 6
dim(R) 6 n.
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(iv) =⇒ (i) Assume that GC-dimR(R/m) 6 n for each maximal ideal m ⊂ R.
Proposition 6.1.7 implies that ExtiR(R/m, C) = 0 for all i > n and for each m.
It follows that idR(C) 6 n, so C is dualizing. Since SuppR(C) = Spec(R) and
idR(C) <∞, it follows that dim(R) = idR(C) 6 n. �

Corollary 6.4.7. Let C be a semidualizing R-module. The following conditions
are equivalent:

(i) C is dualizing for R;
(ii) every finitely generated R-module has finite GC-dimension;

(iii) for each prime ideal p ⊂ R, one has GC-dimR(R/p) <∞;
(iv) for each maximal ideal m ⊂ R, one has GC-dimR(R/m) <∞; and
(v) C is point-wise dualizing for R.

The implications (i) =⇒ (ii) ⇐⇒ (iii) =⇒ (iv) ⇐⇒ (v) always hold. When
dim(R) <∞, the conditions (i)–(v) are equivalent.

Proof. The implication (i) =⇒ (ii) is from Proposition 6.4.6. This uses the
fact that, when C admits a dualizing module, one has dim(R) <∞. The implica-
tions (ii) =⇒ (iii) =⇒ (iv) are routine.

(iii) =⇒ (ii) Assume that for each prime ideal p ⊂ R, one has GC-dimR(R/p) <
∞. Let M be a finitely generated R-module. Then M has a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such that for each i = 1, . . . , n there is a prime pi ∈ Spec(R) such that Mi/Mi−1
∼=

R/pi. Since each R/pi has finite GC-dimension by assumption, we may use induc-
tion on n with Proposition 6.1.8 to conclude that GC-dimR(M) <∞.

(iv) =⇒ (v) Assume that GC-dimR(R/m) <∞ for each maximal ideal m ⊂ R.
Proposition 6.3.2 implies that GCm -dimRm(Rm/mRm) < ∞ for each m. Propo-
sition 6.4.6 implies that Cm is dualizing for Rm, for each m, that is, that C is
point-wise dualizing for R.

(v) =⇒ (iv) Assume that C is point-wise dualizing for R, that is Cm is dualizing
for Rm, for each maximal ideal m ⊂ R. It follows that GCm -dimRm(Rm/mRm) <∞
for each m. Since m is the only maximal ideal in SuppR(R/m), we conclude from
Proposition 6.3.2 that GC-dimR(R/m) <∞.

Finally, if dim(R) <∞, then we have (v) =⇒ (i) by Example 2.1.11. �

The next two results are the cases C = R of the previous two results.

Proposition 6.4.8. Let n > 0. The following conditions are equivalent:
(i) R is Goreinstein and dim(R) 6 n;
(ii) every finitely generated R-module M has G-dimR(M) 6 n;
(iii) for each prime ideal p ⊂ R, one has G-dimR(R/p) 6 n;
(iv) for each maximal ideal m ⊂ R, one has G-dimR(R/m) 6 n.

Corollary 6.4.9. The following conditions are equivalent:
(i) R is Goreinstein;

(ii) every finitely generated R-module has finite G-dimension;
(iii) for each prime ideal p ⊂ R, one has G-dimR(R/p) <∞;
(iv) for each maximal ideal m ⊂ R, one has G-dimR(R/m) <∞; and
(v) R is point-wise Goreinstein.

The implications (i) =⇒ (ii) ⇐⇒ (iii) =⇒ (iv) ⇐⇒ (v) always hold. When
dim(R) <∞, the conditions (i)–(v) are equivalent.
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Proposition 6.4.10. Assume that R is local, and let C be a semidualizing R-
module. Let M and N be finitely generated R-modules such that the quantities
g = GC-dimR(M) and p = pdR(N) are finite.

(a) If TorRi (N,M) = 0 for i = 1, . . . , g, then

depthR(N ⊗RM) = depthR(M) + depthR(N)− depth(R).

(b) If ExtiR(N,M) = 0 for all i < p, then

depthR(ExtpR(N,M)) = depthR(M) + depthR(N)− depth(R).

(c) If ExtiR(M,C) = 0 for all i < g, then

depthR(ExtgR(M,C)) = depthR(M).

(d) If ExtiR(M,C ⊗R N) = 0 for all i < g, then

depthR(ExtgR(M,C ⊗R N)) = depthR(M) + depthR(N)− depth(R).

In particular, in cases (a), (b), and (d), we have

depth(R) 6 depthR(M) + depthR(N).

Proof. (a) The AB-formula yields the second and fourth steps in the next
sequence, and the third step is from Proposition 6.2.5:

0 6 depthR(N ⊗RM)

= depth(R)−GC-dim(N ⊗RM)

= depth(R)− (p+ g)

= depth(R)− (depth(R)− depthR(N) + depth(R)− depthR(M))

= depthR(M) + depthR(N)− depth(R).

The proofs for (b)–(d) are similar. �

6.5. More Relations between Semidualizing Modules

The next result compares to Proposition 4.1.1.

Proposition 6.5.1. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. Then M is semidualizing and totally C-reflexive if and only
if ExtiR(M,C) = 0 for all i > 1 and HomR(M,C) is semidualizing and totally
C-reflexive.

Proof. Proposition 5.1.5 says that M is totally C-reflexive if and only if
ExtiR(M,C) = 0 for all i > 1 and HomR(M,C) is totally C-reflexive. Thus we
may assume that M is totally C-reflexive and prove that M is semidualizing if and
only if HomR(M,C) is semidualizing.

Lemma 5.1.8 implies that

ExtiR(HomR(M,C),HomR(M,C)) ∼= ExtiR(M,M)

for all i > 0. It follows that ExtiR(HomR(M,C),HomR(M,C)) = 0 for all i > 1
if and only if ExtiR(M,M) = 0 for all i > 1. Also, we have an isomorphism
R ∼= HomR(HomR(M,C),HomR(M,C)) if and only if R ∼= HomR(M,M). By
Proposition 2.2.2(a), this means that the homothety map χRHomR(M,C) is an isomor-
phism if and only if χRM is an isomorphism, hence the desired result. �



6.5. MORE RELATIONS BETWEEN SEMIDUALIZING MODULES 97

Here is a companion for Proposition 4.1.4. also discuss order reversing for
generalized dagger duality in S0(R) and S0(R). companion to 4.3.4.

Proposition 6.5.2. Let B and C be a semidualizing R-modules. The following
conditions are equivalent:

(i) B is totally C-reflexive;
(ii) GC-dimR(B) is finite;
(iii) C ∈ BB(R); and
(iv) HomR(B,C) is a semidualizing R-module and ExtiR(B,C) = 0 for all i > 1.

When these conditions are satisfied, the module HomR(B,C) is totally C-reflexive,
and B ∈ AHomR(B,C)(R) and HomR(B,C) ∈ AB(R) and C ∼= B ⊗R HomR(B,C).

Proof. �





APPENDIX A

Some Aspects of Homological Algebra

A.1. Natural Maps

Definition A.1.1. Let L,M,N be R-modules.
The tensor evaluation homomorphism

ωLMN : HomR(L,M)⊗R N → HomR(L,M ⊗R N)

is given by ωLMN (ψ ⊗ n)(l) = ψ(l)⊗ n.
The Hom evaluation homomorphism

θLMN : L⊗R HomR(M,N)→ HomR(HomR(L,M), N)

is given by θLMN (l ⊗ ψ)(φ) = ψ(φ(l)).

The next two lemmata are from Ishikawa.

Lemma A.1.2. Let L,M,N be R-modules. The tensor evaluation homomorphism
ωLMN : HomR(L,M)⊗RN → HomR(L,M ⊗RN) is an isomorphism under either
of the following conditions:

(1) L is finitely generated and projective; or
(2) L is finitely generated and N is flat.

Proof. First observe that, for R-modules L′, L′′, the following commutative
diagram shows that the map ω(L′⊕L′′)MN is an isomorphism if and only if ωL′MN

and ωL′′MN are isomorphisms:

HomR(L′ ⊕ L′′,M)⊗R N
∼= //

ω(L′⊕L′′)MN

��

(HomR(L′,M)⊗R N)⊕ (HomR(L′′,M)⊗R N)

ωL′MN⊕ωL′′MN
��

HomR(L′ ⊕ L′′,M ⊗R N)
∼= // HomR(L′,M ⊗R N)⊕HomR(L′′,M ⊗R N).

(1) It is straightforward to show that ωLMN is an isomorphism when L = R.
Hence, an induction argument using the above observation shows that ωLMN is an
isomorphism when L = Rn for some n. When L is finitely generated and projective,
there is an R-module L′′ such that L⊕ L′′ ∼= Rn for some n, so again the previous
paragraph implies that ωLMN is an isomorphism in this case.

(2) Assume that L is finitely generated and N is flat. Since R is noetherian,
there exists an exact sequence

Rm
f−→ Rn

g−→ L→ 0.

The left-exactness of HomR(−,M) implies that the next sequence is exact

0→ HomR(L,M)
gM−−→ HomR(Rn,M)

fM−−→ HomR(Rm,M)
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where fM = HomR(f,M) and gM = HomR(g,M). Since N is flat, the top row of
the next commutative diagram is also exact

0 // Hom(L,M)⊗N
gM⊗N //

ωLMN

��

Hom(Rn,M)⊗N
fM⊗N //

ωRnMN ∼=
��

Hom(Rm,M)⊗N

ωRmMN ∼=
��

0 // Hom(L,M ⊗N)
gM⊗N // Hom(Rn,M ⊗N)

fM⊗N // Hom(Rm,M ⊗N).

The bottom row is exact because HomR(−,M⊗N) is left-exact. The maps ωRmMN

and ωRnMN are isomorphisms by case (1), so a diagram chase shows that ωLMN is
an isomorphism as well. �

Lemma A.1.3. Let L,M,N be R-modules. The Hom evaluation homomorphism
θLMN : L ⊗R HomR(M,N) → HomR(HomR(L,M), N) is an isomorphism under
either of the following conditions:

(1) L is finitely generated and projective; or
(2) L is finitely generated and N is injective.

Proof. Similar to the proof of Lemma A.1.2. �

Here is a version that we did not know about before.

Lemma A.1.4. Let L,M,N be R-modules. The tensor evaluation homomorphism
ωLMN : HomR(L,M)⊗RN → HomR(L,M ⊗RN) is an isomorphism under either
of the following conditions:

(1) N is finitely generated and projective; or
(2) L is projective and N is finitely generated.

Proof. The proof is similar to the proof of Lemma A.1.2. We provide a sketch.
First observe that, for R-modules N ′, N ′′, the map ωLM(N ′⊕N ′′) is an isomor-

phism if and only if ωLMN ′ and ωLMN ′ are isomorphisms.
(1) It is straightforward to show that ωLMR is an isomorphism. Hence, the

map ωLMN is an isomorphism when N = Rn for some n, and thus whenever N is
a finitely generated projective.

(2) When L is projective and N is finitely generated, use a presentation

Rm
f−→ Rn

g−→ L→ 0.

with the fact that ωLMRm and ωLMRn are isomorphisms to conclude that ωLMN is
an isomorphism as well. �

Here is a consequence of the Künneth formula.

Proposition A.1.5. Let k be a field, and let R and S be k-algebras. Let B and B′

be R-modules such that B is finitely generated, and let C and C ′ be S-modules such
that C is finitely generated. For each i > 0, there are R⊗k S-module isomorphisms

TorR⊗kSi (B ⊗k C,B′ ⊗k C ′) ∼= ⊕ij=0 TorRj (B,B′)⊗k TorSi−j(C,C
′)

ExtiR⊗kS(B ⊗k C,B′ ⊗k C ′) ∼= ⊕ij=0 ExtjR(B,B′)⊗k Exti−jS (C,C ′).

Proof. First, let X be a complex of R-modules, and let Y be a complex of S-
modules. The Künneth formula [17, (10.81)] implies that there is a k-isomorphism

⊕p+q=i Hp(X)⊗k Hq(Y )
∼=−→ Hi(X ⊗k Y ) (A.1.5.1)
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given by
∑
p xp ⊗ yi−p 7→

∑
p xp ⊗ yi−p. (Here X ⊗k Y is the total complex, not

the double complex.) It is straightforward to show that α is R⊗k S-linear.
Let P be a resolution of B by finitely generated free R-modules, and let Q be

a resolution of C by finitely generated free S-modules. Since k is a field, we have
Torki (B,C) = 0 for all i > 1. Hence the complex P ⊗k Q is a resolution of B ⊗k C
by finitely generated free R⊗k S-modules.

It is straightforward to show that there is an isomorphism of complexes

(P ⊗k Q)⊗R⊗kS (B′ ⊗k C ′)
∼=−→ (P ⊗R B′)⊗k (Q⊗S C ′)

given by (p⊗q)⊗(b′⊗c′) 7→ (p⊗b′)⊗(q⊗c′). Furthermore, this map is R⊗kS-linear.
This explains the second step in the next sequence:

TorR⊗kSi (B ⊗k C,B′ ⊗k C ′) ∼= Hi((P ⊗k Q)⊗R⊗kS (B′ ⊗k C ′))
∼= Hi((P ⊗R B′)⊗k (Q⊗S C ′))
∼= ⊕p+q=i Hp(P ⊗R B′)⊗k Hq(Q⊗S C ′)
∼= ⊕ij=0 TorRj (B,B′)⊗k TorSi−j(C,C

′)

The first step comes from the fact that P ⊗k Q is a resolution of B ⊗k C by free
R ⊗k S-modules. The third step is from the Künneth formula (A.1.5.1), and the
fourth step is by definition. This yields the desired isomorphism for Tor.

The isomorphism for Ext is verified similarly using the isomorphism

HomR(P,B′)⊗k HomS(Q,C ′)
∼=−→ HomR⊗kS(P ⊗k Q,B′ ⊗k C ′)

given by the formula φ ⊗ ψ 7→ φ � ψ: here φ : Pm → B′ and ψ : Qn → C ′, and
φ� ψ : Pm ⊗k Qn → B′ ⊗k C ′ is given by pm ⊗ qn 7→ φ(pm)⊗ ψ(qn). �

A.2. Fidelity

Lemma A.2.1. Let M and N be non-zero R-modules. If M is finitely generated
and SuppR(M) = Spec(R), then HomR(M,N) 6= 0 and M ⊗R N 6= 0.

Proof. If R is local with maximal ideal m, then HomR(M,R/m) 6= 0. Indeed,
Nakayama’s Lemma implies that M/mM is a non-zero vector space over R/m and so
any compositionM �M/mM � R/m gives a non-zero element of HomR(M,R/m).
It follows that, for each p ∈ Spec(R), we have

HomR(M,R/p)p
∼= HomRp(Mp, Rp/pRp) 6= 0

so HomR(M,R/p) 6= 0.
Use the fact that R is noetherian to conclude that N has an associated prime

p, and hence a monomorphism R/p ↪→ N . Apply HomR(M,−) to find a monomor-
phism 0 6= HomR(M,R/p) ↪→ HomR(M,N). It follows that HomR(M,N) 6= 0.

For the tensor product, note that the identity N → N is a non-zero element of
HomR(N,N). Therefore, the previous paragraph provides the nonvanishing in the
next sequence while the isomorphism is by Hom-tensor adjointness:

HomR(M ⊗N,N) ∼= HomR(M,HomR(N,N)) 6= 0.

It follows that M ⊗N 6= 0.
Here is an alternate proof for the tensor product. Choose a maximal ideal

m ∈ SuppR(N). Nakayama’s Lemma yields an epimorphism Nm � Rm/mm. The
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right-exactness of Mm ⊗Rm − yields the epimorphism in the middle of the next
display:

(M ⊗R N)m
∼= Mm ⊗Rm Nm �Mm ⊗Rm Rm/mm

∼= Mm/mmMm 6= 0.

The isomorphisms are standard. The non-vanishing is from Nakayama’s Lemma
since we have m ∈ Spec(R) = SuppR(M). It follows that (M ⊗R N)m 6= 0, so
M ⊗R N 6= 0. �

Definition A.2.2. An injective R-module E is faithfully injective if the func-
tor HomR(−, E) is faithfully exact, that is, if it satisfies the following condition:
a sequence S of R-module homomorphisms is exact if and only if the sequence
HomR(S,E) is exact. This is equivalent to the following condition: for each R-
module M , one has M = 0 if and only if HomR(M,E) = 0. The term faithfully
projective is defined dually.

Example A.2.3. For instance, the R-module E =
∐

mER(R/m) is faithfully in-
jective where the coproduct is taken over the set of maximal ideals m ⊂ R. [ref]
ichikawa? Every non-zero free R-module is faithfully projective.
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