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CHAPTER 1

Prelude

We begin by surveying some of the “classical” aspects of homological commu-
tative algebra, which will motivate the definition of semidualizing modules. We will
focus in this section on finitely generated modules, although there are versions of
these theories for non-finitely generated modules (and for chain complexes), in an
attempt to keep things accessible. Note also that this section does not adhere to
the original chronology of the research.

1.1. Projective Dimension

Let M be a finitely generated R-module. In a sense, the nicest R-modules are
the free modules and, more generally, the projective modules. Most modules are not
projective. (For instance, when R is a local ring, every R-module is projective if and
only if R is a field.) However, there is a process by which one can “approximate”
M by projective R-modules.

Specifically, there is a finitely generated projective R-module Py equipped with
a surjection 7: Py — M. If M is not projective, then M; = Ker(7) # 0; this
“syzygy module” can be thought of as the error from the approximation of M by
Py. The module M; may or may not be projective, but we can approximate it by
a projective R-module as we did with M.

Indeed, since R is noetherian and P, is finitely generated, the submodule
M, C Py is also finitely generated. Repeat the above procedure inductively to
find surjections 7;41: P41 — M;41 for each ¢ > 0 where P;;; is projective and
M; 1 = Ker(r;) C P;. Composing the surjections 7,11 with the inclusions M; 1 C
P;, we obtain the following exact sequence

of H or
pr=... 2 PZ’%P /5. PP P55 M-—0

which we call an augmented projective resolution of M. The projective resolution

of M associated to PT is the sequence obtained by truncating:

P P
p:...hpzip 181_%. Plipo_)o

Note that P is not in general exact. Indeed, one has Ker(8]) = Im(8/; ) for each
> 1, but Coker(9f) 22 M, and so P is exact if and only if M = 0. (One might say
that P is “acyclic”, but we will not use this term because it means different things
to different people.) We say that P is a free resolution of M when each P; is free.
Note that, when R is local, an R-module is free if and only if it is projective, and so
the notions of projective resolution and free resolution are the same in this setting.
If M admits a projective resolution P such that P; = 0 for ¢ > 0, then we say
that M has finite projective dimension. More specifically, the projective dimension
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2 1. PRELUDE

of M is the shortest such resolution:
pdp(M) = inf{sup{n > 0| P, # 0} | P is a projective resolution of M }.

Modules with finite projective dimension are quite special, as we will see below.
One need not look far to find modules of finite projective dimension: Hilbert’s
famous Syzygy Theorem [14] says that, when k is a field, every finitely generated
module over the polynomial ring k[X7, ..., X4] has projective dimension at most d.
In the local setting, this is a sort of precursor to the famous theorem of Auslander,
Buchsbaum [3] and Serre [20]:

Theorem 1.1.1. Let (R, m, k) be a local ring of Krull dimension d. The following
conditions are equivalent:

(i) R is regular, that is, the mazimal ideal m can be generated by d elements;
(il) pdr(M) < oo for each finitely generated R-module; and
(iii) pdg(k) < oo.

One important application of this result is the solution of the localization prob-
lem for regular local rings: If R is a regular local ring and p C R is a prime ideal,
then the localization R, is also regular.

Theorem substantiates the following maxim: to understand a ring is to
understand its modules. If you like, the nicer the ring, the nicer its modules, and
conversely. We shall see this maxim in action in numerous places below. One
could say, as I often do, that module theory is representation theory for rings, with
the modules taking the place of representations. This is backwards, though, since
representation theory is, in fact, nothing other than the module theory of group
rings.

Another feature of the projective dimension is the “Auslander-Buchsbaum for-
mula” [3]:

Theorem 1.1.2. Let (R,m,k) be a local ring. If M is an R-module of finite
projective dimension, then pdgp(M) = depth(R) — depthg(M); in particular, if
M # 0, then depthp (M) < depth(R).

Here, the “depth” of M is the length of the longest M-regular sequence in m;
this can be expressed homologically as

depthp(M) = inf{i > 0| Extiy(k, M) # 0}.

And depth(R) = depthy(R).

Note that this result shows how to find modules of infinite projective dimension;
just find a module M # 0 with depthz (M) > depth(R). For instance, when k is a
field, the ring R = k[X,Y]/(X?, XY) has depth 0 and the module M = R/XR =
k[X] has depth 1.

1.2. Complete Intersection Dimension

The class of regular local rings is not stable under specialization: if (R, m) is
a regular local ring and & € m is an R-regular element, then R/xR may not be a
regular local ring. This corresponds to the geometric fact that a hypersurface in a
smooth variety need not be smooth. In a sense, this is unfortunate. However, it
leads to our next class of rings.



1.2. COMPLETE INTERSECTION DIMENSION 3

Definition 1.2.1. A local ring (R, m) is a complete intersection if its m-adic com-
pletion R has the form R 2 Q/(x)Q where @Q is a regular local ring and x is a
Q-regular sequence.

Recall that Cohen’s Structure Theorem [10] guarantees that the completion of
any local ring is a homomorphic image of a regular local ring. Since the completion
of a regular local ring is regular, it follows that every regular local ring is a complete
intersection. It is straightforward to show that the class of complete intersection
rings is closed under specialization. Furthermore, this definition of complete in-
tersection is independent of the choice of regular local ring surjecting onto R: a
theorem of Grothendieck [13] (19.3.2)] says that, if R is a complete intersection
and m: A — Ris a ring epimorphism where A is a regular local ring, then Ker(r)
is generated by an A-regular sequence.

Avramov, Gasharov and Peeva [6] introduced the complete intersection dimen-
sion of a finitely generated R-module M, in part, to find and study modules whose
free resolutions do not grow too quickly. For the sake of simplicity, we only discuss
this invariant when R is local. Recall that a ring homomorphism of local rings
(R,m) — (S,n) is local when mS C n.

Definition 1.2.2. Let (R, m) be alocal ring. A quasi-deformation of R is a diagram
of local ring homomorphisms
RLR ZQ
where p is flat and 7 is surjective with kernel generated by a @Q-regular sequence.
A finitely generated R-module M has finite complete intersection dimension
when there exists a quasi-deformation R — R’ « Q such that pdg (R ®r M) is
finite; specifically, we have

Cl-dimg(M) = inf{pdg (R ®r M) — pdg(R’) | R — R' — Q quasi-deformation}.

When R is a local complete intersection, it follows readily from Theorem [1.1.1
that every R-module has finite complete intersection dimension: write R 2 Q/(x)Q
where @ is a regular local ring and x is a Q-regular sequence and use the quasi-
deformation R — R — Q. Moreover, Avramov, Gasharov and Peeva [6] show that
the complete intersection dimension satisfies properties like those in Theorems|1.1.1

and

Theorem 1.2.3. Let (R,m, k) be a local ring. The following conditions are equiv-
alent:

(i) R is a complete intersection;
(ii) Cl-dimg(M) < oo for each finitely generated R-module; and
(iii) CI-dimpg(k) < oo.

Theorem 1.2.4 (AB-formula). Let R be a local ring and M a finitely generated R-
module. If R — R’ « @ is a quasi-deformation such that pdg(R'®@r M) < oo, then
pdg(R' ®@r M) — pdg(R’) = depth(R) — depthp(M). If Cl-dimg(M) < oo, then
CI-dimpg(M) = depth(R)—depth(M); in particular, if M # 0, then depthp (M) <
depth(R).

The “AB” in the AB-formula stands for Auslander-Buchsbaum, naturally, and
also Auslander-Bridger, as we shall see below. As a consequence of the AB-formula,
we see that the complete intersection dimension is a refinement of the projective
dimension.



4 1. PRELUDE

Corollary 1.2.5. Let R be a local ring and M a finitely generated R-module. There
is an inequality Cl-dimg(M) < pdg(M), with equality when pdg(M) < oo.

PROOF. Assume without loss of generality that pdz (M) < co. Using the trivial
quasi-deformation R — R « R, it is straightforward to see that M has finite com-
plete intersection dimension. Theorems and show that CI-dimp(M) =
pdg(M), as desired. O

Using the work of Cohen [10] and Grothendieck [12], Avramov, Gasharov and
Peeva [6] show one can exert a certain amount of control on the structure of quasi-
deformations:

Proposition 1.2.6. Let (R, m) be a local ring and M an R-module of finite com-
plete intersection dimension. Then there exists a quasi-deformation R 2 R — Q
such that de(R’ ®r M) < oo and such that Q is complete with algebraically
closed residue field and such that the closed fibre R'/mR’ is artinian (hence, Cohen-
Macaulay).

We shall see in a theorem below how semidualizing modules allow us to improve
Proposition [[.2.6]

Here is an open question that I would very much like to answer. Note that the
corresponding result for modules of finite projective dimension is well-known.

Question 1.2.7. Let R be a local ring and consider an exact sequence 0 — M; —
Ms; — M3 — 0 of finitely generated R-modules. If two of the modules M; have
finite complete intersection dimension, must the third one also?

If one of the M; has finite projective dimension, then Question [1.2.7]is readily
answered in the affirmative. In particular, every module of finite complete inter-
section dimension has a bounded resolution by modules of complete intersection
dimension zero, namely, an appropriate truncation of a projective resolution. On
the other hand, it is not known whether M must have finite complete intersection
dimension if it has a bounded resolution by modules of complete intersection di-
mension zero. Indeed, this is equivalent to one of the implications in Question[1.2.7]

1.3. G-Dimension

It is well known that R is always projective as an R-module. It is natural to
ask whether it is always self-injective, i.e., injective as an R-module. The answer
is “no” in general because, for instance, if a local ring R has a finitely generated
injective module, then R must be artinian. One can hope to remedy this by asking
whether R has finite injective dimension as an R-module, that is, when does there
exist an exact sequence

0O—-R—-Ig—>1—---—1;,—0

where each I; is an injective R-module? Once again, the answer is “no” because,
for instance, if a local ring R has a finitely generated module of finite injective
dimension, then R must be Cohen-Macaulay.

Definition 1.3.1. A local ring R is Gorenstein if it has finite injective dimension
as an R-module.
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These rings are named after the famous group theorist Daniel Gorenstein.

It can be shown, using techniques of Auslander, Buchsbaum [3] and Serre [20],
that every finitely generated module over a regular local ring has finite injective
dimension; hence, every regular local ring is Gorenstein. Furthermore, the class
of Gorenstein rings is stable under specialization, so every complete intersection is
also Gorenstein. Thus we have the implications

regular = complete intersection = Gorenstein = Cohen-Macaulay.

Auslander and Bridger [1, 2] introduced the G-dimension of a finitely generated
module, in part, to give a module-theoretic characterization of Gorenstein rings
like that in Theorem Like the projective dimension, it is defined in terms
of resolutions by certain modules with good homological properties, the “totally
reflexive” modules. To define these modules, we need the natural biduality map.

Definition 1.3.2. Let N be an R-module. The natural biduality map
6% : N — Homp(Homg(N, R), R)
is the R-module homomorphism given by 6% (n)(v)) = (n), in other words, for

each n € N the map 6% (n): Homg(N, R) — R is given by 1 — 1)(n).

As the name suggests, a totally reflexive module is a reflexive module with
some additional properties. The addition properties have to do with the vanishing
of the Ext-modules that arise from the biduality map.

Definition 1.3.3. An R-module G is totally reflerive if it satisfies the following
conditions:
(1) G is finitely generated over R;
(2) the biduality map 6%: G — Homg(Hompg(G, R), R) is an isomorphism; and
(3) Ext:(G, R) = 0 = Exth(Homg(G, R), R) for all i > 1.
We let G(R) denote the class of all totally reflexive R-modules.

Example 1.3.4. Every finitely generated projective R-module is totally reflexive;

see Proposition 2.1.13]

Definition 1.3.5. Let M be a finitely generated R-module. An augmented G-
resolution of M is an exact sequence

i 0%, o¢ L of T
GT=..—G —>Gi_.1— -G —Gy—M—0

wherein each G; is totally reflexive. The G-resolution of M associated to G is the
sequence obtained by truncating:

oG G G G
i+1 87‘, i—1 81
G= LG 5 G 25 G 25 Gy — 0

Since every finitely generated R-module has a resolution by finitely generated
projective R-modules and every finitely generated projective R-module is totally
reflexive, it follows that every finitely generated R-module has a G-resolution.

Definition 1.3.6. Let M be a finitely generated R-module. If M admits a G-
resolution G such that G; = 0 for ¢ > 0, then we say that M has finite G-dimension.
More specifically, the G-dimension of M is the shortest such resolution:

G-dimg(M) = inf{sup{n > 0| G,, # 0} | G is a G-resolution of M}.
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Auslander and Bridger [1l, 2] show that the G-dimension satisfies properties
like those in Theorems [L1.1] and [LT.2}

Theorem 1.3.7. Let (R,m,k) be a local ring. The following conditions are equiv-
alent:
(i) R is Gorenstein;
(il) G-dimp(M) < oo for each finitely generated R-module; and
(iii) G-dimp(k) < 0.

Theorem 1.3.8 (AB-formula). Let R be a local ring and M a finitely generated
R-module. If G-dimr(M) < oo, then G-dimpg(M) = depth(R) — depthy(M); in
particular, if M # 0, then depthy(M) < depth(R).

Corollary 1.3.9. Let R be a local ring and M a finitely generated R-module. There
are inequalities G-dimg (M) < Cl-dimg(M) < pdz(M), with equality to the left of
any finite quantity.

Here is another open question that I would very much like to answer. It is
a special case (though, equivalent to the general case) of Avramov and Foxby’s
Composition Question for ring homomorphisms of finite G-dimension [5l (4.8)].
Note that it is straightforward to answer the corresponding result for homomor-
phisms of finite projective dimension in the affirmative. The analogue for complete
intersection dimension is also open.

Question 1.3.10. Let R — S — T be surjective local ring homormophisms. If
G-dimpg(S) and G-dimg(T") are finite, must G-dimpg(T) also be finite?

We shall see in a theorem below how semidualizing modules allow us to give a

partial answer to Question



CHAPTER 2

Semidualizing Basics

In this section, we survey the basic properties of semidualizing modules.

2.1. Definitions and Basic Properties

One can modify Definition to consider dualities with respect to modules
other than R. However, not every class of modules which arises in this way is well-
suited for building a homological dimension. We shall see next that, in a sense, the
best class of modules arise from considering dualities with respect to semidualizing
modules.

Definition 2.1.1. Let M and N be R-modules. The natural biduality map
oM N — Hompg(Hompg(N, M), M)

is the R-module homomorphism given by 63 (n)(y)) = 1 (n), in other words, for
each n € N the map 63 (n): Hompg(N, M) — M is given by v — 1)(n).

Remark 2.1.2. Let f: M — M’ and g: N — N’ be R-module homomorphisms.
It is straightforward to show that the map 6% from Definition is a well-defined
R-module homomorphism and that the following diagram commutes:

Hom g (Homg (N, f),M")

Hompg(Hompg (N, M"), M)

Hompg(Hompg(N, M), M)

sy’ T THomR(HomMN,M)J)
N o Homp(Homp (N, M), M)
gi \LHomR(HomR(g,]\/ILM)
N - Hom z(Homp(N', M), M).

Golod introduced the following notion, though elements of it can be traced to
Foxby and Vasconcelos.

Definition 2.1.3. Let C be a finitely generated R-module. An R-module G is
totally C-reflexive if it satisfies the following conditions:
(1) G is finitely generated over R;
(2) the biduality map 6 G — Homp(Hompg(G,C),C) is an isomorphism; and
(3) ExtR(G,C) = 0= Extz(Hompr(G,C),C) for all i > 1.
We let Go(R) denote the class of all totally C-reflexive R-modules.

Proposition 2.1.4. Let C, M and N be R-modules. Then M & N 1is totally C-
reflexive if and only if M and N are both totally C-reflexive.

7



8 2. SEMIDUALIZING BASICS
PROOF. It is straightforward to show that M & N is finitely generated if and
only if M and N are both finitely generated. The isomorphism
Exth(M @ N, 0) = Exth (M, C) @ Exth(N,O)

shows that Ext%(M @ N,C) = 0 for all i > 1 if and only if Exth(M,C) = 0 =
Ext® (N, C) for all i > 1. The isomorphisms

Ext%(Homg(M @® N, C),C) = Ext’ (Homg (M, C) ® Homg(N, C),C)
=~ BExth (Homg(M, C),C) @ Exts(Homg(N, C), C)

show that Extiy%(HomR(M7 C),C) = 0 = Extiy(Homg (N, C),C) for all i > 1 if and
only if Extlz(Homg(M &N, C),C) = 0 for all ¢ > 1. Finally, there is a commutative
diagram

C
6M€BN

M& N Hompg(Hompr(M @& N, C),C)
ST BT i:

Hompg(Homp (M, C),C) @ Homg(Homg(N, C),C)

SO 5]?469 ~ is an isomorphism if and only if 6§, @ §§ is an isomorphism, that is, if
and only if §§; and 6§; are both isomorphisms. The desired result now follows. [
Now we are finally ready to define the main players of this article.
Definition 2.1.5. Let C' be an R-module. The natural homothety map
x&: R — Hompg(C,C)

is the R-module homomorphism given by x&(r)(c) = rc, that is, for each r € R the
map x&(r): C — C is given by ¢ — rc.

Remark 2.1.6. Let f: C — C’ be an R-module homomorphism. It is straight-
forward to show that the map x& from Definition is a well-defined R-module
homomorphism and that the following diagram commutes:

XR
R c Hompg(C,C)
X% l iHomR(c,f)
Hom el
Hompg(C’,C") Homal7.¢) Hompg(C,C").

Fact 2.1.7. If C is an R-module, then Anng(C) = Ker(xZ).

The following notion was introduced, seemingly independently and using dif-
ferent terminology, by Foxby, Golod, Wakamatsu, and Vasconcelos.

Definition 2.1.8. The R-module C' is semidualizing if it satisfies the following:
(1) C is finitely generated;
(2) the homothety map x&: R — Hompg(C, C) is an isomorphism; and
(3) ExtR(C,C) =0 for all i > 0.
The set of isomorphism classes of semidualizing R-modules is denoted Gy(R), and
the isomorphism class of a module C' is denoted [C].
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An R-module D is point-wise dualizing if it is semidualizing and idg,, (D) < 00
for each maximal ideal m. The R-module D is dualizing if it is semidualizing and
has finite injective dimension.

Example 2.1.9. It is straightforward to show that the free R-module R! is semid-
ualizing.

Definition 2.1.10. The ring R is point-wise Gorenstein if it is locally Gorenstein,
that is, if idg,, (Rm) < oo for each maximal ideal m. The ring R is Gorenstein if
ldR(R) < 00.

Example 2.1.11. It is straightforward to show that the free R-module R! is (point-
wise) dualizing if and only if R is (point-wise) Gorenstein.

If R is Gorenstein, then it is point-wise Gorenstein. If D is dualizing for R, then
it is point-wise dualizing. The converses of these statements hold when dim(R) <
oo, and they fail when dim(R) = oo. Nagata’s famous example of a noetherian ring
of infinite Krull dimension is point-wise Gorenstein and not Gorenstein.

Here is what we mean when we say that duality with respect to a semidualizing
module is, in a sense, best. We shall see in Proposition below that the
conditions in this result are equivalent to every finitely generated projective R-
module being totally C-reflexive.

Proposition 2.1.12. Let C be a finitely generated R-module. The following con-
ditions are equivalent:
(i) C is a semidualizing R-module;
(ii) R is a totally C-reflexive R-module; and
(iii) C is a totally C-reflexive R-module and Anng(C) = 0.

PRrROOF. Let f: Hompg(R,C) — C be the Hom cancellation isomorphism given
by f(v) = (1). It is readily shown that the following diagrams commute:

R xe Hompg(C,C)
50 ElHOmR(f,C) (2.1.12.1)
Homp(Hompg(R,C),C)
(SC
C Hompg(Hompg(C,C),C)
idci \LHomR(Xg7C) (21122)
C S Homp(R,C).

— . For i > 1, we have Ext’ (R, C) = 0 because R is projective, and
Exth(Hompg (R, C),C) = Exto(C, C).

In particular, we have Exts(Homp(R,C),C) = 0 for all i > 1 if and only if
Ext}{(C’, C) = 0 for all ¢ > 1. Furthermore, diagram shows that 0
is an isomorphism if and only if Xg is an isomorphism. Thus C' is semidualizing if
and only if R is totally C-reflexive.

= ({ii). Assume that C is semidualizing. The isomorphism Homg(C, C) 2
R implies that Anng(C) C Anng(R) = 0.
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We next show that C is totally C-reflexive. For ¢ > 1, we have
Ext%(C,C) =0 and Ext% (Home (C, C), C) = Exth(R,C) = 0

because C' is semidualizing. Since Xg is an isomorphism, diagram shows
that (58 is an isomorphism, so C' is totally C-reflexive.

= (). Assume that C is a totally C-reflexive R-module and Anng(C) =
0. Note that it follows that Suppr(C) = V(Anng(C)) = V(0) = Spec(R). It also
follows that Ext}i(C, C) = 0, so it remains to show that Xg is an isomorphism. We
have 0 = Anng(C) = Ker(xZ), so xZ is injective. Set N = Coker(xZ) and consider
the exact sequence

R
0 — R X% Hompg(C,C) — N — 0.
The associated long exact sequence in Extr(—, C) begins as follows

Hompg (x&,C)
5

0 — Hompg(N, C) — Homg(Hompg(C, C),C) Hompg (R, C).

The fact that Homg(x&,C) is an isomorphism follows from diagram (2.1.12.2)
because C' is totally C-reflexive. We conclude that Hompg(N,C) = 0. The next
piece of the long exact sequence has the following form

Hom p(Homp(C, C),C) = Homp(R,C) — Exth(N,C) — Exth(Homp(C,C),C)

=0

so Exti(N,C) = 0. Other pieces of the long exact sequence have the form
Ext}; ' (R, C) — Exti(N, C) — Extz(Homp(C,C),C)
—_——
=0 =0
and it follows that Ext’y (N, C) = 0 for all i > 0.
We will be done once we show that N = 0, so suppose that N # 0 and let
p € Suppr(N). It follows that p € Spec(R) = Suppr(C), so C, and N, are non-

zero finitely generated R,-modules. From [16} (16.6)] it follows that there exists
some ¢ > 0 such that

0 # Exty (Ny, Cp) = Exti(N,C), =0

which is clearly a contradiction. [

Proposition 2.1.13. Let C be a semidualizing R-module, and let P be a finitely
generated projective R-module.

(a) If G is totally C-reflexive, then so is G Qg P.

(b) The modules P and C ®g P are totally C-reflexive.

(c) For each integer n > 0, the modules R™ and C™ are totally C-reflexive.

PRrROOF. @ Since P is a finitely generated projective R-module, there is a
second finitely generated projective R-module @) such that P & @ = R"™ for some
integer n > 0. Since G is totally C-reflexive we conclude from Proposition
that G" = (G ®g P) @ (G ®@g Q) is totally C-reflexive and then that G ® g P and
G ®pr Q are totally C-reflexive.

(]E[) Propositionshows that R and C are totally C-reflexive, so the desired
conclusions follow from part @ using G = R and G = C.

This is the special case of part (]ED with P = R". (I

The following corollary is a complement to the first statement in Example
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Corollary 2.1.14. If C is a cyclic semidualizing R-module, then C = R.

PrOOF. Assuming that C is a cyclic semidualizing R-module, the equality in
the next sequence is from Proposition 2.1.12]
C=~R/Amg(C)=R/(0) =R

and the isomorphisms are standard. (Il

The next example shows that when C is totally C-reflexive, one may have
Anng(C) # 0. In other words, the conditions in Proposition [2.1.12] are not equiva-
lent to the condition “C is totally C-reflexive”.

Example 2.1.15. Let k be a field, and set R = k x k. The subset [ =0x k C R is
an ideal, and we set C = R/I. Tt is straightforward to show that the natural map
¢: Hompg(R/I,R/I) — R/I given by ¢(a) = a(1) is an R-module isomorphism.
It is routine to show that R/I is projective as an R-module. This explains the
vanishing in the next sequence

0 = BExth(R/I, R/I) = Ext'(Homg(R/I,R/I), R/I)

while the isomorphism is induced by . There is a commutative diagram of R-
module homomorphisms

Homp(R/I, R/T) —=——> R/I
HomR(w,R/I)lZ 52%

Homg(Homg(R/I,R/I),R/I)

and it follows that 52% is an isomorphism. By definition, this implies that C = R/I
is C-reflexive. However, we have Anng(C) =1 # 0, so C' is not semidualizing.

Proposition 2.1.16. Let C be a semidualizing R-module.
(a) One has Suppg(C) = Spec(R) and Assg(C) = Assg(R).
(b) One has dimg(C) = dim(R) and Anng(C) = 0.
(¢) Given an ideal I C R, one has IC = C if and only if I = R.
(d) An element € R is R-regular if and only if it is C-regular.

PrOOF. @ and (]ED The equality Anng(C) = 0 is shown in Proposition [2.1.12
This implies Suppz(C) = V(Anng(C)) = V(0) = Spec(R), and the equality
dimg(C) = dim(R) follows directly. The isomorphism Hompg(C, C) = R implies

Assp(R) = Assg(Hompg(C, C)) = Suppg(C) N Assg(C)
= Spec(R) N Assg(C) = Assr(C).

One implication is immediate. For the nontrivial implication, assume that
IC = C. It follows that, for each maximal ideal m C R, we have I;;,Cy, = C,; since
Cw # 0, Nakayama’s lemma implies that I, = Ry, and thus I € m. Since this is so
for each maximal ideal, we conclude that I = R.

@ Assume without loss of generality that x is not a unit in R, i.e., that zC # C.
Then z is a non-zerodivisor on R if and only if & & Upeassy(r)P = Upeassr(0)P;
that is, if and only if z is a non-zerodivisor on C.

Corollary 2.1.17. Let M be a non-zero R-module. If C is a semidualizing R-
module, then Hompg(C, M) # 0 and C @ g M # 0.
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PROOF. Proposition [2.1.16fla) and Lemma O

2.2. Base Change

Proposition 2.2.1. Let ¢: R — S be a flat ring homomorphism, and let C be a
finitely generated R-module. If C' is a semidualizing R-module, then C Qr S is a
semidualizing S-module. The converse holds when ¢ is faithfully flat.

PROOF. The S-module C' ®pg S is finitely generated because C' is a finitely
generated R-module. For i > 1, we have

Exti(C ®r S,C ®r S) = Exth(C,C) QR S.

If Ext’z(C,C) = 0, then this shows that Exts(C ®r S,C ®r S) = 0. The converse
holds when ¢ is faithfully flat.
Finally, there is a commutative diagram

S — R®rS
Xg@RSl ixgv@}zs

Homs(C @ S,C ®p 5) <5 — Homp(C,C) @r S

where the unlabeled isomorphisms are the natural ones. If the homothety map Xg
is an isomorphism, then so is x& ®z S, and so the diagram shows that X(S}@R g is
an isomorphism. Conversely, if Xg‘@g g is an isomorphism, then the diagram shows
that x& ®pr S is an isomorphism; if we also assume that ¢ is faithfully flat, then
XZ is an isomorphism. This yields desired result. O

The next result is from unpublished notes by Foxby. See also Avramov, Iyen-
gar, and Lipman [7]. It will be quite handy, saving us from worrying about certain
commutative diagrams. Note that it can also be derived as a corollary of Proposi-
tion [5.4.1] in the special case M = R.

Proposition 2.2.2. Let C be an R-module.

(a) If there is an R-module isomorphism o: R — Homp(C,C), then the natural
homothety map x&: R — Homg(C,C) is an isomorphism.

(b) Assume that C is finitely generated. If for every mazimal ideal m C R
there is an Ry -module isomorphism Ry = Hompg(C,C)y, then the natural
homothety map x&: R — Hompg(C,C) is an isomorphism.

PROOF. () Let idc: C — C be the identity map, and set u = a~*(id¢). Using
the condition ide = a(u) = ua(l), it is straightforward to show that u is a unit.
Furthermore, we have Xg = wua. Since u is a unit and « is an isomorphism, it
follows that xZ is an isomorphism.

(]ED The assumption Ry = Hompg(C,C)nm = Hompg, (Cy, Cn) conspires with
part @ to imply that the natural homothety map x?;‘: : Ry — Homp,, (Cn, C) is
an isomorphism for each maximal ideal m C R. Furthermore, for each m there is a
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commutative diagram

Hompg _(Cu, Cn)

<
Qs
5
-
IR

Hompg(C, C)n

where the unspecified map is the natural isomorphism. It follows that (Xg)m is an
isomorphism for each m, and so Xg is an isomorphism. ([

Here is a compliment to part of Proposition It is a local-global principle.

Proposition 2.2.3. Let C be a finitely generated R-module. The following condi-
tions are equivalent:
(i) C is a semidualizing R-module;
(ii) U=C is a semidualizing U~ R-module for each multiplicatively closed sub-
set U C R;
(ii) Cy is a semidualizing Ry-module for each prime ideal p C R; and
(iv) Cu is a semidualizing Ry -module for each mazimal ideal m C R.

Proo¥r. The implication (i) = is in Proposition use the flat homo-
morphism R — U~'R. The implications (iil) = (iv]) are straightforward.

= . Assume that Cy, is a semidualizing R,,-module for each maximal
ideal m C R. For each 7 > 1 and each m this provides the vanishing

Exth(C, C)m = Exth, (Cr,C) =0

where the isomorphism is standard because C is finitely generated and R is noether-
ian. Since this is so for each maximal ideal m, we conclude that Ext%(C,C) = 0
for each ¢ > 1. Furthermore, for each m, we have Ry, = Homg, (Cpn,Chn) =
Hompg(C, )y, so Proposition implies that xZ is an isomorphism. Hence,
C is a semidualizing R-module, as desired. O

Remark 2.2.4. With the notation of Proposition[2.2.1] assume that C' is dualizing
for R. While C ®g S will be semidualizing for S, it may not be dualizing for S.
For example, let R be a field and let .S be a non-Gorenstein local R-algebra; then
R! is dualizing for R, but S!' = R!' ®y S is not dualizing for S.

On the other hand, the U~'R-module U ~'C will be dualizing because of the
inequality idy-1z(U~1C) <idgr(C) < oo.

Corollary 2.2.5. Let C be a finitely generated R-module, and let P be a finitely
generated projective R-module of rank 1.
(a) The R-module P is semidualizing.
(b) The R-module C ®r P is semidualizing if and only if C is semidualizing.
(¢) The R-module C is (point-wise) dualizing if and only if CQg P is (point-wise)
dualizing.

PrOOF. By assumption, we have P, = Ry, for each maximal ideal m C R.
Since Ry, is a semidualizing Ry-module, Proposition [2.2.3] implies that P is a
semidualizing R-module. This establishes part @ Part follows similarly, using
the sequence of isomorphisms

(C®R-P)mg m®Rumg m®RmngCm~
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Since P is projective and non-zero, we have idg(C ®r P) = idg(C), and this
explains part . ([

Part @ of the next result generalizes Proposition [2.1.16f{d]). See also Corol-
lary [3.4.3]

Theorem 2.2.6. Let C be a semidualizing R-module, and let x = x1,...,x, € R.

(a) The sequence x is C-regular if and only if x is R-reqular.

(b) Ifx is R-regular, then C/xC is a semidualizing R/xR-module.

(¢) Given a proper ideal I C R, one has depthp(I; C') = depth(I; R). In partic-
ular, if R is local, then depthy(C) = depth(R).

Proor. Part follows from part @ We prove parts @ and (b)) by induction
on n. For the base case n = 1, part @ is contained in Proposition [2.1.16/(d]). Thus,
for the base case, we assume that z; is R-regular (and hence C-regular) and prove
that C = C/x1C is a semidualizing R-module where R = R/z1R.

We claim that Ext’(C,C) = 0 for all 4 > 1. To see this, consider the following
sequence, which is exact since x; is C-regular:

0—-CZCc—C—o. (2.2.6.1)

Since Ext%(C,C) = 0, the associated long exact sequence in Extg(C, —) yields the
desired vanishing.
The fact that x; is R-regular and C-regular yields an isomorphism

Ext(C,C) = Exty(C, C) (2.2.6.2)

for i > 0; see, e.g., [16l p. 140, Lem. 2]. Because of the previous paragraph, we
conclude that Ext=(C,C) = 0 for all i > 1.
There is a commutative diagram of R-module homomorphisms

Z1

0 R R

R
xgl” ng/” ”YJ/

0 — Homp(C, C) —2> Homp(C,C) — Homp(C,C) —=0

where v(7)(c) = T¢é. The top row of this diagram is exact because x; is R-regular.
The bottom row is the sequence obtained by applying the functor Hompg(C, —) to
the exact sequence , and it is exact because Extp(C,C) = 0. Hence, the
snake lemma implies that v is an isomorphism. This is the first step in the next

sequence, and the second step is from (2.2.6.2)):
R =~ Homg(C, C) = Homg(C, O).
These are R-module isomorphisms of R-modules, hence R-module isomorphisms.

Proposition @ implies that xg is an isomorphism, so C is a semidualizing
R-module. This completes the base case. The induction step is routine. [

Corollary 2.2.7. Let x = z1,...,x, € R be an R-regular sequence. If C is
a (point-wise) dualizing R-module, then C/xC is a (point-wise) dualizing R/xR-
module.



2.2. BASE CHANGE 15

PROOF. Set R = R/xR and C = C/xC.

Assume first that C is point-wise dualizing. Theorem implies that x is
C-regular and that C is a semidualizing R-module. For each maximal ideal m C R
such that x € m, set m = m/xR. From [8] (3.1.15)], we have

ldﬁﬁ(éﬁ) = idRm (Cm) —n < oQ.

Since every maximal ideal of R is of the form m, it follows that C is point-wise
dualizing for R.

Assume next that C is dualizing, and set d = idg(C) < oco. For each maximal
ideal m C R, we have

idg_(Cw) = idR, (Cn) —n < d —n.

As every maximal ideal of R is of the form M, we conclude that idz(C) < d—n < oo.
It follows that C' is dualizing for R. O

Corollary 2.2.8. Let C be a semidualizing R-module of finite projective dimension.
Then C' is a rank 1 projective R-module. If R is local, then C = R.

PROOF. Assume first that R is local. The Auslander-Buchsbaum formula ex-
plains the first equality in the next sequence

pdg(C) = depth(R) — depthx(C) =0

and the second equality is from Corollary [2.2.6(c). This shows that C' is projective,
and, since R is local, that C' is free. Hence C = R™ for some integer n > 1. From
the isomorphisms

R = Hompg(C,C) = Homp(R", R") = R™

it follows that n =1 and so C' = R.

Assume now that R is not necessarily local. For each maximal ideal m C R,
the Ry-module Cy, is semidualizing and has finite projective dimension, and so we
have Cy, = Ry, for each m. It follows that C is a rank 1 projective R-module. [

Corollary 2.2.9. The ring R is (point-wise) Gorenstein if and only if R has a
(point-wise) dualizing module of finite projective dimension.

PRrROOF. If R is Gorenstein, then R is a dualizing module for R that has finite
projective dimension.

Conversely, assume that P is a dualizing module for R that has finite projective
dimension. Corollary implies that P is a rank 1 projective module. Since P
is projective and has finite injective dimension, it follows that the module R =
Homp (P, P) has finite injective dimension, that is, that R is Gorenstein.

Since the conditions “point-wise Gorenstein” and “point-wise dualizing” are
local conditions, the equivalence of point-wise conditions follows from the non-
point-wise statements proved above. (I

The next result is like [8] and has a similar proof.

Proposition 2.2.10. Let C be a finitely generated R-module. Then C is semidu-
alizing for R if and only if the following conditions are satisfied:
(1) For each p € Spec(R) such that depth(Ry) > 2, one has depthp (Cp) > 2;
(2) For each p € Spec(R) such that depth(R,) < 1, there is an Ry-isomorphism
R, = Hompg, (Cy,Cy) is an isomorphism; and
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(3) One has Ext's(C,C) =0 for all i > 1.

PROOF. Assume first that C' is semidualizing. Then Ext%(C,C) = 0 for all
1 > 1, by definition. Proposition shows that C), is semidualizing for R, for
each p € Spec(R). So the map ng : R, — Hompg, (Cy, Cy) is an isomorphism, and
depthp (Cy) = depth(Ry) by Theorem.

Assume next that conditions 1] are satisfied. To show that C is semid-
ualizing, it suffices to show that the homothety map x&: R — Hompg(C,C) is an
isomorphism. Combining condition and Proposition , we conclude that
for each p € Spec(R) such that depth(R,) < 1, the homothety homomorphism

ng : R, — Hompg, (Cy, Cy) is an isomorphism.

The condition Ker(xZ) C R implies that depthp, (Ker(xZ&)y) > 1 whenever
depth(R,) > 1. On the other hand, when depth(R,) = 0, the map Xg; is an
isomorphism, so we have Ker(y&), = Ker(xg‘:) = 0 for all such primes. In par-
ticular, there are no primes p such that depthp (Ker(x&),) = 0, implying that
Assp(Ker(xZ)) = 0. Hence, we have Ker(x&) = 0, so x& is injective.

To show that xZ is surjective, we similarly show that there are no primes p such
that depthp (Coker(x&),) = 0. Since x& is injective, we have an exact sequence

R
0 — R X% Hompg(C,C) — Coker(xZ) — 0

which we localize at a prime p to obtain the next exact sequence
Rp

X
0 — Ry, —% Hompg, (Cy, Cp) — Coker(xZ), — 0. (2.2.10.1)

If depth(R,) < 1, then Xgi is an isomorphism, so Coker(y&), = 0 and it follows
that depthp_ (Coker(xE),) = oo in this case. Assume that depth(R,) > 2. Since
depthp (Cy) > 2 in this case, we have

depthp (Homp, (Cp, Cp)) > min{2,depthy (Cp)} = 2.

Hence, the sequence (2.2.10.1)) implies that
depthp, (Coker(x&)p) > min{depth(R,) — 1,depthp (Hompg, (Cy, Cy))} 2> 1
as desired. (]

Definition 2.2.11. Assume that R is local with residue field k. The type of a
finitely generated R-module N is rankk(Ext%epthR(N)(k,N)), and N is mazimal
Cohen-Macaulay if depthp(N) = dim(R).

Assume that R is Cohen-Macaulay and local. A canonical module for R is a
maximal Cohen-Macaulay R-module of finite injective dimension and type 1.

Definition 2.2.12. Assume that R is Cohen-Macaulay, though not necessarily
local. A canonical module for R is a finitely generated R-module C' that is local
canonical, that is, such that, for each maximal ideal m C R, the localization Cl, is
a canonical module for Ry,.

Corollary 2.2.13. An R-module C' is point-wise dualizing if and only if R is
Cohen-Macaulay and C is a canonical module for R.
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PrROOF. Since the conditions under consideration are local by definition, we
may assume for the rest of the proof that R is local. Under this assumption, note
that C' is dualizing if and only if it is point-wise dualizing.

If R is Cohen-Macaulay and C' is a canonical module for R, then C is dualizing
for R by [8] (3.3.4(d)) and (3.3.10(d)(ii)].

For the converse, assume that C' is dualizing for R. Since C is a non-zero
finitely generated R-module of finite injective dimension, a corollary of the new
intersection theorem implies that R is Cohen-Macaulay, and it follows from The-
orem that C' is maximal Cohen-Macaulay. To show that C has type 1,
let x = x1,...,7, € R be a maximal R-regular sequence. Set R = R/xR and
C = C/xC. Corollary implies that C is a dualizing R-module. Since R is
artinian and local, this implies that C' =2 E° for some ¢ > 1, where E is the injective
hull of the residue field of R. Hence, we have

02

R =~ Homy(C,C) = Homg(E®, E°) 2 R

From this, we conclude that ¢ = 1, so C' = E. In other words, the type of C is 1,
that is, the type of C is 1, as desired. O

Proposition 2.2.14. Let ¢: R — S be a ring homomorphism such that S is a
finitely generated projective R-module. (Note that this implies that S is noetherian.)

(a) If C is a semidualizing R-module, then Hompg(S,C) is a semidualizing S-
module.

(b) If D is a dualizing R-module, then Hompg(S, D) is a dualizing S-module.

PROOF. (ED Since S is finitely generated and projective as an R-module, it
is totally C-reflexive by Proposition Since C is finitely generated, the
module Hompg(S, C) is finitely generated over R. Since the S-module structure
on Hompg(S,C) is compatible with the R-module structure via ¢, it follows that
Homp (S, C) is finitely generated over S.

In the next sequence, the first isomorphism is from the natural biduality map
the second isomorphism is induced by tensor-cancellation, and the third isomor-
phism is Hom-tensor adjointness:

S = Homp(Hompg(S,C),C)
>~ Hompg(S ®s Hompg(S,C), C)
>~ Homg(Hompg(S, C), Homg(S, C)).

It is straightforward to show that these isomorphisms are S-linear. From Proposi-
tion [2.2.2] we conclude that XﬁomR(S,C) is an isomorphism.

Let I be an injective resolution of C' over R. It is straightforward to show
that Hompg(S, ;) is an injective S-module for each j. Since S is projective as an
R-module and the augmented resolution *7 is exact, the complex Hompg(S, *1) is
exact. It follows that Homp(S,I) is an injective resolution of Homp(S,C) as an
S-module. (In particular, we have idg(Hompg(S,C)) < idgr(C).) This yields the
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first isomorphism in the next sequence:
Exts(Hompg(S, C), Homg(S,C)) = H_;(Homg(Homg(S, C), Homp(S, I))
~H_,(Homg(S ®s Hompg(S,C),I)
> H_;(Homg(Hompg(S,C),I)
=~ BExth (Homg(S, C), C).

The second isomorphism is induced by Hom-tensor adjointness. The third isomor-
phism is induced by tensor-cancellation. The fourth isomorphism follows from the
fact that I is an injective resolution of C' over R. Since S is totally C-reflexive, we
have Exty(Hompg(S, C), Homg(S, C)) = Ext's(Homp(S,C),C) =0 for all i > 1, so
Homg(S, C) is a semidualizing S-module.

(]E[) Assume that D is a dualizing R-module. Part @ implies that Hompg(S, D)
is a semidualizing S-module. The proof of part (fa)) shows that ids(Homp(S, D)) <
idr(D) < o0, so Hompg(S, D) is dualizing for S. O

Proposition 2.2.15. Let ¢: R — S be a flat local ring homomorphism, and let C
be a finitely generated R-module. The S-module C ®pg S is dualizing for S if and
only if C is dualizing for R and the ring S/mS is Gorenstein.

PROOF. Proposition implies that C is semidualizing for R if and only if
C ®p S is semidualizing for S. From [8], (1.2.16(b)] we know that typegs(C ®p S) =
typer(C) type(S/mS), and [8, (2.1.7)] says that S is Cohen-Macaulay if and only
if R and S/mS are Cohen-Macaulay. Thus, the desired conclusion follows from

Corollary [2.2.13 O

2.3. Examples

To this point, we have not provided an example of a nontrivial semidualizing
module, that is, one that is not projective and not dualizing. The goal of this
subsection is to provide such examples.

Example 2.3.1. Let A be a local Gorenstein ring, and set R = A[X,Y]/(X,Y)?.
Then R is a local Cohen-Macaulay ring, and it is free (of rank 3) as an A-module.
Also, we have type(R) = 2, so R is not Gorenstein. The R-modules R = R®4 A
and DT = Hom 4 (R, A) are semidualizing. Moreover, the R-module D* is dualizing

by Proposition [2.2.14{[b]), and we have D® 2 R by Example [2.1.11

Example 2.3.2. Let (R,m,k) be a local artinian ring that is not Gorenstein,
with dualizing module D 2 R; for instance, if A is a field, then the ring from
Example satisfies these conditions. The ring S = R[U,V]/(U,V)? is a local
Cohen-Macaulay ring with residue field &, and S is free (of rank 3) as an R-module.
Also, we have type(S) = 2type(R), so S is not Gorenstein. The following S-modules
are semidualizing

S=S®rR B = Hompg(S, R)
C=S®grD"? D’ = Homg(S, DF)

and D¥ is dualizing; see Propositions and [2.2.141 We claim that the modules
B and C have infinite projective dimension and are not dualizing. (In fact, we also

have B 2 C, but we will not show this.) Note that D 2 S by Example [2.1.11
i

Moreover, since S is local, Corollary [2.2.8| implies that pdS(Ds) = 00.
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Since D® 2 R, Corollary implies that D? is not cyclic. It follows that
C = S®p D" is not cyclic, hence C' % S. As in the previous paragraph, this implies
that pdg(C) = oo.

To show that B is not dualizing, we need to show that typeg(B) = type(R) > 2;
see Corollary Since S is artinian, the equality typeg(B) = type(R) follows
from the next sequence

Homs(k, B) = Homg(k,HomR(S, R)) = HOII’IR(S Rs k, R)
&~ Homp(k, R) = kPR,

Of course, we have type(R) > 2 since R is not Gorenstein.
Suppose by way of contradiction that pdg(B) < oo. Corollary shows that
B = S, hence the second isomorphism in the next sequence:

kPR > Homg (k, C') = Homg(k, ) = k¥Pe(9) o g2 tvpe(R),

The first isomorphism is from the previous paragraph. This implies that type(R) =
0, a contradiction, so pdg(B) = cc.

The fact that C' is not dualizing for S follows from Proposition because
the ring S/mS = k[U, V]/(U?,UV,V?) is not Gorenstein.

Direct products provide another way to build nontrivial semidualizing modules.
We provide some background since we will use the ideas in a couple of places.

Fact 2.3.3. Let Ry and R be noetherian rings and set R = Ry X Rs. Every
R-module is (isomorphic to one) of the form M; x My with the R-module structure
given coordinate-wise as (r1,72)(m1, ms2) = (rymq,rams). Indeed, if e; = (1,0) and
€y = (O, 1)7 then Ml = 61'M.

Each prime ideal is of the form P = P; X Ry, or P = R; X P, for some
P; € Spec(R;), and P is a maximal ideal of R if an only if P; is a maximal ideal
of R;. There is an isomorphism of local rings Rp = (R;)p,. Moreover, we have
Mp = (M;)p,. This isomorphism is verified by first showing that R., & R; and
M,, = M;.

Proposition 2.3.4. Let Ry, ..., R, be noetherian rings, and set R = Ry X--- X R,,.
There is a bijection w: So(Ry)x---x So(R,) — So(R) given by ([C1],...,[Chn]) —
[Cy X -+ X Cy).

PROOF. We prove the case when n = 2; the case when n > 2 follows readily
by induction on n.

First, we show that the map 7 is well-defined. Let [C;] € &y(R;) for i =
1,2. We need to show that the Ry x Ro-module C7 x Cy is semidualizing. (It is
straightforward to show that the class [C; x C5] is independent of the choice of
representatives of the classes of the [C;].) Proposition says that it suffices to
show that the localization (Cy x Cs)p is an (R; X Rs)p-semidualizing module for
each prime ideal P C Ry x R,. Fact[2.3:3]says that P is of the form P = P; x Ry
or P = Ry x P, for some P; € Spec(R;), and there is an isomorphism (C7 X C3)p
(Ci)p, as a module over the ring (Ry x Ra)p = (R;)p,; since C; is a semidualizing
R;-module, this localization is semidualizing for (R;)p,.

To show that 7 is surjective, let [C] € Sg(Ry; X Rz). Fact says that
C = () x (5 for the R;-modules C; = e;C. Since C is finitely generated, so are the
C;. The argument of the previous paragraph shows that, since C is a semidualizing
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R1 X Ro-module, the C; are semidualizing R;-modules for ¢ = 1,2. Thus, we have
[C] = = ([C1], [Ca)).
Finally, to show that 7 is injective, assume that ([Bi], [Bs]) = 7([C1], [C2]),

that is, that there is an isomorphism of Ry X Ro-modules By X By = Cy x Cs. For
1 = 1,2 this implies that
Bi = ei(Bl X Bg) = ei(C’l X 02) = CZ

so we have ([Bi], [Bz]) = ([C1], [C2]). 0
Remark 2.3.5. In the proof of the injectivity of 7 in Proposition note that
we cannot simply check that the kernel of 7 is trivial. Indeed, the sets G(R;) and
Sp(R1 X Ry) do not have any meaningful group structure (that we know of) so it
does not make sense for 7 to be a group homomorphism.

Proposition 2.3.6. Let k be a field, and let R and S be k-algebras. If B is
a semidualizing R-module, and C is a semidualizing S-module, then B ® C is
semidualizing for R ®y S.

PROOF. From Proposition [A.T.5] there are R ®j S-isomorphisms
Exthe, s(B ®i C, B ®), C) = &'_, Ext}(B, B) @ Extg /(C,C)
for each ¢ > 0. Hence, the condition Exto(B,B) = 0 = Exti(C,C) for i > 1
implies that Extge o(B ®x C, B®; C) =0 for i > 1. When i = 0, we have
Hompg,s(B ® C, B ®;, C) =2 Homp(B, B) ®, Homg(C,C) 2 R®p S
so the desired conclusion follows from Proposition . O



CHAPTER 3

Foxby Classes

3.1. Definitions and Basic Properties
We begin with a spot of motivation.

Remark 3.1.1. An analysis of the proof of Theorem [2.2.6] shows that there are
three conditions that allow us to conclude that C' is a semidualizing R-module:

(1) Torf(C,E) =0foralli>1;
(2) Ext®(C,C ®r R) = Ext%(C,C) =0 for i > 1; and
(3) there is a natural isomorphism v: R — Hompg(C,C) = Homg(C,C ®g R).
These are essentially the defining conditions for membership in the Auslander class.
Definition 3.1.2. Let M and N be R-modules. The natural evaluation map
M. M ®rHomgr(M,N) - N
is the R-module homomorphism given by £ (m ® ¢) = 1(m). The natural map
M N — Hompg(M,M @ N)
is the R-module homomorphism given by ¥4/ (n)(m) = m @ n.
Remark 3.1.3. Let f: M — M’ and g: N — N’ be R-module homomorphisms.

It is straightforward to show that the maps ¢ and & from Definition are
well-defined R-module homomorphisms and that the following diagrams commute:

Hompg(M’',N
M ©g Homp(M', N) f®r R( )

M’ ®R HOIDR(M/,N)

ZVI@RHomR(f,N)l lgf{,"
I3
M@RHOHIR(M,N) N
M®RHomR(M,g)l lg
e,
M @ Homp(M, N") al N’

HOmR(f,M/®RN)

HomR(M’,M’®RN) HomR(M,M’®RN)

v T THomR(M,f@)RN)
M
N i Homp(M, M @5 N)
Q\L \LHomR(M,M(@Rg)
’Y]J\VJI/ ,
N’ HOHlR(M,M(X)RN).

21
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The classes defined next are collectively known as Foxby classes. The definitions
are due to Foxby; see Avramov and Foxby [5] and Christensen [9]. Note that we
do not assume in the definition that C is semidualizing.

Definition 3.1.4. Let C be a finitely generated R-module. The Auslander class
Ac(R) is the class of all R-modules M satisfying the following conditions:
(1) the natural map 7{;: M — Hompg(C,C ®g M) is an isomorphism; and
(2) Torf(C,M) =0 = Ext%(C,C ®@r M) for all i > 1.
The Bass class Bo(R) is the class of all R-modules M satistying the following:
(1) the evaluation map £§;: C ®g Homg(C, M) — M is an isomorphism; and
(2) Ext(C, M) =0 = Tor(C,Homg(C, M)) for all i > 1.

The following example is readily verified.

Example 3.1.5. In the case C = R: the classes Ar(R) and Br(R) are both equal
to the class of all R-module.

Here is a useful property of Foxby classes.

Proposition 3.1.6. Let C be a finitely generated R-module, and let {My}ren be
a set of R-modules.

(a) One has [ cp My € Ac(R) if and only if My € Ac(R) for all X € A.
(b) One has I cp Mx € Bo(R) if and only if My € Bc(R) for all X € A.

In particular, the classes Ac(R) and Bo(R) are closed under coproducts and direct
summands.

PROOF. Recall that there is an isomorphism

a: C®r <H)\€AM)\) i HAEA(C®R M,\)

given by a(c® (my)) = (¢ ® my). Furthermore, we have
Tor?(C, Ioea M) = 11en Torl(C, M)

for all 4. Tt follows that Tor®(C, [Ixea Mx) = 0 for all 4 > 1 if and only if

Tor(C, M) =0 for all A € A and all 7 > 1.

For each p € A, let 6,: [[1c2(C ®r My\) — C ®r M, be given by 6,(xx) =
x,; in words, ¢, is the projection onto the uth coordinate. Because C is finitely
generated and R is noetherian, the map

A HOHIR(C, H)\GA(C Rr M)\)) — H)\GA HOHlR(C,C®R M)\)

given by ¢ — (d)0¢) is an isomorphism. A similar construction (using a degree-wise
finite free resolution of C) yields the second isomorphism in the following sequence,
while the first isomorphism is induced by a:

Ethé(Cv C ®r (HAGA M/\)) = EXt%<C> HA€A<C XR Mz\))
= ], cp ExtR(C,C ®r M)y).

We conclude that Exti(C,C ®g ([Tycpn M)

= 0 for all ¢ > 1 if and only if
Exth(C,C ®p My) =0 for all A € A and all i > 1.
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Finally, there is a commutative diagram of R-module homomorphisms:

c
TMrea Mx

HAeA M
yea ’Y}?{Ai ZlHomR(C,a)
[1yea Homp(C,C ®5 My) <=— Homp(C, [T, (C ®r My)).

Hompg(C,C ®r [Iyep Ma)

This shows that 'yfh M is an isomorphism if and only if [T, ’)/1\6/1,A is an isomor-
S

phism, that is, if and only if %\C;IA is an isomorphism for all A € A. This completes
the proof of part @
The proof of part (]ED is similar. O

Here is one of the most frequently used properties of Foxby classes. It says that
the Foxby classes satisfy the two-of-three property.

Proposition 3.1.7. Let C be a semidualizing R-module, and consider an exact
sequence of R-module homomorphisms

O—>M1i>M2i>M3—>O

(a) If two of the M; are in Ac(R), then so is the third.
(b) If two of the M; are in Bo(R), then so is the third.

PROOF. Assume first that My, My € Ac(R). Consider the long exact se-
quence in Tor(C, —) associated to the given sequence. Since Tor? (C,M;) =0 =
Tor?(C, My) for each i > 1, we see readily that Tor’(C, M3) = 0 for each i > 1. For
the remaining Tor-module, consider the following piece of the long exact sequence

0 — Tor®(C, My) — C @ My 255 C @p M.

Apply Homp(C, —) to obtain the bottom exact sequence in the following commu-
tative diagram

0 M,y My

c ~ (S P
’YMI\L= 'YMQ\L=

om(C,C
Hom(C, Tor1 (C, My))— Hom(C, C @ My) —2™ 9N Hom(c, 0 © My).

The top row is from our original sequence. Since f is injective, it follows that
Hompz(C,C'® f) is also injective, so Homg(C, Torf(C, M3)) = 0. Now apply Corol-
lary to conclude that Torf(C, M3) = 0.

It follows that we have an exact sequence

0— C®gr M %C(X)RMQ%C@RM?,—)O.
Consider the associated long exact sequence in Ext%(C, —). As above, it is straight-
forward to show that the vanishing Exty(C,C ®r M) = 0 = Exth(C,C ®@p Ma)
for all ¢ > 1 implies ExtR(C,C ®r M3) = 0 for all i > 1. Finally, the remainder of
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the long exact sequence fits into the bottom row of the next commutative diagram

M, ! M, g

c ~ c ~
oV i = oYy J/ =

Hom(C, C @ My) —2™ %) Hom(C,C ® My)

M3

c
’YMsl

Hom(C,C
@99 Hom(C,C @ Ms)

and a diagram chase shows that 7](\;43 is an isomorphism.
The other cases are verified similarly. |

Corollary 3.1.8. Let C be a semidualizing R-module, and consider an exact se-
quence of R-module homomorphisms

0—- M — My —---— M, — 0.

(a) If M; € Ac(R) for all i # j, then M; € Ac(R).
(b) If M; € Bo(R) for all i # j, then M; € Bo(R).

PROOF. By induction on n, using Proposition [3.1.7} O

Here is another frequently cited property of Foxby classes. Recall finite flat
dimension from the appendix.

Proposition 3.1.9. Let C' be a fintely generated R-module. The following condi-
tions are equivalent:

(i) The R-module C is semidualizing;

(ii) The class Ac(R) contains every R-module of finite flat dimension;
(iii) The class Ac(R) contains every flat R-module; and
(iv) The class Ac(R) contains a faithfully flat R-module.

PROOF. Let F be a flat R-module, and let P be a free resolution of C' such that
each P; is finitely generated. Lemma provides an isomorphism of complexes

Homp(P,C ®r F) 2 Homg(P,C) @r F
and it follows readily that there is an isomorphism
Exth(C,C ®p F) = Exth(C,C) @p F (3.1.9.1)
for each integer 4. Also, there is a commutative diagram

(e}
F— s Homp(C,C®xF)

lm NTMCCF (3.1.9.2)

Ry b 25"
R

Homp(C,C) ®@gr F

where the unspecified isomorphism is the tensor-cancellation isomorphism; see Def-
initions [2.1.5] [3.1.2] and [A.1.1] for the other maps.

= and = ({): The flatness of F' implies that Torl(C, F) = 0 for
all ¢ > 1. From the isomorphism we know that if Extiz(C,C) = 0 for all
i > 1, then EXt%(C, C ®pr F)=0for all ¢ > 1; and the converse holds when F is
faithfully flat. From the diagram we know that if Xg is an isomorphism,
then 7§ is an isomorphism; and the converse holds when F is faithfully flat. The
desired implications now follow.
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= (i) Assume that C is semidualizing and that fdg (M) is finite. Consider
a flat resolution

0—F,— - —F—M-—0.
Since each Fj is flat, condition (iii) implies that Fy, ..., F, € Ac(R). Corollary[3.1.§]
implies that M € Ac(R).
The implication == is routine. (]

The proof of the next result is similar to the proof of the previous result.

Proposition 3.1.10. Let C be a fintely generated R-module. The following condi-
tions are equivalent:
(i) The R-module C is semidualizing;
(ii) The class Bo(R) contains every R-module of finite injective dimension;
(iii) The class Bo(R) contains every injective R-module; and
(iv) The class Bo(R) contains a faithfully injective R-module.

Corollary 3.1.11. Let C be a semidualizing R-module and let M be an R-module.

Fiz a flat (e.g., projective) resolution F of M and an injective resolution I of M.

(a) One has M € Ac(R) if and only if Im(0F) € Ac(R) for some (equivalently,
every) © 2 0.

(b) One has M € Bc(R) if and only if Im(0}) € Ac(R) for some (equivalently,
every) ¢ = 0.

Here are two lemmas for later use.

Lemma 3.1.12. Let C be a semidualizing R-module, and fix an exact sequence

Qit1 0; Oi—1
XS X /S

X =...

(a) Assume that each X; € Ac(R) and that some Im(0;) € Ac(R). Then every
Im(9;) € Ac(R), and the induced sequence C @p X is exact.

(b) Assume that each X; € Bo(R) and that some Im(0;) € Bo(R). Then every
Im(9;) € Bo(R), and the induced sequence Hompg(C, X) is exact.

PROOF. Set M; = Im(9;) for each 4, and consider the following exact se-
quence:

Since each X; € Ac(R) and at least one M; € Ac(R), a straightforward induction
argument using Proposition @ shows that every M; is in A¢(R). Hence, ap-
plying the functor C @ g — to the exact sequence (3.1.12.1]) yields an exact sequence

0 -C®rMiy1 > CRrX;, > C®rM; —0.

It follows readily that the sequence C' ®r X is exact, as desired.
The proof of part (]ED is similar. O

Lemma 3.1.13. Let C be a semidualizing R-module, and let M and N be R-
modules.
(a) If Tor®(C,M) =0 for alli > 1 (e.g., if M € Ac(R)) and N € Ac(R), then
Ext%(C ®r M,C ®g N) = Exts (M, N) for alli > 0.
(b) If Exth(C,N) =0 for alli > 1 (e.g., if N € Bo(R)) and M € Bo(R), then
Exth(Hompg(C, M), Homg(C, N)) = Ext’ (M, N) for all i > 0.
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(¢) If Tor®(C, M) =0 for alli > 1 (e.g., if M € Ac(R)) and N € Bo(R), then
Tor(C ®@r M,Hompg(C, N)) = Torl(M, N) for all i > 0.

PRrROOF. We prove part @; the proofs of (]ED and are similar.
First, the following sequence deals with the case i = 0:

HomR(C Rr M,C QR N) = HOIHR(M, HomR(C,C®R N)) = HOHlR(M, N)

The first isomorphism is Hom-tensor adjointness, and the second one is from the
assumption N € Ac(R).

Second, we consider the case where M is projective and ¢ > 1. For this case, it
suffices to show that Ext’(C ®@r M,C @z N) = 0. If T is an injective resolution of
C ®pg N, then the first and fourth steps in the next sequence are by definition:

Ext'(C @r M,C ®r N) = H_;(Homg(C @ M, I))
=~ H_,(Hompr(M,Hompg(C,I)))
>~ Hompg(M,H_;(Homg(C,1)))
=~ Homp (M, Ext%(C,C ®@r N))
=0.

The second step is Hom-tensor adjointness. The third step follows from the assump-
tion that M is projective, and the last step is justified by the condition N € A¢(R).
For the remainder of the proof, fix an exact sequence

0-MLPLM—o (3.1.13.1)

such that P is projective. From the long exact sequence in Tor g(C, —), the condition
TorlR(C’, M)=0= TorZR(C, P) for all i > 1 implies that Torf%( ,M') = 0 for all
12> 1.

Finally, we prove the result by induction on ¢ > 1.

Base case: i = 1. Since Tor*(C, M) = 0, the long exact sequence in Tor?(C, —)

associated to (3.1.13.1)) yields an exact sequence

0> Cor M 25, copp £289, C g M — 0. (3.1.13.2)
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Using the vanishing guaranteed by the second part of this proof, the long exact
sequence in Extrp(—,C ®pg N) implies that the third column of the following com-
mutative diagram is exact:

0 0 0

Hom(M, N) = Hom(M,Hom(C,C @ N)) = Hom(C ® M,C ® N)
Hom(g,N) Hom(g,Hom(C,C®N)) Hom(C®g,CRN)
Hom(P, N) —= Hom(P,Hom(C,C ® N)) —= Hom(C ® P,C® N)
Hom(f,N) Hom(f,Hom(C,C®N)) Hom(C®f,CON)

Hom(M', N) iHom(M’,Hom(C,C@N)) iHom(C@M@C@N)

Ext! (M, N) Ext!(M,Hom(C,C ® N)) Ext'(C ® M,C ® N)

0 0 0.

The first and second columns are long exact sequences associated to (3.1.13.1)).
Half of the unspecified horizontal isomorphisms are induced by the isomorphism

7C: N =, Hompg(C,C ®g N), and the others are Hom-tensor adjointness. The
commutativity of the diagram yields the second step in the next sequence:

Ext' (M, N) = Coker(Hom(f, N))
= Coker(Hom(C ® f,C @ N))
~ Ext'(C ® M,C ® N).
The other steps follow from the exactness of the first and third columns of the
diagram. .
Induction step: Assume that ¢ > 2 and that Extgl(C ®r M1,C ®g N) =
Extly ' (My, N) for all R-modules M; such that Torf"‘(C7 M;) =0 for all j > 1.

Long exact sequences associated to (3.1.13.1) and (3.1.13.2) yield the next exact
sequences:

0 ——— Extl; '(M',N) Exts (M, N) 0

0 —Extly '(C®p M',C ®r N) — Exth(C ®p M,C @ N) — 0.
These sequences explain the first and third isomorphisms in the next sequence:
Extly (M, N) = Extly ' (M, N)
~ Extly '(C @r M',C ®g N)
>~ BExth(C ®@r M,C ®g N).

The second isomorphism is from the inductive hypothesis. (I



28 3. FOXBY CLASSES

3.2. Foxby Equivalence
Here is Foxby equivalence.

Theorem 3.2.1. Let C be a semidualizing R-module.
(a) An R-module M is in Ac(R) if and only if C @ M is in Bo(R).
(b) An R-module M is in B¢ (R) if and only if Hompg(C, M) is in Ac(R).
(¢) The functors C@r—: Ac(R) — Bc(R) and Hompg(C, —): Bo(R) — Ac(R)
are inverse equivalences.

Proor. @ We begin by noting the readily verified equality
o © (CORAS) =idegpm: C@r M — C @p M. (3.2.1.1)

For the first implication, assume that M € Ac(R). By definition, this means
that Torl*(C,M) = 0 = Ext%(C,C ®g M) for all i > 1, and the natural map
7§, M — Hompg(C,C ®r M) is an isomorphism. To show that C ®g M is in
Bc(R), we need to verify the following three conditions.

(1) Exth(C,C ®r M) = 0 for all i > 1: this is true by assumption.

(2) Torl(C,Hompg(C,C ®r M)) = 0 for all i > 1: this follows from our as-
sumptions because Tor(C, Homp(C,C ®p M)) = Torf(C, M) = 0 for each i > 1.

(3) The natural evaluation map {8 0 C@gHomp(C,C®rM) — C®pM is
an isomorphism: Since 71?4 is an isomorphism by assumption, it follows that C® R%\C/[
is an isomorphism. Equation implies that é-g@RM = (C®g 71(\}4)_1 is also
an isomorphism.

For the converse, assume that C ®p M is in B (R). Since this implies, in
particular, that Ext's(C,C ®@r M) = 0 for all i > 1, we need only check the next
two conditions to show that M € Ac(R):

(4) The natural map 7§;: M — Homg(C,C ®g M) is an isomorphism: By
assumption, the map 58®R a 1s an isomorphism. Using equation as in (3)
above, we conclude that C' ®g ~{; is an isomorphism. Set N = Coker(7{;) and
consider the exact sequence

C
M 2% Homp(C,C ®r M) — N — 0.
The right-exactness of C' @ — yields the next exact sequence

c
C@pM L0 ¢ @ Homp(C,C @p M) — C @p N — 0.

It follows that C ® g N = 0, so N = 0 by Corollary [2.1.17| Hence ~§; is surjective.
Set K = Ker(7{;) and consider the exact sequence

C
0— K — M % Homg(C,C ®@r M) — 0.
The long exact sequence in Tor’ (C, —) yields the next exact sequence

C
Torf!(C, Homp(C, C @ M)) — COK — COM — 2%, CoHom(C, CoM) — 0.

=0
It follows that C ® g K = 0, and so K = 0 by Corollary m Hence ~§; is also
injective.
(5) Torf*(C, M) = 0 for all i > 1: this follows from our assumptions along with
item (4) because Tor/*(C, M) = Tor?(C, Homp(C,C @r M)) =0 for all 7 > 1.
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This completes the proof of part @ The proof of part is similar, and
part follows from parts (ED and (]ED ([

Corollary 3.2.2. Let C' be a semidualizing R-module.
(a) If M is an R-module of finite flat dimension (e.g., if M is flat or projective),
then C @g M € Bo(R). In particular C € Bo(R).
(b) If M is an R-module of finite injective dimension (e.g., if M is injective),
then Homp(C, M) € Ac(R).

ProoOF. Part (af) follows from Proposition and Theorem [3.2.1{fa]), and
similarly for part (b). O

Proposition 3.2.3. Let C' be a semidualizing R-module. Let M be an R-module,
and fix a positive integer n.

(a) One has fdgr(M) < n if and only if C @r M admits a bounded resolution
0—-C®rF,— -+ —CRrFy— C®g M — 0 with each F; flat.

(b) One has fdg(Hompg(C, M)) < n if and only if M admits a bounded resolution
0—-CQ®rF,— - —CQRgrFy— M — 0 with each F; flat.

(¢) If M admits a bounded resolution 0 - CQrF,, — -+ > CQpFy—> M — 0
with each F; flat, then M € Bo(R).

PROOF. Step 1. Assume first that fdgr(M) < n and fix a bounded resolution

O—>Fn8—”>---8—1>Foa—o>M—>O

with each Fj; flat. Proposition [3.1.9]implies that each module in this sequence is in

Ac(R). Lemma [3.1.12f[a]) implies that the induced sequence

COrOn, ~ CQ®rO C®Rr0o

0—-C®grF, C ®r Fy

CRrM — 0

is exact, as desired.
Step 2. Assume next that M admits a bounded resolution

0—-CQ®rF,— - —CQQrFy— M —0 (3.2.3.1)

with each F; flat. Since each C®p F; is in Bo(R) by Corollary [3.2.2)(a)), we conclude
from Corollary (]ED that M € B¢ (R). Hence, Theorem [3.2.1)(b)) implies that
Hompg(C, M) € Ac(R). Since each module in the sequence (3.2.3.1)) is in Be(R),
Lemma implies that the next induced sequence is exact:

0 — Homg(C,C® F,) — --- — Homg(C,C ® Fy) — Homg(C, M) — 0.

~F, >~Fy

The isomorphisms are from the condition F; € Ac(R). This sequence shows that
fdr(Homp(C, M)) < n, as desired.

Step 3. Assume next that fdgr(Homp(C, M)) < n. Proposition implies
that Homg(C, M) € Ac(R), so we have M € Bo(R) by Theorem [3.2.1)(b). Step 1

implies that C' ® g Hompg(C, M) admits a bounded resolution
0—-CQ®grF, — - —>C®RF0—>C®RHOH1R(C,M) —0
~M

where each F; is flat. The isomorphism M = C ®r Hompg(C, M) is from the
condition M € Bo(R).
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Step 4. Assume that C ® g M admits a bounded resolution
0—-CQrF,—  —>CQrFy—CRrM —0
with each F; flat. An argument as in Step 3 shows that fdg(M) < n. O
Remark 3.2.4. Proposition augments Theorem as follows. Let F(R)<n

denote the class of all R-modules M such that fdg(M) < n, and let Fo(R)<,, denote
the class of all R-modules N that admit a bounded resolution

0—-C®rlF,— - —-CQRrlFy— N—0

with each F; flat.

Theoremshows that the functors C®g — and Hompg(C, —) provide inverse
equivalences between the Auslander and Bass classes, as we indicate in the third
row of the following diagram:

CRr—

Ac(R) _——~ " Be(R)
Hompg(C,—)

J C®r— J
Ic(R)<n -~ " I(B)<n.
Hompg(C,—)

The class F(R)<y is contained in Ac(R) by Proposition From Proposi-
tion we know that the image of F(R)<, in Be(R) under the equivalence is
exactly Fo(R)<, and that C ® g — and Hompg(C, —) provide inverse equivalences
between these classes; this is indicated in the second row of the preceding diagram.
The remaining aspects of the diagram are explained by the next two results; they
are proved like Proposition [3.2.3

Proposition 3.2.5. Let C be a semidualizing R-module.

(a) One has pdr(M) < n if and only if C ®@r M admits a bounded resolution
0—-C®rP,—-+-—CRrFPh— C®®r M — 0 with each P; projective.

(b) One has pdg(Hompg(C, M)) < n if and only if M admits a bounded resolution
0—-C®rP,— -+ —CRrPy— M — 0 with each P; projective.

(¢) If M admits a bounded resolution 0 - CQr P, — -+ > C®rPy— M — 0
with each P; projective, then M € Bo(R).

Proposition 3.2.6. Let C be a semidualizing R-module.

(a) One hasidgr(M) < n if and only if Homp(C, M) admits a bounded resolution
0 — Hompg(C, M) — Hompg(C, J°) — - -+ — Hompg(C, J") — 0 with each J*
injective.

(b) One has idr(C ®g M) < n if and only if M admits a bounded resolution
0 — M — Hompg(C,J%) — --- — Hompg(C, J") — 0 with each J® injective.

(¢) If M has a resolution 0 — M — Hompg(C,J%) — -+ — Hompg(C,J") — 0
with each J* injective, then M € Ac(R).
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3.3. Other Operators on Foxby Classes

Here is a dualizing equivalence for Foxby classes. See the appendix for some
information about faithfully injective modules.

Proposition 3.3.1. Let C' be a semidualizing R-module, let E be an injective R-
module, and let M be an R-module.

(a) If M is in Bo(R), then Homg (M, E) is in Ac(R).
(b) If M is in Ac(R), then Homg(M, E) is in Bo(R).
(¢) The converses of @ and (]E[) hold when E is faithfully injective.

Proor. We prove part @, and we prove its converse when FE is faithfully
injective.
We begin by recalling the following isomomorphism for each ¢ > 0:

Tor!(C, Homp (M, E)) = Hompg(Ext’(C, M), E).

To explain the isomorphism, let P be a projective resolution of C' such that each P;
is finitely generated. The Hom-evaluation isomorphism from Lemma yields
an isomorphism of complexes

P ®r Homp(M, E) = Homg(Hompg (P, M), E)
and this explains the second isomorphism in the next sequence
Tor}*(C,Homp (M, E)) = H;(P ®r Homp(M, E))

>~ H,(Homg(Homp(P, M), F))
>~ Hompg(H_;(Homg (P, M)), E)
>~ Homp(Ext%(C, M), E).

The first and fourth isomorphisms are by definition, and the third isomorphism

follows from the injectivity of E. One concludes that, if Ext%(C, M) = 0, then

Torl(C,Homp(M, E)) = 0; and the converse holds when E is faithfully injective.
The case ¢ = 0 in the previous display reads as

C ®g Homp(M, E) = Homp(Hompg(C, M), E)
and this explains the first isomorphism in the next sequence
Ext’(C,C @ Homp(M, E)) = Ext%(C, Homgz(Homg(C, M), E))
>~ Homp(Tor(C, Homg(C, M)), E).

The second isomorphism follows as in the previous paragraph, using Hom-tensor
adjointness in place of Hom-evaluation. From these isomorphisms, one concludes
that, if Tor®(C, Homg(C, M)) = 0, then Ext’(C, C ® g Homg (M, E)) = 0; and the
converse holds when F is faithfully injective.

It is routine to show that the following diagram commutes

c
YHom (M, E)

Hompg(M, E) Hompg(C,C @ Homg(M, E))

HOIII({%,E)l/ HOI‘H(C,@CIWE)\LE

o

Homp(C ®r Homp(C, M), E) — Homp(C,Homp(Hompg(C, M), E)).
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where the unspecified isomorphism is Hom-tensor adjointness. From this, one sees
that, if 51\04 is an isomorphism, then so is 'yg om(M,E) and the converse holds when
E is faithfully injective. This establishes @ and the first half of .

The proofs of (]ED and the rest of are similar. O

The next results are proved similarly to the previous one. Note that Proposi-
tion B.3.3] uses Lemma [AT.4

Proposition 3.3.2. Let C be a semidualizing R-module, let F be a flat R-module,
and let M be an R-module.

(a) If M is in Ac(R), then M ®@g F is in Ac(R).

(b) If M is in Bo(R), then M ®@g F is in Bo(R).

(c) The converses of (@ and @ hold when F is faithfully flat.

Proposition 3.3.3. Let C' be a semidualizing R-module, let P be a projective R-
module, and let M be an R-module.

(a) If M is in Ac(R), then Homg(P, M) is in Ac(R).

(b) If M is in Bo(R), then Hompg(P, M) is in Bo(R).

(¢) The converses of @ and (]E[) hold when P is faithfully projective.

The following examples explain the need for the faithful hypotheses in the
converses of the previous results.

Example 3.3.4. Let (R, m, k) be a local Cohen-Macaulay ring that admits a semid-
ualizing module C' 2 R. Assume that dim(R) > 1 and let z € m be an R-regular el-
ement. (For instance, let k be a field and set Ry = k[X,Y]/(X,Y)? and R = Ry[Z].
Then dim(R) = 1. The module Cy = Homy(Ro, k) is dualizing for Ry and such
that Cy 2 Ry; see Example Proposition implies that the R-module
C = R®pg, Cy is semidualizing for R. (Actually, it is dualizing, but we do not need
that fact.) Since Cy 2 Rg, Corollary implies that Cy is not cyclic. Hence,
the R-module C' is not cyclic, and it follows that C % R.)

Corollaryimplies that pdz(C) = oo, so Tor?(C, k) # 0 and Ext’(C, k) #
0 for all ¢ > 0. In particular, we have k ¢ Ac(R) and k ¢ Bo(R). The localization
R, is a flat R-module. Since zk = 0, we have R, @r k = 0 € Ac(R) N Be(R).
Thus, the condition “faithfully flat” is necessary in Proposition .

Let p C R be a nonmaximal prime, and set J = Egr(R/p). it follows that
Hompg(k,J) = 0 € Ac(R) N Bo(R). Thus, the condition “faithfully injective” is
necessary in Proposition [3.3.1](d).

The previous example will not work to explain the need for “faithfully projec-
tive” in Proposition . Indeed, when R is local, an R-module is projective if
and only if it is free, and it follows that a module is projective if and only if it is
faithfully projective. Hence, we need a nonlocal example.

Example 3.3.5. For i = 1,2 let (R;,m;, k;) be a local ring with a semidualizing
module C;. Assume that C; 22 R;. Set R = Ry X Ry and consider the semidualizing
R-module C' = C; x Cy 2 R; see Proposition m

The R-module P = 0 x Ry is projective. As in Example the R-module
M =k; x 0 is not in Ac(R) because

TorZB‘(C’, M) = TorRlXR2(01 x Ca, k1 x 0) = TorlRl(C’l,kl) X Torsz(C’g,O)
=~ r]:‘O]I'ZRl (Cl, kl) # 0
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A similar computation of Ext%(C, M) shows that M ¢ Bc(R). However, we have
Homp(P, M) = Homp, xr,(0 X Rz, k1 x 0) = Hompg, (0, k1) x Homy(R2,0) =0
which is in Ac(R) N Bo(R).

Next, we document some interactions between the operations thus far consid-
ered. The first one is a consequence of Hom-tensor adjointness.

Proposition 3.3.6. Let C be a semidualizing R-module, and let I be an injective
R-module. Then the following diagram commutes:

Homp(—,I)

Ac(R) Bo(R) Bo(R) Ac(R)
C®R—\L \LHomR(C,) HomR(C,)\L lC®R—
Hompg(—,I Hompg(—,I
Bo(R) 2 4 (R) Ac(R) 2 g (R)

Proposition 3.3.7. Let C be a semidualizing R-module, and let F' be a flat R-
module. Then the following diagram commutes:

—QrF

Ac(R) =225 Ac(R) Bo(R) —22% B (R)
C®R—i CRpr— Homp(C,—) Homp(C,—)
Bo(R) =225 Bo(R) Ac(R) =225 Ac(R).

Proposition 3.3.8. Let C' be a semidualizing R-module, and let P be a projective
R-module. Then the following diagram commutes:

Homp(P,—) Homp(P,—)

Ac(R) Ac(R) Bc(R) ———— Be(R)
C®R_l iC@)R— HomR(C,)\L J{HOHIR(C1)
Hompg(P,— Hompg (P,—
Bo(R) 222 g (R) Ao(R) =20 A (R)

Remark 3.3.9. Let C' be a semidualizing R-module, and let I be an injective
R-module. Using Theorem [3.2.1] and Proposition [3.3.6] one sees that the following
diagrams commute:

Hompg(—,I) Homp(—,I)
Ac(R) Be(R) Bc(R) Ac(R)
C®R_\L TC@R— HomR(C,)l THomR(C,)
Bc(R) pro——— Ac(R) Ac(R) Homn (=) Be(R)

Similar diagrams follow from Propositions and

Remark 3.3.10. Let C be a semidualizing R-module, and let F,G be flat R-
modules. It is straightforward to show that the following diagrams commute:

—Q®rF —QrF

Ac(R) ————— Ac(R) Be(R) ———— Be(R)
®RGi wa) l@RG ®RGl WG) \L@RG
Ac(R) —" = Ac(R) Bo(R) — 2 Be(R).
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Similarly, if P and @ are projective R-modules, then the next diagrams commute:

Hom(P,—) Hom(P,—)

Ac(R) Ac(R) Bc(R) Beo(R)
Hom(Q»—)l HM\Q,—)i Hom(Qy—)i va—)l
Ac(R) Hom(P) Ac(R) Bc(R) Hom (P Be(R).

However, the next examples show that the analogous diagrams do not commute for
the operators Hompg(—, I) and Homg(—, J) when I and J are injective.

Example 3.3.11. Let k be the field with two elements. Then the k-module k is
injective. We claim that the following diagrams do not commute:

Homy (—,k) Homy (—,k)
_—

A (k) By, (k) By (k) Ay (k)
—®RHom lHom(_’k) —®RHom lHom(_’k)
A (k) A (k).

Indeed, the classes Ay (k) and By (k) contain every k-module, so it suffices to show
that the first diagram does not commute.
We consider the module &™) and claim that

Homy (KN, k) 2 kM.

By way of contradiction, suppose that Homy, (kN, k) = kM and consider the exact
sequence
0— kM kN kN/k(N) — 0.

Apply the exact functor Homy(—, k) to obtain the next exact sequence

0 — Homy (K" /™| k) — Homy, (K, k) — Homy (K™, k) — 0.

o~ (N) =

However, this sequence can not be exact because k™ is countable and kY is un-
countable. Thus, we have our contradiction.
Now, we compute

Homy (Homy (™), k), k) 2 Homy (Y, k) 2 k™ = kM @ Homy, (k, k)
to see that the displayed diagrams do not commute.

Example 3.3.12. Let (R, m, k) be a complete local ring that has a prime ideal
p # m. We claim that neither square in the following diagram commutes:

Hom(—,Er(k)) Hom(—,Er(k))

Ac(R) Bc(R) Ac(R)
Hom(—,ER(R/P))l HOm(—vER(R/P))l lHOm(—,ER(R/D))
Be(R) Ac(R) Bo(R).

R - >

Hom(—,Eg(k)) Hom(—,ER(k))

For the first square, this follows from the next sequence:
Homp(Hompg(R, Er(R/p)), Er(k)) = Homp(Er(R/p), Er(k)) =0

Homp(Hompg (R, Er(k)), Er(R/p)) = Homg(ERr(k), Er(R/p)) # 0.
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The second square fails to commute because of the next sequence:
Homp(Homp(ERr(k), Er(R/p)), Er(k)) = Hompg (0, Er(k)) =0
Hompg(Homp(ER(k), Er(k)), Er(R/p)) =2 Homg(R, Er(R/p)) # 0.

The next result provides the diagrams that we do know to commute. That

they commute can be verified directly or by combining Theorem with Propo-
sitions [3.3.6H3.3.8

Proposition 3.3.13. Let C be a semidualizing R-module, and let I, J be injective
R-modules. Let F be a flat R-module, and let P be a projective R-module. Then
the following diagrams commute:

Homp(—,I)

Ac(R) Be(R) Ac(R)

C®r— THomR(C =)
Be(R) 2D a4 Ry B Bo(R)

Hompg(C,—) TC(@R_
Ao(R) 22 B (R) 2 4o (R)
Ac(R) 22225 4 (r) 222 iy

C®RJ/ Tcm
Bo () 2 () 2 Ao (R

Hompg (C' —)l THomR(C,—)
AC(R) Hompg (P,—) AC(R) Hompg(—,J) BC(R)
Ao(R) 22 g (R) 228 B (R)

CRr— TC@R—
Bo(R) =2 ao(r) 22 Ao (R)

Hompg (C,—) THOIUR(C,)
Ac(R) 2 g (R) 220 B (R)
Ac(R) —22 L p(r) 222 5 (R

cml Tcw
Bo(R) —2 o~ Bo(r) 222D A (R)
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Ao(R) 22 B (R) —2E - Bo(R)
C®RJ/ TC@)R
Bo(R) =22 AG(R) —22~ AG(R)

Homp (C —)l THomR(C -)
Ac(R) 2 B (R) —2 - Bo(R)
Ac(R) —22E o Ac(r) Z2 ) A (R)
C®r— THomR(C,—)

Bo(R) —2 Bo(r) 222 B(R)

Hompg (C,—) TC@R—
Ac(R) —2 o Ao (R) 228 40 (R)
Ac(R) =28 o (R) —22E s Ao (R)

C®R\L THomR(C -)
Bo(R) 2282 Bo(R) —2 . By (R)

HomR(C,—)l TC@)R

Ac(R) 2B o (R) —2s Ao (R)

Here are some companions for the previous results. We let J(R) denote the
Jacobson radical of R.

Proposition 3.3.14. Let C be a semidualizing R-module, let N be an R-module
of finite flat dimension, and let M be an R-module such that TorZR(M, N) =0 for
all1>1.
(a) If M is in Ac(R), then M @g N is in Ac(R).
(b) If M is in Bc(R), then M @g N is in Bo(R).
(¢) The converses of @ and @ hold when M is finitely generated and N =
R/(x) for some sequence x = x1,...,T, € J(R) that is R-regular.

PROOF. (ED Assume that M is in A¢(R). The assumption fdg(N) < oo implies
that there is an exact sequence

F* =0—-F,—- Fh—N—=0

such that each F; is flat. The assumption Tor,R(M ,N) =0 for all 4 > 1 implies
that the induced sequence

M®RF+ =0->MQrFs— - MRrFy— M®r N —0
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is exact. Proposition implies that M ®@r F; € Ac(R) for i = 0,...,s.
Hence, we have M ®p N € Ac(R) by Corollary @
The proof of part (]ED is similar.
Assume that M is finitely generated and N = R/(x) for some sequence
X =1a1,...,T, € J(R) that is R-regular. Set M = M ®r N.
We now prove the converse of part @; the other converse is proved similarly.
Assume that M € Ao (R). We prove that M € Ac(R) by induction on n.
Base case: n = 1. In this case, there is an exact sequence

0—-R“5R—N—0.
Since Torf‘(M ,N) =0, an application of the functor M ® g — yields the next exact
sequence:

0— M=% M — M — 0.

Using the long exact sequence in Tor!(C, —), the fact that Tor!(C, M) = 0 for
i > 1 implies that the map

Tor?(C, M) % Torl(C, M)

is surjective, that is, we have TorZR(C', M) = x4 Torf‘(C’, M). The R-modules M
and C are finitely generated, so Tor?(C, M) is finitely generated. Since z; € J(R),
Nakayama’s Lemma implies that Tor!*(C, M) =0 for all i > 1.

The vanishing Tor{% (C, M) = 0 implies that the next sequence is exact

0—>C®RMI—1>C®RM—>C®RM—>O.

As in the previous paragraph, the condition Extﬁ{(C’, C®rM) =0 for i > 1 implies
that Ext'(C,C ®p M) =0 for i > 1.

Finally, there is a commutative diagram of R-module homomorphisms where
the bottom row is gotten by applying Homg(C, —) to the previous exact sequence:

Z1

0 M M M 0

c c < o~
’)’Mi ’YMl '7M®RN\L=

0 — Hom(C,C ® M) —=> Hom(C,C ® M) —— Hom(C,C @ M) —0.

The top row is exact by assumption; the bottom row is exact as Ext}%(C, CRrM) =
0. The snake lemma implies that the following maps are isomorphisms:

Ker(fyja) ;—1> Ker(’y]\%) Coker(fyj\c/}) % Coker(’yﬁ).

From Nakayama’s lemma, we conclude that Ker(7§;) = 0 = Coker(7§), so 7§} is
an isomorphism. This implies that M € Ac(R), as desired.

Induction step: Assume that the result holds for sequences of length n — 1. Let
x' =x1,...,2,—1 and set N' = R/(x').

We first show that M ®g N’ € Ac(R). Indeed, since x is R-regular and
contained in J(R), we know that z,, is R-regular. Furthermore, the element z,, is
N'-regular, so we have Torf*(N’, R/(z,)) = 0 for all i > 1. Since N’ @ R/(z,,) =
N € Ac(R) the base case implies that M ® g N’ € Ac(R).

In order to use our induction hypothesis to conclude that M € Ac(R), we
need to show that Torf (M, N’) = 0 for all i > 1. By assumption, the element ,,
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is N'-regular, so there is an exact sequence
0— N =5 N — N —0.

Because of the vanishing TorZR (M,N) = 0, the associated long exact sequence in
Tor(M, —) shows that the map

Torf (M, N') £ Tor® (M, N')

is bijective for all ¢ > 1. Hence, Nakayama’s Lemma implies that TorlR(M, NY=0
for all 7 > 1. O

Remark 3.3.15. Under the hypotheses of Proposition [3.3.14f(d), the sequence x is
M-regular. Indeed, since x is R-regular, the Koszul complex K = K(x) is a free
resolution of R/(x) = N. This explains the second step in the next sequence where
H;(x; M) is the ith Koszul homology of M with respect to x:

0 = Tor(M,N) = H;(M ®r K) = Hy(x; M).

The Tor-vanishing is by assumption for ¢ > 1, and the third step is by definition.
Since x € J(R), it follows that x is M-regular.

Proposition 3.3.16. Let C' be a semidualizing R-module, let N be an R-module
of finite injective dimension, and let M be an R-module such that Extlk(M, N)=0
for alli > 1.
(a) If M is in Bo(R), then Homg (M, N) is in Ac(R).
(b) If M is in Ac(R), then Homp(M, N) is in Be(R).
(¢) The converses of @ and @ hold when M is finitely generated and N =
Homp(R/(x),E) for some sequence x € J(R) that is R-regular and some
faithfully injective R-module E.

PROOF. The proofs of (&) and (b)) are similar to the corresponding proofs in

Proposition [3.3.14]

Assume that Hompg(M, N) € Ac(R) where N = Homp(R/(x), E) for some
sequence x € J(R) that is R-regular and some faithfully injective R-module E. By
assumption, the module

Homp (M, N) =2 Homp(M,Homg(R/(x), E)) 2 Homg(M ®r R/(x), E)

is in A¢(R). Since F is faithfully injective, Proposition|3.3.1{|c) implies that M @pr
R/(x) € Bo(R).
As in the proof of Proposition we have for all i > 1
0 = Exth(M, N) = Homp(Torf (M, R'), E).

The fact that F is faithfully injective implies that Tor!*(M, R') = 0 for all 4 > 1.

Hence, we have M € B¢ (R) by Proposition 3.3.14(c).
Similar reasoning shows that if Hompg(M, N) € Bo(R), then M € Ac(R) as
desired. O

The next result is proved like Proposition [3:3.14]

Proposition 3.3.17. Let C' be a semidualizing R-module. Let M and N be R-
modules such that p = pdr(M) < oo and Exti(M,N) =0 for all i # p.

(a) If N € Ac(R), then Exth,(M,N) € Ac(R).

(b) If N € Bo(R), then Ext,(M,N) € Be(R).
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(¢) The converses of parts @ and hold when N is finitely generated and
M = R/(x)R for some R-reqular sequence X in the Jacobson radical of R.

Remark 3.3.18. Under the hypotheses of Proposition |3.3.16{|c), the sequence x
is M-regular. Indeed, the proof shows that TorZR (M,R') =0 for all i > 1, and we
can apply the reasoning of Remark [3.3.15] The same conclusion holds under the

hypotheses of Proposition [3.3.17|(c|).

3.4. Base Change

Theorem 3.4.1. Let C be a semidualizing R-module and let ¢: R — S be a ring
homomorphism. Then S € Ac(R) if and only if Tor®(C,S) = 0 for all i > 1 and
C ®gr S is a semidualizing S-module.

PROOF. Since the condition S € A¢(R) includes the vanishing Tor’*(C, S) = 0
for all ¢ > 1, we assume without loss of generality that TorlR (C,S)=0foralli>1.
Let P be an R-free resolution of C' such that each P; is finitely generated.

In the following sequence, the first isomorphism is Hom-tensor adjointness

Homg(P ®r S,C ®r S) = Homg(P, Homg(S,C ®g S))
>~ Homg(P,C ®g S)
The second isomorphism is induced by Hom-cancellation. The vanishing assump-
tion Torl*(C,S) = 0 for all 4 > 1 implies that the complex P ®x S is an S-free
resolution of C' ®g S, and this explains the first isomorphism in the next sequence
Ext5(C ®r S,C ®r S) = H_;(Homg(P @z S,C @r S))
= H_;(Homg(P,C ®r S))
>~ Exth(C,C @g S).
The second isomorphism is from the previous displayed sequence, and the third
isomorphism comes from the fact that P is an R-free resolution of C. From this,
we see that Exts(C®pS,C®grS) = 0foralli > 1if and only if Ext:(C,C®rS) =0
for all 7 > 1.

Let f: Homg(S,C ®r S) — C ®gr S be the Hom-cancellation isomorphism
given by f(¢) = v(1). This fits into a commutative diagram

S
|

Homp(C,C ®g S)

s
XC@Rrs

Homg(C ®p S,C ®r S)

im

LoD Homg(C, Homs (S.C @ )

o

where the unspecified isomorphism is Hom-tensor adjointness. This diagram shows
that Xé‘@a g is an isomorphism if and only if 'yg is an isomorphism. This completes
the proof. O

The next result generalizes Proposition [2.2.1}

Corollary 3.4.2. Let C' be a semidualizing R-module and let ¢: R — S be a ring
homomorphism of finite flat dimension. Then Torf’(C’, S)=0 foralli>1, and
C ®gr S is a semidualizing S-module.
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PROOF. Since S has finite flat dimension as an R-module, Proposition [3.1.9]
implies that S is in Ac(R). Hence, the result follows from Theorem O

The next result recovers Theorem [2.2.6|(b]).

Corollary 3.4.3. Let C' be a semidualizing R-module. If x € R is an R-reqular
sequence, then C/xC' is a semidualizing R/xR-module.

PrOOF. If x is R-regular, then pdz(R/xR) < oo, so Corollary implies
that and C ®g R/xR = C/xC' is a semidualizing R/xR-module. O

Here is a partial converse to Theorem @, and a compliment to Proposi-
tion 22,11

Proposition 3.4.4. Letx = x1,...,2, € J(R) be an R-reqular sequence. Let C' be
a finitely generated R-module such that x is C-regular. If C/(x)C is a semidualizing
R/(x)R-module, then C is a semidualizing R-module.

_ PROOF. Arguing by induction on n we may assume that n = 1. Set x = z; and
R = R/(x)R. Note that = is Hompg(C, C)-regular. Indeed, use the exact sequence

OHC&O‘)C/IL’CHO (3.4.4.1)
and the left-exactness of Homp(C, —) to conclude that the sequence
0 — Hompz(C,C) < Hompg(C, C)

is exact.
The element z is R-regular, so there is an exact sequence

0—-R=>R—R—0.
Part of the associated long exact sequence in Tort(—, Hompg(C, C)) has the form
0 — Tor®(R,Homp(C, C)) — Hompg(C,C) = Homp(C,C).

As the labeled map in this sequence is injective, we have Tor]' (R, Homg(C, C)) = 0.
Consider the following commutative diagram

R
Xow R —= B = R R
R— = Homg(C ©x R,C @ B) — > Homp(C, Homp(R, C ©r F))

| ;

OrRXCc —

BorR— % Rap Homp(C,C) —— %> Homp(C,C @ R)

wherein the unspecified vertical isomorphisms are induced by Hom- and tensor-
cancellation, and the unspecified horizontal isomorphism is Hom-tensor adjointness.
The diagram shows that R ® g Xg is an isomorphism.

We claim that x& is surjective. To see this, consider the exact sequence

R
R X% Hompg(C,C) — Coker(xE&) — 0.
Use the right-exactness of R @ g — to see that the next sequence is exact

JR— R Ri JR—
R@n R 2, Ry Homp(C, C) — R @p Coker(xE) — 0.

It follows that R ®p Coker(Xg) = 0, and the fact that x is in the Jacobson radical
of R implies that Coker(xZ) = 0 by Nakayama’s Lemma.
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We claim that xZ& is injective. To see this, consider the exact sequence

R
0 — Ker(x2) = R X% Homp(C,C) — 0

and take the long exact sequence in Tor® (R, —):

p— p— p— R R p—
Torf (R, Homp(C, C)) — R ®p Ker(x2) — R ®©p R X, R @ Hom(C, C).
=0
It follows that R ® Ker(x&) = 0 and, as above, that Ker(x&) = 0.

We conclude the proof by showing that Ext’(C,C) = 0 for all i > 1. In the
next sequence, the vanishing holds because C' ®g R is a semidualizing R-module:

Exty(C,C/aC) 2 Exth(C.C ©p ) = Exty(C @r B,C 6 R) =0

for each ¢ > 1. The first step is straightforward, and the second step is from [16],
p. 140, Lemma 2]. For i > 1, part of the long exact sequence in Extr(C,—)
associated to the sequence (3.4.4.1) has the following form:

Exth(C,C) 5 Exth(C, C) — Exth(C,C/zC).
———

=0

It follows that Ext’(C, C) = z Ext’z(C, C). Since EXt%(C, () is finitely generated
and z is in J(R), Nakayama’s Lemma implies that Exty(C,C) = 0, as desired. O

Corollary 3.4.5. Let x = x1,...,2, € J(R) be an R-reqular sequence. Let C be a
finitely generated R-module such that x is C-regular. If C/(x)C is a (point-wise)
dualizing R/(x)R-module, then C is a (point-wise) dualizing R-module.

PrOOF. Assume that C'/(x)C is a point-wise dualizing R/(x)R-module. Then
Proposition implies that C' is a semidualizing R-module. The proof of Corol-
lary shows that idg, (Cy) is finite for each maximal ideal m C R, so C' is
point-wise dualizing for R. When C/(x)C is dualizing for R/(x), we similarly
conclude that C is dualizing for R. O

We have so far focused on the base change behavior for semidualizing modules.
Now we turn our attention to base change properties for Foxby classes.

Proposition 3.4.6. Let p: R — S be a ring homomorphism, and let M be an
S-module. Let C be a semidualizing R-module such that S € Ac(R).

(a) One has M € Ac(R) if and only if M € Acg,s(S).

(b) One has M € Bo(R) if and only if M € Begrs(S).

PROOF. (&) Let F be an R-free resolution of C. The assumption S € Ac(R)
implies that C' ®p S is a semidualizing S-module and that Tor?(C, S) = 0 for all
i > 1; see Theorem [3.4.1] It follows that the complex F ®g .S is an S-free resolution
of C' ®p S. This yields the first isomorphism in the next sequence:

Tor; (C ®g S, M) = H;((F ®p S) ®s M) = H;(F @g M) = Tor[(C, M).

The second isomorphism comes from tensor cancellation, and the third isomorphism
is by definition. In particular, we have Torf(C ®r S, M) =0 for all i > 1 if and
only if Tor(C, M) =0 for all i > 1.

In the next sequence, the first step is Hom-tensor adjointness

Homg(F ®@r S,C @r M) = Homp(F,Homg(S,C ®r M)) = Homp(F,C ®r M)
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and the second step is induced by Hom cancellation. This provides the third iso-
morphism in the next sequence:

Exts(C @R S, (C ®r S) ®g M) = Exty(C ®r S,C @r M)
= H_;(Homg(F ®g S,C ®@r M))
~H_;(Homg(F,C ®r M))
=~ Exth(C,C ®p M).
The first step is induced by tensor cancellation; and the second and fourth steps
are by definition. It follows that Exts(C ®r S, (C®r S) ®s M) =0 for all 4 > 1 if

and only if Ext’(C,C @z M) = 0 for all i > 1.
Finally, there is a commutative diagram

CRRrsS
'YMR

M Homg(C ®g S, (C ®r S) ®s M)

|

HOHIR(C, C QR M)

|

Homp(C, Homg(S, C ®p M)) ——= Homg(C ®r S,C @5 M).

£a
R

IR

Here the unspecified vertical isomorphisms are induced by Hom cancellation and
tensor cancellation, respectively, and the unspecified horizontal isomorphism is
Hom-tensor adjointness. It follows that VC®RS is an isomorphism if and only if
'y]((:[ is an isomorphism. This completes the proof of part @

Part (]ED is proved similarly. O

Proposition 3.4.7. Let ¢: R — S be a ring homomorphism of finite flat dimen-
sion, and let C be a semidualizing R-module. Let M be an R-module such that
Tor (M,S) =0 for alli > 1. Consider the following conditions:
( ) M e AC( );
(ii) M ®gr S € Ac(R); and
(iii) M ®r S € Acgns(S).
The implications == = always hold, and the conditions 7 are
equivalent when one of the following is satisfied:
(1) @ is faithfully flat; or
(2) M is finitely generated, and @ 1is surjective with kernel generated by an R-
reqular sequence in J(R).

PROOF. The equivalence (il) < is from Proposition [3.4.6| u ), and the
implication = (lii)) is from Pr0p051t10n m When condition (1) is satis-

fied, the implication (i) = . is from Proposition 1.' When condltlon 1
is satisfied, the implication (i) = (i) is from Propos1t1on 3.3.14(c). O

The next result is proved like the previous one.

Proposition 3.4.8. Let ¢: R — S be a ring homomorphism of finite flat dimen-
sion, and let C' be a semidualizing R-module. Let M be an R-module such that
Tor (M,S) =0 for alli > 1. Consider the following conditions:

() MGBC( )7
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(i) M ®gr S € Bo(R); and
(iii) M ®r S € Begps(9).

The implications == = always hold, and the conditions f are
equivalent when one of the following is satisfied:

(1) o is faithfully flat; or
(2) M is finitely generated, and @ is surjective with kernel generated by an R-
regular sequence in J(R).

The next result compliments Proposition |2.3.6

Proposition 3.4.9. Let k be a field, and let R and S be k-algebras. Let B and
M be R-modules such that B is semidualizing, and let C and N be S-modules such
that C' is semidualizing.

(a) If M € Ag(R) and N € Ac(S), then M ®; N € Apg,.c(R®; S).
(b) If M € Bg(R) and N € Bc(S), then M @ N € Bpg,c(R ® S).

PrROOF. We prove part @; the proof of part (@ is similar.

Assume that M € Ag(R) and N € Ac(S). Note that Proposition [2.3.6implies
that B®C is a semidualizing R®j S-module. Proposition[A-1.5]yields the following
isomorphism for each i > 0:

Tor]"**(B @, C, M @, N) = 69;:0 Torf(B, M) ®p Torf_j(C7 N).
Hence, the conditions Tor®(B, M) = 0 = Tor; (C, N) for i > 1 imply that
Tor®*5(B @, C, M ®, N) =0
for all ¢ > 1. The case i = 0 yields an R ®; S-module isomorphism
(B ®k C) @rays (M @, N) = (Bor M) @, (C s N)
and thus the first step in the next sequence:
Extig, s(B @ C, (B @k C) ®pg,s (M @ N))

~ Exthg, (B @) C, (B®r M) @k (C ®s N))
~ @'_ Ext}(B, B ®r M) ®, Exty /(C,C ®s N).

The second step is from Proposition The conditions Ext% (B, B ®r M) =
0 =Exts(C,C ®g N) for i > 1 imply that

Exte,s(B @ C, (B @k C) ®rg,s (M @k N)) =0
for all ¢ > 1. The case ¢ = 0 yields an R ®; S-module isomorphism
Hompg(B, B ®r M) ® Homg(C,C ®g N)
= Hombg, (B @k C, (B ®), C) @rays (M @, N)).

The proof of Proposition shows that this map is given by the formula ¢ @ +—
¢ X1, where ¢p: B - BRr M and ¢¥: C — C®g N, and o X : BR C —
(Be®r M) @k (C ®s N) is given by b ® ¢ — ¢(b) @ (c). It follows that the next
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diagram commutes:

B ®Kv§

M ®, N ——_— Hompg(B, B®r M) ®; Homs(C,C ®s N)

iz

Hompg,s(B ®k C,(B®r M) @, (C ®s N))

T:

M ®), N ——> Hompg, 5(B @ C, (B ®; C) ®pg,s (M @ N)).

B@,C
TM@ N

Thus, the map vﬁ%ﬁ% is an isomorphism and M ®; N € Apg,c(R &k 5). O

3.5. Local-Global Behavior and Consequences
The next two results are from unpublished notes by Foxby.

Proposition 3.5.1. Let C and M be R-modules such that M is finitely generated.

(a) If there is an R-module isomorphism a: M = Homp(C,C ®g M), then the
natural map ~§;: M — Hompg(C,C ®@p M) is an isomorphism.

(b) Assume that C is finitely generated. If for every mazimal ideal m C R there
is an Ry-module isomorphism M = Hompg(C,C ®g M), then the natural
map ¥§;: M — Hompg(C,C ®@p M) is an isomorphism.

Proor. @ It is straightforward to show that the following diagram commutes:

c
TYHomp (C,C® M)

HOHIR(C,C XRnr M) _— HomR(C,C®R HomR(C,C®R M))

. HomR(C,€g®RM)
idHom p(C,c® g M) ‘

Homg(C,C ®@r M)

In particular, the map ’VgomR(C,(,‘@RM) is a split monomorphism. With X =
Coker('ygomR(Q Con M)), this explains the second isomorphism in the next sequence:
M & X 2Hompg(C,C @r M) ® X
>~ Hompg(C,C ®g Homg(C,C @p M))
=~ M.
The other isomorphism are induced by a. Since M is finitely generated, this implies

that X = 0, that is, that 'Vgomﬁ(c C&pM) is surjective. Since it is also injective, we
have the right-hand vertical isomorphism in the next diagram:

M Hompg(C,C @r M)

IR

~ | C
"/f/ll _l’YHomR(C,C@)RM)

ompg(C,C «
HOI’HR(C,C QR M) % HOI’HR(C,C QR HOHIR(C,C QR M))

It follows that 4§, is an isomorphism.
(b) This follows from part () as in the proof of Proposition O

The next result is proved like the previous one.
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Proposition 3.5.2. Let C and M be R-modules such that M is finitely generated.

(a) If there is an R-module isomorphism o: C ® Homp(C, M) = M, then the
natural evaluation map 51\0/[: C ®r Hompg(C, M) — M is an isomorphism.

(b) Assume that C is finitely generated. If for every mazimal ideal m C R there
is an Ry -module isomorphism (C®@rHomp(C, M))m = My, then the natural
evaluation map £§;: C ®@g Hompg(C, M) — M is an isomorphism.

Here are local-global principals for Foxby classes.

Proposition 3.5.3. Let C be a semidualizing R-module and M an R-module. The
following conditions are equivalent:
(i) M € Ac(R);
(ii) U'M € Ay-1c(U™'R) for each multiplicatively closed subset U C R;
(iii) M, € Ac, (Ry) for each prime ideal p C R; and
(iv) My € Ac,, (Rw) for each mazimal ideal m C R.

ProoOF. The implication — is in Proposition m and the implica-
tions (i) = (iil) = (iv) are straightforward.

(iv) = (i). For each i > 1 and each each maximal ideal m C R, we have
isomorphisms

Torf(C, M) = Tor™ (Cry, M) = 0
Ext(C,C @r M) = Extly (Cw,Cn ®r,, Mu) =0.

and a commutative diagram

My Homp, (Cn, Cn ®r,, M)

(vﬁ)ml i:

Hompz(C,C ®p M)m — Homp,_ (Ca, (C @ M)m).

Since this is so for each m and each ¢ > 1, we conclude that Torf(C, M) = 0
Ext’y(C,C ®g M) for all i > 1 and that 7§ is an isomorphism. Hence M € Ac(R)
as desired.

O

Proposition 3.5.4. Let C' be a semidualizing R-module and M an R-module. The
following conditions are equivalent:
(i) M € Bo(R);
(ii) U'M € By-1c(U™'R) for each multiplicatively closed subset U C R;
(iii) M, € Bc, (Ryp) for each prime ideal p C R; and
(iv) My € Be,, (Rm) for each mazimal ideal m C R.

PROOF. Similar to Proposition [3.5.3 g

The next result is proved like Proposition using the previous two results.

Corollary 3.5.5. Let Ry,...,R, be noetherian rings, and consider the product
R=R; x---XRy,. Fori=1,...,n let C; be a semidualizing R;-module, and set
C =Cy x -+ x Cy. There are bijections Ac(R1) x -+ x Ac(R,) = Ac(R) and
Bo(Ry) x -+ x Bo(Ry) = Be(R) given by (My, ..., M) — My x -+ x M,.
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Corollary 3.5.6. Let C be a semidualizing R-module. Then the Auslander class
Ac(R) contains every R-module locally of finite flat dimension, and the Bass class
Bc(R) contains every R-module locally of finite injective dimension.

PRrROOF. If fdg, (My) is finite for each maximal ideal m C R, then M,, €
Ac,, (Rn) for each m, so M € Ac(R) by Proposition The conclusion for the
Bass class holds similarly. O



CHAPTER 4

Relations Between Semidualizing Modules

4.1. First Relations

Proposition 4.1.1. Let C be a semidualizing R-module, and let M be a finitely
generated R-module.
(a) The module M is semidualizing and in Ac(R) if and only if C ®r M is
semidualizing and in Beo(R).
(b) The module M is semidualizing and in Bo(R) if and only if Hompg(C, M) is
semidualizing and in Ac(R).

PROOF. (&) Theorem [3.2.1|(a) says that M € Ac(R) if and only if C ®r M €
Bc(R), so assume that M € Ac¢(R). Using this assumptions Lemma [3.1.13)(a))
yields isomorphisms for all ¢ > 0:

Exts(M, M) = Ext%(C ®pr M,C ®p M).

Thus Ext’ (M, M) = 0 for all i > 1 if and only if Ext'(C ®g M,C @ M) = 0
for all ¢ > 1. Furthermore, this implies that R 2 Hompg(M, M) if and only if
R =2 Hompg(C ®@g M,C ®g M). Because of Proposition @ we conclude that
the homothety map x%, is an isomorphism if and only if Xg@g A 1s an isomorphism.
Thus, the R-module M is semidualizing if and only if C ® g M is semidualizing.
The proof of part (]E[) is similar. O

Corollary 4.1.2. Let C' be a semidualizing R-module and let N be an R-module
of finite flat dimension. If B = C ®r N is semidualizing, then N is a finitely
generated projective R-module of rank 1 and N = Hompg(C, B); if furthermore R
is local, then N 2 R and B = C.

PRrROOF. Assume that C ®p N is semidualizing. Since fdr(NN) < oo, we have
N € A¢(R), and hence N = Hompg(C,C ®g N) = Hompg(C, B). In particular,
since C'and C®pr N are finitely generated, we conclude that N is finitely generated.
Proposition [4.1.1|fa)) implies that N is semidualizing. Since N is finitely generated
we have pdg(N) = fdr(N) < o0, so N is a finitely generated projective R-module

of rank 1, by Corollary
When R is local, Corollary implies that N2 R, so B=CrN=C. O

Corollary 4.1.3. Let C be a semidualizing R-module and let D be a point-wise du-
alizing R-module. Then the R-module Homg(C, D) is semidualizing. Furthermore,
we have Ext',(C, D) = 0 = Tor®(C,Homg(C, D)) for all i > 1, and the natural
map 8 : C @ Homp(C, D) — D is an isomorphism.

PROOF. Since D is locally of finite injective dimension, we have D € Bg(R)

by Corollary Proposition [£.1.1|(b)) implies that Hompg(C, D) is semidualizing,
and the remaining conclusions follow from the definition of Be(R). g

47
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The following result characterizes the semidualizing modules that are locally
isomorphic. These are the ones that are homologically indistinguishable in the sense
that they determine the same Foxby classes. The symmetry in conditions 7
implies that other conditions are also symmetric.

Proposition 4.1.4. Let B and C be semidualizing R-modules. The following con-
ditions are equivalent:

(i) B2 C ®g P for some finitely generated projective R-module of rank 1;
(iil) B C ®gr P for some R-module of finite flat dimension;

) By = C, for each prime ideal p C R;

) Bm = Cy for each mazimal ideal m C R;

) Ac(R) = Ap(R);

) Bo(R) = By(R);
(vii) C € Bg(R) and B € Bo(R);

i) Homp(B,C) € Ag(R) and Homp(C, B) € Ac(R);

) Hompg(C, B) is a projective R-module of rank 1;

) fdr(Homp(C, B)) < oo; and

) B2 C®r M and C =2 B Qgr N for some R-modules M and N with
M € Ac(R) and N € Ag(R).

When these conditions are satisfied, one has P = Hompg(C, B) and the module Q) =
Homp (P, R) = Hompg(B, C) is a rank 1 projective R-module such that C =~ BRRQ.

PROOF. The implications = and = and (ix) = () are
straightforward. The implication (i) = ({i) is from Corollary [4.1.2] and (vii)) <=
is by Theorem

= Since P is a rank 1 projective R-module, we have P, = R, for all
p € Spec(R), so B, = C, ®g, P, = C, for all such p.

(iv) = Assume that By & Cy, for each maximal ideal m C R. Proposi-
tion implies that an R-module M is in Ag(R) if and only if M\, € Ap,, (R) =
Ac, (R) for each such m, that is, if and only if M € Ac(R).

= Assume that Ag(R) = Ac(R), and let E be a faithfully injective
R-module. Proposition implies that an R-module M is in Bg(R) if and only
if Homp(M, E) € Ag(R) = Ac(R), that is, if and only if M € B¢o(R).

= Assume that Bg(R) = Be(R). Then Corollary implies
that B € Bg(R) = B¢(R) and C € Ba(R) = Bg(R).

= Assume that C € Bg(R) and B € B¢(R). This implies that

C=B QR HOIDR(B,C) = C@R HOIHR(C, B) QR HOHIR(B,C).

From Proposition [4.1.1{(b)), we conclude that Hompg(C, B) is semidualizing, so
Homp(C, B)y is a semidualizing Ry-module for each maximal ideal m C R. Lo-
calizing the previous display yields

Cm = Chp ®r,, [}IOHIR(C'7 B)m QR HOIHR(B, C)m}
Computing minimal numbers of generators, we find
1R (Cn) = pRy (Cw) g, (Homp(C, B)m) i, (Homp(B, C)m)

so that ug,, (Homp(C, B)m) = 1. Corollary[2.1.14]implies that Hompg(C, B)m = R
for each maximal m, that is, that Hompg(C, B) is a rank 1 projective R-module.
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(vi) = The condition C € Bg(R) implies that N = Hompg(B,C) €
Ap(R) and C =2 B®pr Homp(B,C) =2 B®gr N, by Theorem The condition
B € B¢ (R) implies that M = Hompg(C, B) € Ap(R) and B = C @ M.

= . Assume that B CQrM and C = B®pr N for some R-modules
M and N with M € Ac(R) and N € Ag(R). The condition M € Ac(R) implies
that B~ C®rM € Beo(R), and the condition N € Ag(R) implies that C € Bg(R)

by Theorem [3.2.1]

This proves the equivalence of the conditions ({i))—(xi)).

Finally, assume that conditions (| @D are satisfied. Then P = Hompg(C, B)
by Corollary - Proposition 4.1.1] (@ implies that By symmetry, we conclude
that the module

Q = Hompg(B,C)
>~ Homp(C ®@r Hompg(C, B), C)
= Homp(Hompg(C, B), Homgr(C, C))
>~ Hompg(P, R)
is projective of rank 1 such that C' = B ®g @, as desired. O
Here is the local case of Proposition

Corollary 4.1.5. Assume that R is local, and let B and C be semidualizing R-
modules. The following conditions are equivalent:
() B=(;
B2 C®pg P for some R-module of finite flat dimension;
= Cy for each prime ideal p C R;

ii)
) B
IV) Ac(R) = AB (R),
v) Bo(R) = Bg(R);
vi) C € Bg(R) and B € Bo(R);
(vii) Hompg(B,C) € Ag(R) and Homg(C, B) € Ac(R);
(viii) Hompg(C, B) & R;
(ix) fdr(Hompg(C, B)) < oo; and
(x) B=2C®rM and C = B®p N for some R-modules M and N with

M € Ac(R) and N € Ap(R).

PrROOF. Since R is local, every projective R-module is free. Hence, the only
finitely generated projective R-module of rank 1 (up to isomorphism) is R. Now
apply Proposition 4.1.4 O

Corollary 4.1.6. Let C be a semidualizing R-module. The following conditions
are equivalent:

() C is a (rank 1) projective R-module;
Ac(R) contains every R-module;
Bc(R) contains every R-module;
R/m € Ac(R) for each mazimal ideal m C R;
R/m € Be(R) for each mazimal ideal m C R;
Er(R/m) € Ac(R) for each maximal ideal m C R;
Ac(R) contains a faithfully injective R-module;
R € Be(R); and
Bo(R) contains a finitely generated projective R-module of rank 1.
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PROOF. The equivalence of the conditions (i)—(iii) is from the case B = R of
Proposition using Example The equivalence (fi) <= holds similarly.
The implications = and (i) = (vi) and = and =
and (viiil) = (ix]) are routine.

(iv) = (i) Assume that R/m € A¢(R) for each maximal ideal m C R. Tt
follows that TorX(C, R/m) = 0 for all i > 1 and for each m. Thus, C' is projective,
and Corollary implies that C has rank 1.

The implication = (li)) is verified similarly.

= If Er(R/m) € Ac(R) for each maximal ideal m C R, then
the faithfully injective R-module E = [[, Er(R/m) is in Ac(R) by Proposi-
tion B.LAE).

(vil) = Let E be a faithfully injective R-module in Ac(R). Since
E =2 Hompg(R, E) € Ac(R), Proposition implies that R € Bo(R). O

Here is the local case of the previous result.

Corollary 4.1.7. Assume that (R,m, k) is local, and let C' be a semidualizing R-
module. The following conditions are equivalent:
(i) C 2 R;
Ac(R) contains every R-module;
c(R) contains every R-module;
Ac(R); and
Be(R).
R(k) € AC(R);
Ac(R) contains a faithfully injective R-module; and
(viii) R € Be(R).

Corollary 4.1.8. Let D and D’ be point-wise dualizing modules for R.
(a) The duals P = Homp (D', D) and @ = Hompg(D,D") are rank 1 projective
R-modules such that D 2 D' g P and D' 2 D ®r Q.
(b) The R-module D' is dualizing if and only if D is dualizing.
(¢) If R is local, then D' = D.

Proor. Corollary implies that D’ € Bp(R) and D € Bp/(R), so part (@)
follows from Proposition Part (b)) is a consequence of Corollary 2.2.5|[d), and
(]

part follows from Corollary

We next show that semidualizing modules over Gorenstein rings are trivial.

&

Corollary 4.1.9. Assume that R is (point-wise) Gorenstein, and let C be a semid-
ualizing R-module. Then C' is a rank 1 projective R-module and is (point-wise)
dualizing for R. If R is local, then C is isomorphic to R and is dualizing.

PRrROOF. Assume that R is point-wise Gorenstein, that is, that R is locally of
finite injective dimension as an R-module. Corollary implies that R € Bo(R).
On the other hand, every R-module is in Bg(R), so C € Br(R). Propositions [£.1.4]
implies that C' = Homp (R, C) is a rank 1 projective R-module. That is, we have
Cn =2 Ry for each maximal ideal m C R. Since R is locally of finite injective
dimension, the same is true of C, that is C is a point-wise dualizing R-module.

If R is Gorenstein, then we have

idg(C) = sip{idRm(Cm)} = sip{idRm(Rm)} =idr(R) < o
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so C is dualizing for R. If R is local, then both R and C' are dualizing for R, so
C = R by Corollary ([

Corollary 4.1.10. Assume that D is (point-wise) dualizing for R. Then the fol-
lowing conditions are equivalent:
(i) R is (point-wise) Gorenstein;

(ii) every semidualizing R-module is projective;
iii) D is a projective R-module;
iv) Ap(R) contains every R-module;
(v) Bp(R) contains every R-module;
(vi) R/m € Ap(R) for each maximal ideal m C R;

)

)

)

)

11

—~

—_
=

(vil) R/m € Bp(R) for each mazimal ideal m C R;
(viii) Er(R/m) € Ap(R) for each maximal ideal m C R;
(ix) Ap(R) contains a faithfully injective R-module;
(x) Re Bp(R); and
(xi) Bp(R) contains a finitely generated projective R-module of rank 1.

PROOF. The equivalence of the conditions (fi)—(xi) is from Corollary
i) =

since a projective semiduaizing module must have rank 1. The implication (|

is from Corollary The implication = is routine, and Corol-

lary justifies the implication (i) = (). O
Here is the local case of the previous result.

Corollary 4.1.11. Assume that (R,m,k) is local and that D is dualizing for R.

Then the following conditions are equivalent:

(i) R is Gorenstein;
every semidualizing R-module is free;

€ Ap(R);

(x) Re Bp(R).
Corollary 4.1.12. Let C be a semidualizing R-module. Then C is (point-wise)
dualizing for R if and only if R has a (point-wise) dualizing D such that C € Bp(R).
PROOF. One implication follows from the condition C' € B¢(R) found in Corol-

lary [3.2.2{(a)).

For the converse, assume that R has a (point-wise) dualizing D such that
C € Bp(R). Corollary implies that D € B¢ (R), so Proposition yields a
finitely generated projective R-module P of rank 1 such that C' =2 P ®p D. Since
D is (point-wise) dualizing, it follows from Corollary 2.2.5((c) that C'is (point-wise)
dualizing. (I

4.2. Picard Group Action and Ordering

Definition 4.2.1. The Picard group of R is the set Pic(R) of all isomorphism
classes of finitely generated projective R-modules of rank 1. The isomorphism class
of a given finitely generated projective R-module P of rank 1 is denoted [P].
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Remark 4.2.2. As its name suggests, the set Pic(R) has the structure of an abelian
group, which we write multiplicatively: [P][Q] = [P ®r @]. The identity element
of Pic(R) is [R], and inverses are given by the formula [P]~! = [Homg(P, R)]. It
follows that [P]~![Q] = [Homg(P, Q)].

Properties 4.2.3.

4.2.3.1. If R is local, then Pic(R) = {[R]}.

4.2.3.2. Corollary 2.2.5|fa) implies that Pic(R) C So(R).

4.2.3.3. If R is point-wise Gorenstein, then Pic(R) = &¢(R) by Corollary

4.2.3.4. Assuming that R has a (point-wise) dualizing module, Corollary
implies that the set of isomorphism classes of (point-wise) dualizing modules is in
bijection with Pic(R).

The next result expands on Corollary [2.2.5([b)).

Proposition 4.2.4. There is a well-defined action of Pic(R) on &g(R) action of
the group Pic(R) on the set Go(R) given by [P][C] = [P ®r C].

PRrOOF. Corollary [2.2.5([b) shows that the formula [P][C] = [P ®pg C] is well-
defined. The identity [R] € Pic(R) acts trivially because R ®pr C' = C, and the
associative law follows from the associativity of tensor product. O

The next result says that this group action is free.
Proposition 4.2.5. For each [C] € &y(R), the stabilizer of [C] in Pic(R) is {[R]}.

Proor. If [P] € Pic(R) is in the stabilizer of [C], then we have C = P ®p C,
so Proposition implies that P = Homp(C,C) = R. O

Definition 4.2.6. Let Go(R) denote the set of orbits in Gg(R) under the action
of Pic(R). The orbit of a given element [C] € Gy(R) is denoted (C) € Sy(R).

Remark 4.2.7. If R is local, then the triviality of Pic(R) implies that the natural
map So(R) — So(R) is a bijection.
Lemma 4.2.8. For [B],[C] € 6o(R) the following conditions are equivalent:
(i) (B) = (C) in So(R);

B~ P®pgC for some [P] € Pic(R);

m = Cy for each maximal ideal m C R;

Ap(R) = Ac(R);
v) Bp(R) = Bc(R); and

(vi) C € Bg(R) and B € B¢ (R).
When Pic(R) = {[R]}, e.g., when R is local, these conditions are equivalent to

(i) [B] = [C] in &o(R).

PRrROOF. The equivalence <= (fii) is by definition, and the equivalence of the
conditions vi]) is from Proposition[4.1.4l When Pic(R) = {[R]}, the equivalence
(I

. — (i) is from Remark [4.2.7] -

Definition 4.2.9. For (B), (C) € &¢(R) we write (B) < (C) when B € Bo(R).
When Pic(R) = {[R]}, e.g., when R is local, we write [B] < [C] for [B],[C] €
Go(R) when B € Bc(R).

(iv

(i)
(iii) B
iv)
(v)
i)
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Proposition 4.2.10. The ordering < on &o(R) is well-defined, reflerive, and an-
tisymmetric. When Pic(R) = {[R]}, e.g., when R is local, the ordering < on &y(R)
is well-defined, reflexive, and antisymmetric.

PrOOF. In view of Remark it suffices to prove the first statement.

For well-definedness, let (B) = (B’) and (C) = (C') in &y(R). Lemma
implies that Bo(R) = Ber(R) and that there is an element [P] € Pic(R) such
that B’ = P ®g B. Thus, if B € Bo(R), then Proposition implies that
B'=P®g B € Bo(R) = Ber(R), as desired.

Reflexivity follows from the condition C' € B¢ (R) in Corollary [3.2.2)(a). For
antisymmetry, assume that (B) < (C) and (C) < (B); that is, we have C € Bg(R)

and B € B¢ (R), so Lemma implies that (B) = (C). O

Here are some of the big open questions in this area:

Question 4.2.11.
(a) Is the set Gg(R) finite? If Pic(R) = {[R]}, e.g., if R is local, is the set Go(R)
finite?
(b) Is there a non-negative integer n such that |@0(R)| =277 If Pic(R) = {[R]},
e.g., if R is local, is there a non-negative integer n such that |So(R)| = 27
(c) Is the ordering < on &¢(R) transitive? If Pic(R) = {[R]}, e.g., if R is local,
is the ordering < on &y(R) transitive?

Remark 4.2.12. There exist rings R with infinite Picard group. (Moreover, a
theorem of Claiborn says that, for every abelian group G, there is a ring R such
that &o(R) = Pic(R) = G.) Thus, the versions of Question [4.2.11|a)—(b) for So(R)
are only reasonable when Pic(R) = {[R]}.

Propertyshows that, if R is point-wise Gorenstein then &o(R) = {(R)},
so we have @O(R)’ =1 = 2° Corollary gives some motivation for Ques-
tion -J The next examples give affirmative answers to the questions in [4.2.11]
for some special classes of rings.

Example 4.2.13. Let (R,m, k) be a local ring with m? = 0. Let D be a dualizing
R-module. (We will prove later that R does in fact admit a dualizing module
because it is complete and Cohen-Macaulay.) Then &y(R) = {[R],[D]}. Indeed,
let [C] € &p(R) such that C 2 R. Corollary implies that pdz(C) = co. Let
P be a minimal free resolution of C, and let C’ be the first syzygy in P. Then
there is an exact sequence

0—-C - Py—C—0.

Since P is minimal, we have C’ C mP,, so the condition m? = 0 implies that
mC’ = 0. That is, we have C’ = k™ for some n > 1. Since Exth(C,C) = 0 =
Extﬁ%(Po, C) for all ¢ > 1, the long exact sequence in Extr(—, C) associated to the
displayed sequence implies that = 0 Ext%(C”, C) = Ext’(k,C)" for all i > 1. Since
n # 0, we have Ext’(k,C) = 0 for all i > 1. Thus, C is injective, i.e., dualizing, so
Corollary implies that C' & D.

Example 4.2.14. Let (R, m) be a local Cohen-Macaulay ring of minimal multiplic-
ity. This means that there is a flat local ring homomorphism ¢: (R, m) — (R',m’)
such that mR’ = m’ where R’ has a regular sequence x € m’ such that the local
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ring (R, w/) = (R'/(x),m/(x)) satisfies m’> = 0. We claim that

{[R],[D]} if R admits a dualizing module D
{[R]} if R does not admit a dualizing module.

Assume that [C] € Sg(R) such that C' 2 R. We show that C' is dualizing for R.
Corollary implies that C' is not cyclic. Since the homomorphism ¢ is local,
the module ¢/ = C ®g R’ is not cyclic. This module is also semidualizing for S
by Proposition Corollary implies that C” = C'/(x)C" is semidualizing
for R/, and C” is not cyclic by Nakayama’s lemma. Since m = 0, Example
implies that C” is dualizing for R’. Theorem guarantees that the sequence
x is C'-regular, so we conclude from Corollary that C’ is dualizing for R’.
Finally, Proposition [2.2.15| implies that C' is dualizing for R, as desired.

Fact 4.2.15. Let ¢: R — S be a ring homomorphism. If [P] € Pic(R), then the
S-module P ®p S is finitely generated and projective of rank 1. That is, there
is a well-defined map Pic(p): Pic(R) — Pic(S) given by [P] — [P ®r S]. It is
straightforward to show that this map is in fact a group homomorphism; see the
proof of Proposition |4.2.17|(a)).

Definition 4.2.16. Let ¢: R — S be a ring homomorphism of finite flat dimen-
sion. Define Go(p): &o(R) — &o(5) by the formula [C] — [C ®r S]. Define
So(p): 6o(R) — Gy(S) by the formula (C) — (C ®g S).

Proposition 4.2.17. Let ¢: R — S be a ring homomorphism of finite flat dimen-
S50M.

(a) The map So(p): Go(R) — So(S) is well-defined and respects the Picard
group actions: So(p)([P][C]) = Pic(p)([P])So(#)([C])-
(b) There is a commutative diagram

60 ‘50(<P) )
where the vertical maps are the natural inclusions. In particular, if So(p) is
injective, then so is Pic(yp).
(¢c) If Pic(p) is injective, then so is So(p) when one of the following is satisfied:
(1) ¢ is faithfully flat; or
(2) ¢ is surjective with kernel generated by an R-regular sequence in J(R).

PROOF. () The well-definedness of G¢(¢) is a consequence of Corollary
The fact that (@) respects the Picard group actions follows from the S-module
isomorphism (P ®r S) ®s (C®rS) =2 (PRrC)RRrS.

(]E[) The commutativity of the diagram is by definition, and the second state-
ment follows from the diagram.

Assume that Pic(p) is injective and that ¢ satisfies condition (1) or (2).
Let [B],[C] € 6y(R) such that So(p)([B]) = Go(¢)([C]), that is, such that there
is an S-module isomorphism B @ S = C ®p S. Corollary implies that
B®gr S € Bpgps(S) = Begrs(S), so we conclude from Proposition that
B € Bc(R). (Note that this is where we use the assumption that ¢ satisfies
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condition (1) or (2).) Similarly, we have C' € Bg(R), so Proposition implies
that Homp (B, C) is a projective R-module of rank 1 such that

C = B®gr Hompg(B,C). (4.2.17.1)
Since fd(S) is finite, tensor evaluation yields the fourth step in the next sequence:
S > Homg(B®p S,C ®p S) = Hompg(B,Homg(S,C ®g S))
~ Homg(B,C ®r S) 2 Homg(B,C) ®g S.

The first step is from the assumption B ®p S = C ®g S, using the fact that
B ®p S is a semidualizing S-module. The other steps are Hom-tensor adjointness
and Hom-cancellation.

This sequence implies that Pic(p)([Hompg(B,C)]) = [S], so the injectivity of
Pic(y) implies that Homg(B,C) = R. From ([{.2.17.1), we conclude that C' =
B ®r R = B, as desired. (I

Here is an application.

Proposition 4.2.18. Let B and C be semidualizing R-modules, and let x € J(R)
be an R-regular sequence. If C'/xC = C’'/xC’, then C 2 (C'.

PROOF. Let p: R — R/(x) denote the natural surjection. It suffices to show
that the induced group homomorphism Pic(p): Pic(R) — Pic(R/(x)) is injective,
by Proposition[4.2.17|(d). Let [P] € Ker(Pic(¢)). Then P is a finitely generated rank
1 projective R-module such that P/xP = R/(x). Let p € P/xP be a generator.
Consider the exact sequence

R 5 P — Coker(1) — 0

where 7(r) = rp for all » € R. This induces an exact sequence
[R/(x)] @ R U2 (R (x)] @ P — [R/(x)] ©r Coker(r) — 0

and hence [R/(x)] ®r Coker(r) = 0. Since x € J(R) it follows that Coker(r) = 0,
that is, the map 7 is surjective. Because P is projective, this implies that R =2
P @ Ker(r). Since P has rank 1, we have Py = Ry, for each maximal ideal m C R,
and it follows that Ker(7)y, = 0 for each m. In other words, we have Ker(7) = 0,
so T is an isomorphism. O

Proposition 4.2.19. Let ¢: R — S be a ring homomorphism of finite flat dimen-
siomn.

(a) The map So(p): So(R) — &¢(S) is well-defined and respects the order-
ings on Go(R) and S¢(S): if (B) < (C) in Su(R), then So(p)(({B)) <
So(©)((C)) in So(S).

(b) Assume that one of the following is satisfied:

(1) ¢ is faithfully flat; or

(2) ¢ is surjective with kernel generated by an R-regular sequence in J(R).
Then the map So(p) is injective and perfectly order-respecting: (B) < (C)
in &o(R) if and only if So()({B)) < Go(p)((C)) in So(S).

PROOF. (&) The well-definedness of &y (¢) follows from Proposition :
if (B) = (C) in &y(R), then there is an element [P] € Pic(R) such that [B] = [P][C]
in 6g(R); this implies that [B®g S] = [P ®r S][C ®r S] in G¢(S5), so (BRr S) =
(C @R S) in Go(9).
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To show that Gg(y) respects the ordering, let (B),(C) € &y(R) such that
(B) < (C). This means that B € Bc(R), so Proposition[3.4.8|implies that Bo S €
BC®RS(S)- That is (B Rr S> < <C Rnr S> in 60(5)

(b) Assume that ¢ satisfies condition (1) or (2), and let (B),(C) € So(R).
We first prove that &y(y) is perfectly order-respecting. One implication is from
part (a), so assume that So(p)((B)) < So(¢)((C)) in So(S). This means that
(B®rS) < (C®grS), that is BOgr S € Bogrs(S). As in the proof of Proposi-
tion [1.2.17|(b)), we conclude that B € Bo(R), and hence (B) < (C).

The injectivity of &g(¢) now follows. Indeed, assume that Go()((B)) =
Bo(@)((C)) in Bo(S), that is, that So(¢)((B)) 2 So()((C)) and So()((C)) <
Go(p)((B)). It follows that (B) < (C) and (C) < (B) in Sy(R), and thus
(B) =(C).

Here is a compliment to Proposition

Proposition 4.2.20. Let Ry,..., R, be noetherian rings, and set R = H?:l R;.
There is a bijection Go(R1) X - - x Gg(R,,) = So(R) given by ({(C1),...,{C)) —
(H?zl C;). Furthermore, this bijection is perfectly order respecting in the sense
that (IT—, Bi) < ([1i=, Ci) in So(R) if and only if (B;) < (C;) in So(R;) for each
1=1,...,n.

O

PROOF. Arguing as in the proof of Proposition one concludes that there
is a group isomorphism Pic(R;) @ --- @ Pic(R,,) = Pic(R) given by the formula
([P1],-..,[Py]) — [[Ii=; P]. Furthermore, this isomorphism respects the appropri-
ate group actions on the sets So(Ry) x -+ X So(R,) — Sg(R). The fact that
the map Gg(R;) x --- x Gg(R,) — Gg(R) is well defined and bijective follows
from a routine argument. The fact that it is perfectly order respecting follows from

Corollary O

The next result is very helpful for locating semidualizing modules. It requires
some background.

Definition 4.2.21. A finitely generated R-module N is reflexive if the natural
biduality map 6§ : N — Hompg(Hompg (N, R), R) is an isomorphism.

Let R be a normal domain, that is, an integrally closed integral domain. The
divisor class group of R, denoted Cl(R), is the set of isomorphism classes of rank
1 reflexive R-modules. As usual, the isomorphism class of a given rank 1 reflexive
R-module a is denoted [a].

Fact 4.2.22. Let R be a normal domain. Then the set CI(R) is a group with
operation [a][b] = [Hompg(Hompg(a®rb, R), R)]. The identity element in this group
is [R], and inverses are given by the formula [a]~! = [Hompg(a, R)]. Moreover, one
has [a]7![b] = [Homg(a,b)] for all [a],[b] € CI(R). This is comparable with the
operation in Pic(R). In fact, the group Pic(R) is a subgroup of CI(R). If R is a
unique factorization domain (e.g., if R is a regular local ring), then CI(R) = {[R]}.
From [8, (1.4.1(a))] we know that a finitely generated R-module N is reflexive

if and only if
(1) N, is areflexive R,-module for all prime ideals p C R such that depth(R,) <

1, and

(2) depthp (Np) > 2 for all prime ideals p C R such that depth(R,) > 2.
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Proposition 4.2.23. Assume that R is a normal domain. Then every semidual-
izing R-module is reflexive, so there are containments Pic(R) C So(R) C CI(R).

PRrROOF. Let C be a semidualizing R-module, and fix a prime p € Spec(R). If
depth(Ry) > 2, then Propositionimplies that depthp, (Cp) = 2. Assume that
depth(R,) < 1. Since R is a normal domain, it satisfies Serre’s conditions (R;). In
particular, the ring R, is regular. Since C} is semidualizing for R, Corollary 4.1.11
implies that C, = Ry, so C, is a reflexive Ry-module. We conclude from Fact [4.2.22
that C is a reflexive R-module.

The containment So(R) C Cl(R) now follows. The other containment Pic(R) C

So(R) is from Property 4.2.3.2 O

Corollary 4.2.24. Assume that R is a unique factorization domain. If C is a
semidualizing R-module, then C = R. If R has a dualizing module, then R is
Gorenstein.

PROOF. Since R is a unique factorization domain, we have {[R]} C &¢(R) C
CI(R) = {[R]}, so &o(R) = {[R]}. This yields the first of our desired conclusions.
The second one follows from Corollary O

The following example shows the utility of Proposition [£:2:23] It also shows
that the set G¢(R) does not have the structure of a subgroup of CI(R). For details,
see [18].

Example 4.2.25. Fix integers m,n,r such that 0 < r < m < n Let k be a field,
and let X = (X; ;) be an m x n matrix of variables. Set R = k[ 1/Ir+1(X) where
I,+1(X) is the ideal of k[X] generated by the size r + 1 minors of the matrix X.
Then R is a normal Cohen-Macaulay domain admitting a dualizing module D. It
is Gorenstein if and only if either m =n or r = 0.

Assume that r > 1, and let p C R be the ideal generated by the size r minors
of the matrix x of residues in R. Then CI(R) & Z with generator [p]. There is
an isomorphism D = p™~" and we have &¢(R) = {[R],[D]} € C(R) = Z. In
particular, if R is not Gorenstein, then Sy(R) is a two element set, so it cannot be
isomorphic to a subgroup of Z.

Fact 4.2.26. Let ¢: R — S be a ring homomorphism of finite flat dimension
between normal domains. Sather-Wagstaff and Spiroff [19] it is shown that there
is an abelian group homomorphism Cl(¢): CI(R) — CI(S) given by the formula
[a] — [Homg(Homg(a ®g S,S),S)]. Furthermore, there is a commutative diagram

So(R) 2% &4 (5)

£

ClI(R CI(S)
complimenting the diagram from Proposition [4.2.17|(b)).
4.3. More Relations

This section contains some results of Frankild and Sather-Wagstaff [11].

Proposition 4.3.1. Let C' and N be finitely generated R-modules such that the
homothety map Xg®RC®RN: R — Hompg(C ®r C ®r N,C ®@r C ®r N) is an
isomorphism. Then C is a rank 1 projective R-module. If R is local, then C = R.
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PROOF. Case 1: (R,m,k) is local. Let 6: C @ g C — C ®g C be the com-
mutativity isomorphism, given by the formula ¢ ® ¢ — ¢ ® ¢. The induced
map 0 Qg N: C ®r C g N — C ®r C ®r N is also an isomorphism. Since
the map Xg®RC®RN is an isomorphism, there is an element r € R such that
02rN = XEg,c0,n(T), that is, such that (00 rN)(n) = rpforalln € CORCORN.
Since C®rC®pr N is finitely generated and 6 is an isomorphism, Nakayama’s lemma
implies that 7 is a unit.

Consider minimal finite free presentations

Rt LR, 00 and RM L RO N 0.

Since Homg(C ®r C @r N,C @r C @g N) 2 R # 0, we have C; N # 0 and thus
bo,co = 1.
The right-exactness of tensor product yields the following exact sequence

Rb ®r Rbo ®p R

&)

Rbo ®RRb1 ®pr R i> Rbo ®RRbO ®pr R IeT®m, CRrRC®rN —0
&)

Rbo ®r Rbo ®p R

where
§=(0®r R ®r R® R"™@rd®rR® R™opR"agd).

Since Im(9) € mR" and Im(d) C mR“, we have Im(J) C m(R" @ R% ®@x R).
Let 0: R ®p R" — R% ®p R® be the commutativity isomorphism given by
e®e’ — ¢’ @e. The induced map & @R : R ®@pRY @rR%°® — R ®pr R @z R
is also an isomorphism. Let p": R @ R @z R — RY @i R" @ R be given
by multiplication by 7. For each ¢ € R @ RY @ R, the first step in the next
sequence follows from the definitions of § and 6':
(reTem)((0'®R)(C()=(0eR°)(rerar)()
=r(r@Tem)(()
=(r@rem)(r)
=(reram)(u (<)
The other steps are by construction. It follows that
Im((6' ® R) — ") C Ker(1 @7 ®@7) = Im(8) C m(R™ ®p R® ®p R®). (4.3.1.1)

We claim that by = 1. Suppose that by # 1. Since by > 1, we then have by > 2.
Consider a basis ej,e,...,e,, € R®. We know that in (R ®r RY) @r k =
kb0 @, kb, the vectors &3 ® €1, €7 ® &3 are linearly independent. Letting f € R be
any basis vector, we conclude similarly that the vectors &2 @ a1 ® f,e1 @& ® f €
kb @4 kbo @), k° are linearly independent.

The display implies that in R @p R @z R® we have

rRe1@f—re1 e ®@f = ((/ @R®) —p")(e1 ®ez ® f) € m(R™ ®p R ®p R).
Reducing modulo m, this implies that
RO f-TearRe® f €k ok @ k.

This implies that the vectors & @1 ® f,e1 @& ® f € kP @y kP @4 k° are linearly
dependent. This is a contradiction, establishing the claim by = 1.
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It follows that C is cyclic, say C = R/I. Tt follows that I(C @ g C ®r N) =0,

and thus
ICAmp(C®rCR®rN) = Ker(xg®R) =0.
We conclude that C = R, and this concludes the proof when R is local.

Case 2: the general case. As in the proof of Proposition , the fact that
the homothety map Xg®RC®RN: R — Homp(C ®r C @ N,C®r C ®r N) is an
isomorphism implies that for each maximal ideal m C R that the homothety map
Xg:@RmCm®RmNm Ry — HomRm (Cm QRm Ca QRm Ny, Ci QR Ca QR Nm) is
an isomorphism. Thus, Case 1 implies that C, & Ry, for all m, that is, that C is a
projective R-module of rank 1. O

Corollary 4.3.2. Let C be a semidualizing R-module. Then C € Ac(R) if and
only if C' is projective.

PROOF. If C is projective, then Proposition [£.1.4] implies that every R-module
(in particular C') is in A¢(R). Conversely, if C' € Ac(R), then we conclude from
Proposition M(@) that C ® g C is semidualizing, so the desired conclusion follows
from Proposition [4.3.1 O

Corollary 4.3.3. Let (B),(C) € &¢(R) such that (B) < (C).
(a) If (C) < (Hompg(C, B)), then (C) = (B).
(b) If (Hompg(C, B)) < (C), then (C) = (R).
(c) If (B) # (C) # (R), then (C) and (Hompg(C, B)) are not comparable under
the ordering on Go(R).

PROOF Recall that the condition (B) < (C) means that B € B¢ (R), so Propo-

sition 1{{b) implies that Homp(C, B) is semidualizing.
(la) Assume that (C) < (Hompg(C, B)), that is, that C' € Buom,(c,B)(R). Two

applications of the defining property for membership in the Bass class imply that
B = C@R HOIHR(C, B)
= [Homp(C, B) ® g Hompr(Homp(C, B),C)] @ g Hompg(C, B)
= [Hompg(C, B) ® g Homg(C, B)] ® g Homg(Homg(C, B), C).
Since B is semidualizing, Proposition implies that Homp(C, B) is a rank 1
projective R-module. Thus, the first line of the previous sequence implies that
(B) = (C).
(o) Assume that (Hompg(C, B)) < (C). As in the proof of part (a]), this yields
B> (C®rHompg(C,B) =2 C®rC®gHomg(C,Homg(C, B)).
Since B is semidualizing, Proposition implies that C is a rank 1 projective
R-module, that is, that (C') = (R).

Assume that (B) # (C) # (R). If (C) < (Homg(C, B)), then part (al)
implies that (C) = (B), a contradiction. If (Hompg(C, B)) < (C), then part (b))
implies that (C) = (R), a contradiction. O
Proposition 4.3.4. Assume that R admits a point-wise dualizing module D.
(a) The operation A: Go(R) — S¢(R) given by [C] — [Hompg(C,D)] is an
involution (i.e., A? is the identity map).
(b) The operation A: &o(R) — So(R) given by (C) — (Hompg(C, D)) is an
involution.
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(c) If R is not point-wise Gorenstein, then A has no fized points.

PROOF. Since D is a point-wise dualizing module for R, Corollary 2.2.13] im-
plies that R is Cohen-Macaualy and D is a canonical module for R. Corollary [£.1.3]
implies that Hompg(C, D) is semidualizing for R. From this, we conclude that A is
well-defined.

To see that A is well defined, assume that (B) = (C) in Gg(R). Lemma m
implies that By, = Cy, for each maximal ideal, so we have

Hompg(C, D)y = Hompg,, (Cwn, Dw) = Hompg, (B, Dn) =2 Homg(C, D)y

for each m. Another application of Lemma shows that (Hompg(C,D)) =
(Hompg(B, D)), so A is well defined.

Proposition 2:2.3] implies that Cy, is a semidualizing Ry,-module for each max-
imal ideal m C R, so Theorem implies that Cp, is a maximal Cohen-
Macaulay Rm-module for each m. From [8] (3.3.10)] we conclude that the natural
biduality map (53:‘: Cyww — Homp, (Hompg, (Cy, Dm), Dn) is an isomorphism for
each m, and we conclude that the biduality map 65 : C' — Hompg(Homg(C, D), D)
is an isomorphism. This shows that A and A are involutions.

Lastly, assume that R is not point-wise Gorenstein, and suppose that (C) is
a fixed point for A. This means that (C) = (Homg(C, D)) in &¢(R), that is,
that (C) < (Homg(C, D)) < (C). Recalling that (D) < (C), we conclude from
Corollary [£.3.3|[]) that (C) = (D), Corollary implies that (C) = (R). It
follows that (D) = (R), that is, that there is a projective R-module such that
D = P®r R = P. Corollary implies that R is point-wise Gorenstein, a
contradiction. (]

Corollary 4.3.5. The following conditions are equivalent:
(i) R is (point-wise) Gorenstein;
(ii) R admits a (point-wise) dualizing module D and a semidualizing module C
such that (C) = (Hompg(C, D)) in So(R); and
(i) R admits a (point-wise) dualizing module D, and &o(R) is finite with odd
cardinality.

Proor. (i) = If R is (point-wise) Gorenstein, then R is (point-wise)
dualizing for R, and Property implies that Go(R) = {(R)}.

(i) = Assume that R admits a (point-wise) dualizing module D, and
Go(R) is finite with odd cardinality. Suppose that (C) # (Hompg(C, D)) for each
(C) € &p(R). Since the map A: &g(R) — S¢(R) is an involution, this implies
that Gg(R) is a disjoint union of sets of cardinality 2, namely the sets of the
form {(C), (Hompg(C, D))}. Since &¢(R) is finite, it follows that Sy(R) has even
cardinality, a contradiction.

= ([if) Assume that R admits a point-wise dualizing module D and a semid-
ualizing module C such that (C) = (Hompg(C, D)) in &g(R). Then the element
(C) is a fixed point of A, so Proposition |c|implies that R is point-wise Gorenstein.

Assume moreover that D is dualizing for R. Since R is point-wise Gorenstein,
Corollary implies that D is projective. The fact that D is dualizing for R
then implies that R is Gorenstein, again by Corollary O

The next result is a restatement of the equivalence —= from Corol-
lary
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Corollary 4.3.6. Assume that R admits a point-wise dualizing module D. If R is
not point-wise Gorenstein, then Go(R) is either infinite or has even cardinality.

Corollary 4.3.7. The following conditions are equivalent:

(i) there exist elements of Go(R) that are not comparable; and
(ii) Go(R) has cardinality at least 3.

Proor. () = (i) Assume that (C), (B) € &((R) are incomparable elements.
It follows that (C) # (B). Since (C) < (R) and (B) < (R) it follows that (C) #
(R) # (B). Thus, the elements (C), (B), (R) are three distinct elements of So(R).

= (i) Let (C), (B),(C") be distinct elements of Go(R). Assume without
loss of generality that (C') = (R). Suppose that all elements of Go(R) are com-
parable. Thus, we may assume without loss of generality that (C') < (B) < (C")
and (C) # (B) # (C'). Corollary implies that the elements (C') and

(Homp(C, B)) are incomparable, a contradition. O






CHAPTER 5

Totally C-reflexive Modules

This chapter is about duality.

5.1. Basic Properties of Totally C-reflexive Modules
The term “totally C-reflexive” is defined in

Proposition 5.1.1. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules

0—M LML M —o

such that M" is totally C-reflexive. Then M’ is totally C-reflexive if and only if
M s totally C-reflezive.

PRrOOF. Set (=)' = Hompg(—,C).

Since M" is totally C-reflexive, we have Exts(M”,C) = 0 for all i > 1. Using
the long exact sequence in Ext%(—, () associated to the given sequence, we conclude
that Ext%(M’,C) = 0 for all i > 1 if and only if Ext%(M,C) = 0 for all i > 1.
Furthermore, the condition Ext}%(M " C) = 0 yields a second exact sequence

T T
0— (MM L (o (5.1.1.1)

Since M” is totally C-reflexive, we have Extz((M")f,C) = 0 for all i > 1. Us-
ing the long exact sequence in Extlé(—7 C) for the sequence , we see that
Ext%((M")f,C) = 0 for all i > 2 if and only if Ext%(MT,C) = 0 for all i > 2. The
naturality of the biduality maps yields a commutative diagram

0— > M — =L 0

6E/l 65\/‘1l 6%//l:
fTT Tt

0 — (M)t Z prit L (M) —= Exth (M), C) — Exth(MT,C) — 0.

The top row is exact by assumption, and the bottom row is the long exact sequence
in Extr(—, C) associated to . Since g and 6}, are surjective, we conclude
that ¢fT is surjective as well. Tt follows that Extp((M')f,C) = Exth(MT,C), so
Ext((M")f,C) =0 for all i > 1 if and only if Ext%(MT,C) =0 for all i > 1. The
surjectivity of ¢'T implies that the bottom row of the next diagram is exact:

0 My 0
85 l 6§Il 85 lw
et Tt
0 — (M1t L it s (it — 0,

63
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The snake lemma shows that 6%, is an isomorphism if and only if 4§} is an isomor-
phism. This completes the proof. ([

The next example shows that, given an exact sequence 0 — M’ — M — M" —
0, if M’ and M are totally C-reflexive, then M" need not be totally C-reflexive.
See however Proposition below.

Example 5.1.2. Let k be a field and R = k[X] a formal power series ring in one
variable. Consider the exact sequence
0-RE5R—k—0.
The module R is totally reflexive, but k is not because Exty,(k, R) = k # 0.
For the next result, argue as in the proof of Proposition [5.1.1}

Proposition 5.1.3. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules

0—M LML M -0
such that M’ and M are totally C-reflexive. Then M" is totally C-reflexive if and
only if ExtRr(M”,C) = 0.
The next result is proved by induction on n. The base case n = 1 is in Propo-
sition E.1.3
Proposition 5.1.4. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules

0—Gn 2 2G> M—0
such that each module G; is totally C-reflexive. Then M is totally C-reflexive if
and only if Exty(M"”,C) =0 fori=1,...,n.

Proposition 5.1.5. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. Then M is totally C-reflexive if and only if Homg(M,C) is
totally C-reflexive and Exts(M,C) =0 for all i > 1.

PRrROOF. For the forward implication, assume that M is totally C-reflexive.
Then Ext’y(M,C) = 0 = Extsy(Homp(M,C),C) for all i > 1. The biduality map
8¢, is an isomorphism, and hence so is Homg(§¢;,C). From the readily verified
equality

Homg (657, C) © 0fiomp(ar,0) = idHomp(0.C) (5.1.5.1)

we conclude that 5g omp (M,C) is an isomorphism as well. Furthermore, we have
Ext% (Homg(Hompg (M, C),C),C) = Exth(M,C) =0

for all i > 1, so Hompg(M, C) is totally C-reflexive.
For the reverse implication, assume that Hompg (M, C) is totally C-reflexive and
Extz(M,C) =0 for all i > 1. Consider an exact sequence

0—M SP—M-—0 (5.1.5.2)

where P is a finitely generated projective R-module. Since EthR(M ,C) =0 =
ExtR® (P, C) for all i > 1, the associated long exact sequence in Extg(—,C) shows
that Extz (M7, C) =0 for all ¢ > 1. Furthermore, this yields an exact sequence

0 — Homp (M, C) — Homp(P,C) — Homp(M;,C) — 0.



5.1. BASIC PROPERTIES OF TOTALLY C-REFLEXIVE MODULES 65

Since Hompg(M, C) and Hompg (P, C) are totally C-reflexive, Proposition im-
plies that Hompg (M7, C) is totally C-reflexive.
We claim that M; is totally C-reflexive. (Once this is proved, an application

of Proposition to the sequence implies that M is totally C-reflexive.
Since Hompg(M;j,C) is totally C-reflexive, we have Extly(Hompg(M;,C),C) = 0
for all i > 1. We have already shown that Exts(M;,C) = 0 for all i > 1, so it
remains to show that the biduality map 5]?41: M; — Hompg(Hompg(My,C),C) is
an isomorphism. The fact that 51%1 is injective follows from the next commutative
diagram:

M€ < P

zS]%ll 5gi~
Hompg (Hompg (€,C),C
Homp(Hompg(M;,C),C) omn(Homn(c,0),¢) Hompg(Hompg(P,C),C).

To show that 6§, is surjective, set (=)' = Hompg(—, C') and consider the next exact

sequence:

c
vy

0— M; —% Mt — Coker(éf/h) — 0.

For each i > 1 we have Extiy(M{T,C) = 0 since M/ is totally C-reflexive. Hence,
the long exact sequence in Extr(—, C) shows that, for i > 2 we have

Extl (Coker(85;, ), C) = Extly ' (My,C) = 0. (5.1.5.3)
The initial piece of this long exact sequence has the form

¢ 05!
—_

0 — Coker(5§;,)" — (M]") M — Ext}(Coker(65;,,C) — 0.

The fact that (6§;,)" is an isomorphism follows from equation (5.1.5.1) since 61?4{ is

an isomorphism. The exactness of this sequence shows that Ex‘c}%(Coker(éf/[1 ,C) =
0 = Coker(§;, ). Coupled with this implies that Ext%(Coker(c;]((;h), C) =
0 for all 4 > 0. Since C' and Coker((;f/h) are finitely generated and C' # 0, we con-
clude that Coker(65; ) = 0; see, e.g. [16] (16.6)]. Hence, the map 6%}, is surjective,
as desired. 0

We next present a result of Holm and Jgrgensen [15]. It uses the notion of a
“trivial extension” popularized by Nagata.

Remark 5.1.6. Let C be a semidualizing R-module. The trivial extension of R
by C (also known as the idealization of C) is denoted R x C. As an R-module,
we have R x C = R® C. And we endow R x C with a ring structure given by
(r,d)(r'd") = (rr’,rd’ + 7'd). This makes R x C into a (commutative noetherian)
ring. Furthermore, there is a commutative diagram of ring homomorphisms

R~ RrxcC

RN

R
where f(r) = (r,0) and g(r,c) =r.
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Proposition 5.1.7. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. Consider M as an R x C-module via the natural surjection
goc: Rx C — R. Then M is totally C-reflexive as an R-module if and only if M
is totally reflexive as an R x C-module.

PrOOF. We begin with the following isomorphisms of R-modules:
Hompg(RxC,C) =2 Homg(R®C, C) =2 Hompg(C, C)®Homg(R,C) = RGC = RxC.

It is straightforward to show that the R-module isomorphism Hompg(R x C,C)
R x C'is in fact an R X C-module isomorphism.

Let I be an injective resolution of C' as an R-module. Let fo: R — Rx C
be the natural inclusion. Since R and C' are totally C-reflexive, the same is true
of R®C = Rx C. In particular, we have Ext(R x C,C) = 0 for all i > 1,
so the complex Homg(R x C,I) is an injective resolution of the R x C-module
Hompg(R x C,C) = R x C. This explains the first step in the next sequence:

Exth, o(M,Rx C) = H_;(Hompxc (M, Homp(R x C,1)))
> H_;(Homgr(R x C @rxc M, 1))
= H_;(Hompg(M,I))
>~ Extn(M,C).
The second step is Hom-tensor adjointness, the third step is tensor cancellation,
and the fourth step is by definition. It follows that Ext%, ~(M,R x C) = 0 for

all i > 1 if and only if Exth (M, R) = 0 for all i > 1. Furthermore, it shows that
Hompgyxc(M, Rx C') 2 Homg(M, C), and hence the first step in the next sequence:

Extl, o (Hompxco(M, R x O), R x C) = Exth, o(Homp(M,C), R x C)
=~ BExth (Homg (M, C), C).
The second step here follows from the previous display, using Hom r(M,C) in place
of M. Tt follows that Exty, o(Hompxc(M,Rx C),Rx C) =0 for all 4 > 1 if and
only if Ext% (Hompg(M, R), R) = 0 for all i > 1. Furthermore, it shows that there is
an R x C-module isomorphism M = Hompgyc(Homgxe(M, R x C), R x C) if and
only if there is an R-module isomorphism M 2= Hompg(Hompg (M, C),C). Using
Proposition @) this means that the biduality map (5}&“0 is an isomorphism if
and only if §7; is an isomorphism. The desired result now follows. O

The next result is proved like Lemma

Lemma 5.1.8. Let C' be a semidualizing R-module. Let M and N be R-modules
such that Extly(N,C) = 0 for alli > 1 (e.g., such that N is totally C-reflexive) and
M s totally C-reflexive. Then Exts(Homp(M,C), Homg(N,C)) = Ext’y (N, M)
for alli > 0.

5.2. Complete P Po-resolutions
Definition 5.2.1. A complete PPc resolution is an exact sequence

X
X=nP =P CorQu— CORQL—

such that each P; and @); is a finitely generated projective R-module and such
that Hompg (X, C) is exact. Such a sequence is a complete PPc resolution of an
R-module M when M = Im(95).
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Remark 5.2.2. Consider a complete PPg resolution

X
X=oP =P CopQo—CORQL— .

Proposition implies that each module P; and C' ®g Q; is totally C-reflexive.
It follows that the natural biduality map X — Hompg(Homg(X,C),C) is an iso-
morphism. In particular, the sequence Hompg(Homg(X, C), C) is exact.

Set (—)* = Homp(—, R). Note that the modules P and @ are finitely gen-

1
erated and projective. (For instance, if P; is a direct summand of R™, then P/ is

a direct summand of (R")* = R".) Since each module P; is finitely generated and
projective, it is totally R-reflexive, so we have P; = P7*. This explains the first
step in the next sequence:
HOIDR(P,L‘, C) = HOI’HR(F):*7 C) = HomR(R, C) KRR Pi* =C QR Pi* (5221)
Homp(C ®@r Q;,C) 2 Homp(Q;, Homg(C,C)) = Homg(Q;, R) = Q3. (5.2.2.2)

J

The second step is Hom-evaluation, and the third step is Hom-cancellation. The
fourth step is Hom-tensor adjointness, and the fifth step follows from the fact that
C is semidualizing. It follows that we have

Homp(X,C) = - - Q1 - Q5 —=CRr Py - CQpr P — -
so Hompg(X, C) is a complete PPc resolution.
Here is a result of White [21].

Theorem 5.2.3. For an R-module M, the following conditions are equivalent:

(i) M is totally C-reflexive;
(ii) M has a complete PPc resolution; and
(iil) M has a complete PPc resolution of the form

X=-—=R" - RY - C% (0" — ...

PrROOF. Set (=)' = Homp(—, C). The implication = (iii) is routine.
(i) = (jii) Assume that M is totally C-reflexive, and consider free resolutions

Pt =...oR" SR 5 M -0
Qt=--- > R“" - R% - M - 0.
Since M is totally C-reflexive, we have Exth(MT,C) = 0 for all i > 1, so the
following sequence is exact:
(Q"')T% 0— Mt 0w _0mn ...
Splicing P and (Q*)" along the isomorphism §,: M =, M* yields the next
commutative diagram with exact row

X = . Rb1 Rbo 9 Cao Ca

N

M

such that M = Im(0).
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We need to show that the complex X' in the row of the next commutative
diagram is exact:

Xt = ce Ra1 R0 o C'bo o

NS

Mt
It is straightforward to show that this diagram is isomorphic to the one obtained
by splicing Q* and (P*)T along the identity M1 — MT. The sequence Q7 is exact
by assumption, and the sequence (P*)! is exact because Ext’(M,C) = 0 for all
i > 1. Tt follows that XT is exact as desired.
= (li)) Assume that M has a complete PP¢ resolution

X = Py Py 2 CoOrQo—CRrQ1—""
M
Since X is exact, it follows that the complex
Pt=... 5 RM 5 RY 5 M -0

is exact, that is, that PT is an augmented projective resolution of M. Since X tis
exact, it follows that (P)! is exact, so we have Ext%(M,C) = 0 for all 4 > 1.
As in Remark [5.2.2] the sequence X has the following form

Xt = Q3 CRprPy —CQrPf — -

Q—2
MT/

where (—)* = Hompg(—, R). Furthermore, we have X = XTT. Since X7 is exact, we
conclude that the next sequence

Q*Z”'—>QT—>QE—>MT—>O

is an augmented projective resolution of M f. Since X' = X is exact, it follows
that Ext%(MT,C) =0 for all 4 > 1.
Finally, there is a commutative diagram with exact rows:

Q= 0 M C ®r Qo CORQy ——>
6gfl (Sg®RQo\Lm 62@1{@1 lm
@*)t 0 Mt (C®r Q)T — (C @R Q)T ——---.

Since the maps 58@3@ are isomorphisms, so is 5]?4, so M is totally C-reflexive. [

Proposition 5.2.4. Let C be a semidualizing R-module, and let P be a finitely gen-
erated projective R-module. Let G be a totally C-reflexive R-module with complete
PPc resolution

X
X:"'—>P1—>P06L>C®RQ0—>C®RQ1—>"'
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(a) The R-module Hompg (P, G) is totally C-reflexive with complete PPc resolu-
tion Hompg(P, X).

(b) The R-module P @ G is totally C-reflexive with complete PP¢ resolution
P®orX.

(¢) The R-module Hompg(G,C ®g P) is totally C-reflexive with complete PPo
resolution Hompg(X,C ®g P). In particular, the module Homg (G, C) is to-
tally C-reflexive with complete PPq resolution Hompg (X, C).

Proor. @ Since P is a finitely generated projective, the modules Homg (P, F;)
and Hompg(P, Q;) are projective. Hence, the sequence

Hom g (P,
5

Homp(P, X) 2 - -+ — Homp (P, Py) L, ¢ @k (Homp(P,Qp)) — -+

has the form of a complete PPx resolution. (The isomorphisms Homg(P,C ®p
Q;) = C @r Hompg (P, Q;) are by tensor evaluation.) This sequence is exact and
has Homg(P,G) = Im(Hompg(P,95)) because the functor Homp (P, —) is exact.
Hom evaluation explains the next isomorphism

Homp(Hompg(P, X),C) =2 P ®@r Homp(X, C)

so this sequence is exact because the sequence Hompg (X, C') and the functor P®pr —
are exact. This concludes the proof of part @
Parts (]ED and are proved similarly. O

Proposition 5.2.5. Let C be a semidualizing R-module, and let G be a totally
C-reflexive R-module with complete PP¢c resolution

o % o X, %,
X=—->P —P—C0rQ —C®rQ —---.
Then for each i € Z, the module Tm(3;X) is totally C-reflexive.

PROOF. When i = 0, this is by assumption since G = Im(9g); see Theo-
rem [5.2.3] For i > 1, this follows from an induction argument using Proposi-
tion with the fact that each P; is totally C-reflexive; see Proposition

Assume that ¢ < 0. We claim that Extfé(Im(BiX),C) =0 for all j > 1. For
1 = 0, this is by assumption. For i < 0, this follows by induction on 4 using the
long exact sequence in Extr(—,C) associated to the sequence

0—Im(9},) - C®rQ; —Im(9;) — 0

since Extg%(C ®r Q;,C) =0 for all j > 1 by Proposition [2.1.13
Now the desired conclusion follows from Proposition applied to the exact
sequence 0 = G - C®r Qo — -+ — C @ Q; — Im(9%,) — 0. .

5.3. Base Change for Totally C-reflexive Modules

This section is similar to section [3.4]

Proposition 5.3.1. Let C' be a semidualizing R-module, let p: R — S be a flat
ring homomorphism, and Let M be a finitely generated R-module. If M is totally
C-reflexive, then the S-module S @ M is totally S @ C-reflexive; the converse
holds when ¢ is faithfully flat.
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PROOF. Because ¢ is flat, Corollary [3.4.2]implies that S®gC' is a semidualizing
S-module. Since M is finitely generated and ¢ is flat, we have isomorphisms
Ext5(S @r M,S ®r C) =2 S @r Exth(M,C)

Ext(Homg (S ®r M, S ®@r C), S ®r C) =2 S ®p Exty(Hompg(M,C),C).
Hence, iflEthR(M, C)=0= ExtE(HomR(M, C),C) for all ¢ > 1, then we conclude
that Exts(S ®@r M, S ®r C) =0 = Exty(Homg(S @r M, S ®r C), S ®@r C) for all
1 2 1; and the converse holds when ¢ is faithfully flat. We also have a commutative
diagram

S®RC
S®@pM

S®r M Homg(Homg (S ®p M, S ®gr C),S ®@r C)

S@ng,l :l

S ®@g Homp(Hompg (M, C),C) — Homg (S ® g Homg (M, C), S @ C)

where the unspecified isomorphisms are the natural ones. Hence, if the biduality
map 51% is an isomorphism, then so is 532?%; and the converse holds when ¢ is

faithfully flat. O

Proposition 5.3.2. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. Let x = x1,...,24 € R be a sequence that is R-regular and
such that xM # M, and set R = R/(x)R. If M is is totally C-reflexive, then x
is M-reqular and the R-module R @ g M is totally R @ g C-reflexive. The converse
holds when x is in the Jacobson radical J(R).

PRrROOF. We argue by induction on d. We prove the base case d = 1 and leave
the inductive step as a routine exercise.

For notational simplicity, set # = z; and (—) = R ® —. Recall that if N is a
finitely generated R-module such that x is N-regular, then we have

Exti (N, C) = Ext=(N,C) (5.3.2.1)
for all ¢ > 1; see, e.g. [16], p. 140, Lemma 2]. Also, there is an exact sequence
0—-C%C—C—0. (5.3.2.2)

since x is C-regular.

Step 1: We show that if M is totally C-reflexive, then x is M-regular. For this,
we use the following sequence:
Assp(M) = Assg(Hompg(Hompg (M, C),C))

= Suppy(Homp(M, C)) N Assg(C)

C Assp(C)

= Ass(R).
The first step is by assumption, and the second step is a result of Bourbaki. The
third step is routine, and the fourth step is from Proposition [2.1.16{fa}). Since x is
R-regular, it is not in any associated prime ideal of R. Thus, the previous sequence
shows that x is not in any associated prime ideal of M, so x is M-regular. This
completes Step 1.
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Because of Step 1, we may assume without loss of generality for the rest of the
proof that x is M-regular.

Step 2: We show that (a) if Ext’ (M, C) = 0 for all i > 1, then EX‘L%(M, C)=0
for all ¢ > 1, and (b) the converse holds when z € J(R).

(a) If Ext’ (M, C) = 0 for all i > 1, then the long exact sequence in Ext’s (M, —)
associated to the sequence shows that 0 = Ext's (M, C) = Ext%(ﬁ, C) for
all ¢ > 1; the isomorphism is from .

(b) Conversely, assume that Ext-(M,C) = 0 for all i > 1 and that = € J(R).
From we conclude that Ext’ (M, C) = 0 for all i > 1. Hence, part of the
the long exact sequence in EX‘L%(M ,—) associated to has the form

Exth(M,C) 5 Exts(M,C) — 0

for all 4 > 1. This implies that Ext%(M,C) = zExth(M,C), so Nakayama’s
Lemma implies that Ext (M, C) = 0. This completes Step 2.

Because of Step 2, we may assume without loss of generality for the rest of the
proof that Exty(M,C) =0 for all ¢ > 1.

Step 3: We show that Homg (M, C) & Homg (M, C) and that z is Hompg (M, C)-
regular. ‘ ‘
Because we have ExtRh(M,C) = 0, the long exact sequence in Exth(M,—)

associated to (5.3.2.2) begins as
0 — Hompg(M,C) % Homp(M,C) — Homp(M,C) — 0.

This shows that x is a non-zero-divisor on Homg (M, C). It also explains the first
isomorphism in the next display

Homp (M, C) = Homg(M,C) = Homg(M, C)
while the second isomorphism is from (5.3.2.1)).

Thus, to complete Step 3, it remains to show that Hompg(M,C) # 0, that is,
that Homz(M,C) # 0. Suppose by way of contradiction that Homg(M,C) = 0.
Since C is a semidualizing R-module, we have Suppz(C) = Spec(R) by Proposi-
tion [2.1.16{(a). Step 2 shows that Ext=(M,C) = 0 for all i > 0. We conclude that

M = 0, contradicting the assumption that x is M-regular. This completes Step 3.

Step 4: We show that (a) if Exth(Hompg(M,C),C) = 0 for all i > 1, then
Ext'(Homz(M,C),C) =0 for all i > 1, (b) the converse holds when z € J(R).

From Step 3, we know that x is Hompg (M, C)-regular, and that Homg (M, C') =
Homz(M,C). Thus, Step 2 shows that (a) if Ext’(Homg(M,C),C) = 0 for all
i>1, then 0 = Ext%(HomR(M, C),C) = Ext%(Homﬁ(M, C),0)=0forallix>1,
and (b) the converse holds when x € J(R). This concludes Step 4.

Because of Step 4, we may assume that Exts(Hompg (M, C),C) = 0 for i > 1.

Step 5: We show that Hompg(Hompg(M, C), C) = Homg(Homg(M, C),C) and
that « is Homg(Hompg (M, C), C)-regular. As in Step 4, this follows from an appli-
cation of Step 3 to the module Hompg (M, C).
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Step 6: We ihow that (a) if the biduality map 61\0/1 is an isomorphism, then the

biduality map (5% is an isomorphism, and (b) the converse holds when z € J(R).
For this, consider the following commutative diagram:

el
_ 55

M Homz(Homz(M, C), 0)

g w

Hom (Homp (M, C), C) —= Hom(Hompg (M, C), C).

The unspecified isomorphisms are from Steps 3 and 5.

(a) If §¢; is an isomorphism, then so is @, and the diagram shows that (5% is
an isomorphism.

(b) Assume that 5% is an isomorphism and xz € J(R). The diagram above

shows that 51\0/[ is an isomorphism. Consider the exact sequence

C
M LR Hom g (Hompg(M, C),C) — Coker(6{;) — 0

and apply the right-exact functor (—) to obtain the exact sequence

5
M 5—5—> Homp(Hompg (M, C),C) — Coker(6§;) — 0.

Since @ is an isomorphism, it follows that Coker(6¢;) = 0. Nakayama’s Lemma
implies that Coker(d¢;) = 0, that is, that &5, is surjective.
Now, consider the exact sequence

c
0 — Ker(6$,) — M . Homp(Homp(M, C),C) — 0.
Since z is Homp(Homp (M, C'), C')-regular, we have
Tor? (R, Homg(Hompg(M, C),C)) =0

so the following sequence is exact:

5
0 — Ker(6§,) - M % Hompg(Hompg(M,C),C) — 0.

Since @ is an isomorphism, it follows that Ker((%}) = 0. Nakayama’s Lemma
implies that Ker(55;) = 0, that is, that §¢; is injective. This completes Step 6 and
the proof of the result. O

The next result is proved like Proposition [3.4.9

Proposition 5.3.3. Let k be a field, and let R and S be k-algebras. Let B and
M be R-modules such that B is semidualizing, and let C and N be S-modules such
that C' is semidualizing. If M is totally B-reflexive and N 1is totally C-reflexive,
then M ® N is totally B ®y C-reflexive.
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5.4. Local-Global Principle for Totally C-reflexive Modules

The next result is from unpublished notes by Foxby. See also Avramov, Iyengar,
and Lipman [7].

Proposition 5.4.1. Let C and M be R-modules such that M is finitely generated.

(a) If there is an R-module isomorphism a: M =N Hompg(Homg (M, C),C), then
the natural biduality map 65;: M — Hompg(Homp(M,C),C) is an isomor-
phism.

(b) Assume that C is finitely generated. If for every mazimal ideal m C R there
is an Ry-module isomorphism My, = Hompg(Homp(M,C),C)w, then the
natural biduality map 6;: M — Homp(Hompg(M,C),C) is an isomorphism.

Proor. @ It is straightforward to show that the following diagram commutes

Hom g (Homp(M, C), ) — > Hom g (Hom g(Homp (Homg (M, C), C), C), C)

) HomR(‘SgomR(M,c)vC)
idHom g (Hom g (M,C);

HomR(HomR(M, C), C)

where ¢’ = 5gomR(H0mR(M7C)7C). In particular, the map ¢’ is a split monomorphism.
With X = Coker(d"), this explains the second isomorphism in the next sequence:
M & X 2 Homg(Homg(M,C),C) & X
= Homp(Homp(Homp(Hompg (M, C),C),C),C)
=~ M.
The other isomorphism are induced by a. Since M is finitely generated, this implies

that X = 0, that is, that ¢’ is surjective. Since it is also injective, we have the right-
hand vertical isomorphism in the next diagram:

M HomR(HomR<M7 C)v C)

Hompg(Hompg (M, C),C) % Hompg(Hompg (Hompg(Homg (M, C),C),C),C).

IR

Here o/ = Homp(Homg(a, C),C), and it follows that 6§, is an isomorphism.
(]ED This follows from part @ as in the proof of Proposition m O

Here is a local global principal for totally reflexive modules. Its proof is similar
to that of Proposition [3.5.3

Proposition 5.4.2. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. The following conditions are equivalent:

(i) M is a totally C-reflexzive R-module;

(ii) UM is a totally U=1C-reflexive U~ R-module for each multiplicatively

closed subset U C R;

(i) M, is a totally Cy-reflexive Ry-module for each prime ideal p C R; and

(iv) My, is a totally Cy-reflexive Ry -module for each maximal ideal m C R.
If X is a complete PPc resolution of M over R, then U~'X is a complete PPy-1¢
resolution of U='M over U'R for each multiplicatively closed subset U C R.
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The next result contains partial converses of Proposition [5.2.4f(a)—(b).

Proposition 5.4.3. Let C' be a semidualizing R-module, let P be a finitely gener-
ated faithfully projective R-module, and let M be a finitely generated R-module. If
M ®gr P or Homg(P, M) is totally C-reflexive, then M is is totally C-reflexive.

PrOOF. The assumption that P is a finitely generated faithfully projective R-
module implies that, for each maximal ideal m C R, there is an integer e, > 1 such
that Py = Ro». If M ®p P is totally C-reflexive, then Proposition implies
that the R,-module

(]\4®Rp)mg m®Rm ngMm ®Rm fo{“gMT?lm

is totally Cp-reflexive for each m. Since ey, > 1, Proposition implies that My,
is totally Cp-reflexive for each m, so we conclude from Proposition that M is
is totally C-reflexive.

The proof is similar when Hompg (P, M) is assume to be totally C-reflexive. O

The next result is proved like Proposition using Proposition [5.4.2

Corollary 5.4.4. Let Ry,...,R, be noetherian rings, and consider the product
R=R; x---xXR,. Fori=1,...,n let C; be a semidualizing R;-module, and set
C =Cy % xCy. There is a bijection Go(R1) X - X Go(R,) = Go(R) given by
(My,...,Mp)— My X -+ X M,.

The following example shows why we need P to be faithfully projective in
Proposition [5.4.3]

Example 5.4.5. Let (Ry, my, k1) be an artinian local ring that has a semidualizing
module C; that is not dualizing; see Example Let Ry be a field and set
R = Ry X Ry. The module C' = C; x Ry is semidualizing for R. Set P = 0 X
Ry and M = k x 0. It follows that P ® g M = 0 = Hompg(P, M), and thus
P ®pr M and Homp (P, M) are totally C-reflexive. However, the module M is not
totally C-reflexive. Indeed, we have Ex‘clé1 (k1,C1) # 0 for all ¢ > 0 since Ry is
artinian and idg, (C1) = oco. Thus, the R;-module k; is not totally Cy-reflexive, so
Corollary implies that M is not totally C-reflexive.

The next result is like [8] and has a similar proof. See also Proposition [2.2.10

Proposition 5.4.6. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. Then M s totally C-reflexive if and only if the following
conditions are satisfied:

(1) For each p € Spec(R) such that depth(Ry) > 2, one has depthp (M) > 2;

(2) For each p € Spec(R) such that depth(R,) < 1, there is an Ry-module
isomorphism M, = Hompg, (Homg, (M,,Cy),Cy); and

(3) One has Ext’y(M,C) = 0 = Ext’(R(Hompg(M,C),C) for alli > 1.

Corollary 5.4.7. Assume that R is a normal domain. Let C be a semidualizing
R-module, and let M be a finitely generated R-module. Then the biduality map
§$;: M — Homp(Homg(M,C),C) is an isomorphism if and only if the biduality
map 0% : M — Homp(Hompg (M, R), R) is an isomorphism, that is, if and only if
M is reflexive.
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PROOF. The fact that R is a normal domain implies that R satisfies Serre’s
conditions (R1) and (S2). Thus, for each p € Spec(R) with depth(R,) < 1, the ring
R, is regular. In particular, for these primes we have C, = R, by Corollary

The proof of Proposition shows that the biduality map ¢, is an isomor-
phism if and only if the following conditions are satisfied:

(C1) For each p € Spec(R) with depth(Ry) > 2, one has depthp (M;) > 2; and
(C2) For each p € Spec(R) with depth(R,) < 1, there is an R,-module isomor-
phism M, = Homg, (Homg, (M,,Cy), Cy).
Similarly, (or using [8]) the biduality map ¢4, is an isomorphism if and only if the
following conditions are satisfied:
(R1) For each p € Spec(R) with depth(R;) > 2, one has depthp (M) > 2; and
(R2) For each p € Spec(R) with depth(R,) < 1, there is an R,-module isomor-
phism M, = Hompg, (Hompg, (M, Ry), Ry).
It is clear that (C1)=(R1). From the first paragraph of this proof, we have (C2) <=
(R2), hence the desired equivalence. O

Proposition 5.4.8. Let C be a semidualizing R-module, and let G be a totally
C-reflexive R-module. If N is an R-module locally of finite flat dimension, then

Torl (G, N) = 0 = Ext%(G,C ®x N)
for alli > 1.

PrOOF. Case 1: assume that R is local. Since N is locally of finite flat dimen-
sion, this implies that f = fdg(NN) < co. Fix a complete PP¢ resolution of G:

o 5% o X, %,
X=—P—FP—CQRrQ —CRrQ1 — ---.

Since Q; is projective, we have Tor; (C ®g Q;, N) = Torf(C,N) ®@r Q;. As
N € Ac(R) by Corollary we have Tor®(C,N) = 0 for all i > 1, and thus
Torl(C ®p Qi, N) =0 for all i > 1.

For each i > 0 set G; = Im(9%,). Then we have G = G, and there are exact
sequernces

0-G = COrQ;i — Giy1 —0

for each ¢ > 0. Using the vanishing from the previous paragraph, a dimension-
shifting argument yields the isomorphism Tor!(G, N) = Torﬁ_f(G 7, N) = 0 for
i > 1, while the vanishing is from the condition i + f > f = fdg(IV). This justifies
the first of our desired vanishing conclusions.
For the second desired vanishing conclusion, we argue by induction on f.
Base case: f = 0. In this case the R-module N is flat. Hence, using tensor
evaluation, we have the isomorphism in the next sequence

Ext%(G,C ®r N) = Exto(G,C) @r N =0

for all ¢ > 1; the vanishing follows because G is totally C-reflexive.
Induction step: Assume that f > 1 and that the result holds for modules of
flat dimension f — 1. Consider an exact sequence

0N —-F—->N-=0
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wherein F' is flat and fdgr(N’) = f — 1. The condition N € A¢c(R) implies that
Torf(C, N) = 0, so the induced sequence

0-C®rN - CRrF —-C®rN —0

is exact. The base case implies that Ext’%(G,C ®r F) = 0 for all i > 1, so a
dimension-shifting argument implies that

Ext’(G,C @p N) = Exti (G, C @ N') =0

for all ¢ > 1; the vanishing is from our induction hypothesis.

Case 2: the general case. For each maximal ideal m C R, the Ry-module Gy,
is totally Cy-reflexive, and we have fdg, (Nm) < co. This explains the vanishing
in the next sequence for i > 1:

Torf (G, N)m = Tor™ (G, Nyw) = 0
Ext(G,C ®g N)w = Extly (G, Cm ®g,, Nu) = 0.

Since we have Tor//(G,N)m = 0= Exto(G,C ®p N)y for each m, the desired
conclusion Tor/ (G, N) = 0 = Ext%(G,C @r N) follows. O

The next result is proved like the previous one.

Proposition 5.4.9. Let C be a semidualizing R-module, and let G be a totally
C-reflexive R-module. If N is an R-module locally of finite injective dimension,
then

Exth (G, N) = 0 = Tor} (G, Homg(C, N))
foralli>1.

Here is where we put the “dual” in a dualizing module.

Proposition 5.4.10. Let D be a point-wise dualizing R-module, and let M be a
finitely generated R-module.

(a) If for each mazximal ideal m C R the Ry-module My, is either 0 or mazimal
Cohen-Macaulay, then M is totally D-reflexive.

(b) For each resolution P of M by finitely generated projective R-modules, the
ith syzygy Coker(aﬁl) is totally D-reflexive for each i > dim(R) + 1.

Proor. @ Corollarysays that R is Cohen-Macaulay and D is a canon-
ical module for R, that is, that R, is Cohen-Macaulay and D, is a canonical
R-module for each maximal ideal m C R. Since M, is either 0 or a maximal
Cohen-Macaulay Rpn-module, we conclude from [8 (3.3.10)] that My, is totally
Dy, -reflexive. As this is so for each maximal ideal m, Proposition implies that
M is totally D-reflexive.

(@ Assume without loss of generality that d = dim(R) < oo. For each m, the
complex Py, is a resolution of M, by finitely generated free Ry,-modules. Hence, for
each ¢ > dim(R) + 1 > dim(Ry) + 1, the Ry-module Coker(aﬁ“l) = Coker(9/71)m
is either 0 or maximal Cohen-Macaulay; see, e.g., [4, (1.2.8)]. Part (a)) implies that
Coker(97 ) is totally D-reflexive. O

Corollary 5.4.11. Assume that R is point-wise Gorenstein, and let M be a finitely
generated R-module.
(a) If for each mazimal ideal m C R the Ry-module My, is either 0 or mazimal
Cohen-Macaulay, then M is totally reflexive.
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(b) For each resolution F of M by finitely generated free R-modules, the ith
SYzyqy Coker(@ﬁl) is totally reflexive for each i > dim(R) + 1.

ProoOF. This is the case D = R of Proposition [5.4.10 (]

Corollary 5.4.12. Let D be a point-wise dualizing R-module. If C is a semidual-
izing R-module, then C is totally D-reflexive and C' € Agomy(c,p)(R).

PROOF. The ring R, is Cohen-Macaulay for each maximal ideal m C R by
Corollary 2.2.13] Hence, we conclude that Cy, is a maximal Cohen-Macaulay Rpy-

module for each m; see Propositions and [2.1.16{(b)) and Theorem [2.2. The
fact that C is totally D-reflexive now follows from Proposition [5.4.10|(a)).
Set O = Hompg(C, D), which is semidualizing by Corollary 4.1.3l Corol-

lary implies that D € Bgt(R), so we have Homg(CT, D) € Aq+(R) by
Proposition [4.1.1{{b]). Since C is totally D-reflexive, we have C' = Hompg(CT, D) €
Act(R). O

The next result augments Propositions and

Theorem 5.4.13. Let p: R — S be a ring homomorphism of finite flat dimension.
Let C be a semidualizing R-module, and let G be a totally C-reflexive R-module with
complete PP¢ resolution

X
XZ"'—>P1—>P08L>C®RQ0—>C®RQ1—>“'~

Then the S-module S @r G is totally S @r C-reflexive with complete PPsg,c-
resolution S @r X, and Torl(S,G) =0 for all i > 1.

PROOF. Write

8% ax X
41 i i—1
_— XZ _— Xi*l —_—> s ..

X=-..

For each integer j, set G; = Im(97). In particular, each Gj is totally C-reflexive,
and we have Gy = G. Proposition implies that Tor/ (S, G;) = 0 for each j € Z

and all i > 1. Hence, we have Tor;'(S,G) = 0 for all i > 1.
Because of the exact sequence

O—>Gj+1—>Xj—>Gj—>0
the Tor-vanishing TorlR (S,G;) = 0 implies that the induced sequence
0—>S®RGJ'+1—>S®RX]' —>S®RG]'—>0

is exact for each j, and it follows from a standard argument that S ® g X is exact.
Proposition shows that the complex Hompg (X, C) is a complete P P¢ reso-
lution of Hompg (G, C) over R, so it also follows that the complex S®gHomg (X, C)
is exact.
Since each F; and @); is a finitely generated projective R-module, each S @ P;
and S ®g Q; is a finitely generated projective R-module. Thus, the sequence

S®RX:~~~HS@};{P@M(S(@RC)@s(S@RQo)H"'
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has the form of a complete PPgg ,c-resolution S ®r G. To complete the proof, it
remains to observe that the following complex is exact:

Homg (S ®r X, S ®r C) 2 Homg(X, Homg(S,S ®@r C))
>~ Homg(X,S ®r C)
~ S®pr HOIIIR(X, C)

The first isomorphism is Hom tensor adjointness, and the second isomorphism is
induced by Hom cancellation. The third isomorphism is tensor evaluation, using
the finiteness of fdg(S), and the exactness is from the previous paragraph. O

The next example shows that, in Theorem |5.4.13| one cannot replace the finite
flat dimension hypothesis with the assumption S € Ac(R).

Example 5.4.14. Let k be a field, and set R = k[X,Y]/(XY). We work with
the semidualizing R-module R. It is straightforward to show that the R-module
M = R/X R with complete P Pg-resolutions

Z=--XRrRYRERY ...

Consider the natural surjection ¢: R — S = R/YR = Ek[X]. Then we have
S € Ar(R) by Example [3.1.5) and we have

S@rM=R/YR®r R/XR= R/(X,Y) = k.

This module is not totally reflexive as an S-module (using the semidualizing S-
module S 2 S®rS) because Ext(k, S) = Ext,lc[[x]](k7 E[X]) = k # 0. Furthermore,
the complex

SopZ= 5528 ¢X g0 .

is not a complete resolution since it is not exact. (Every other homology module
is non-zero.) Since the left-most half of Z is a free resolution of M, this also shows
that Tor’*(S, M) # 0 for infinitely many values of i > 1.

5.5. Co-base Change
The next result augments Proposition

Proposition 5.5.1. Let ¢: R — S be a ring homomorphism such that S is finitely
generated as an R-module, and let C' be a semidualizing R-module. Then S is
totally C-reflexive as an R-module if and only if Hompg(S,C) is a semidualizing
S-module and Ext'y(S,C) =0 for all i > 1.

PROOF. Since one of the defining conditions for S to be totally C-reflexive is
Ext%(S,C) = 0 for all i > 1, we assume this condition for the rest of the proof. Also,
because C' is finitely generated, the module Hompg(.S, C) is finitely generated over
R. As the S-module structure on Hompg(S,C) is compatible with the R-module
structure via ¢, it follows that Hompg(S, C) is finitely generated over S.

Let I be an injective resolution of C' over R. It is straightforward to show that
Hompg(S, I;) is an injective S-module for each j. Since Ext’y(S,C) = 0 for all i > 1,
the complex Hompg(S, I) is an injective resolution of Hompg(S, C) as an S-module.
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This yields the first isomorphism in the next sequence:

Ext%(Homg (S, C), Homg(S, C)) = H_;(Homg(Hompg(S, C), Homg(S, I))
~H_,(Hompg(S ®s Hompg(S,C),I)
= H_Z‘(HOIHR(HOIHR(S, C), I)
>~ BExth (Homg(S, C), C).
The second isomorphism is induced by Hom-tensor adjointness. The third isomor-
phism is induced by tensor-cancellation. The fourth isomorphism is by definition.
We conclude that Extg(Hompg(S, C), Homg(S,C)) = 0 for all 7 > 1 if and only if
Ext%(Hompg(S,C),C) =0 for all i > 1.

In the next commutative diagram, the unspecified isomorphisms are by tensor-
cancellation and Hom-tensor adjointness:

§¢

S ° Homp(Hompg(S,C),C)

XﬁomR(S,C)l lu

Homp(S ®s Hompg(S,C),C) = Homg(Hompg(S, C), Hompg(S, C)).

It is straightforward to show that these maps are S-linear. In particular, the map
Jg is an isomorphism if and only if Xﬁ oma(5,C) is an isomorphism. ([l

Proposition 5.5.2. Let ¢: R — S be a ring homomorphism, and let C be a
semidualizing R-module. Assume that S is totally C-reflexive as an R-module, and
let M be a finitely generated S-module. Then M is totally Hompg(S, C)-reflexive
over S if and only if it is totally C-reflexive over R.

PROOF. Let I be an R-injective resolution of C. As in the proof of Proposi-
tion m the assumption Exty(S,C) = 0 for all ¢ > 1 implies that Homp(S, I) is
an S-injective resolution of the semidualizing S-module Hompg/(.S, C). This explains
the first isomorphism in the next sequence:

Exts (M, Hompg(S,C)) = H_;(Homg (M, Homg(S, I)))
= H,i(HOHlR(S Xs M, I))
= H_i(HomR(M, I))
>~ BExt’h (M, C).
The other isomorphism are by Hom-tensor adjointness, tensor cancellation, and
definition. It follows that Extg(M,Homp(S,C)) = 0 for all @ > 1 if and only if
Ext®w(M,C) =0 for all ¢ > 1. Furthermore, the case i = 0 explains the second step
in the next sequence
Exts(Homg (M, Homp(S, C)), Homg(S, C)) = Ext’s (Homg (M, Homg(S, C)), C)
>~ Ext% (Homg (M, C),C).
The first step follows from an application of the previous sequence to the S-module

Homg (M, Homp(S, C)). Thus Extg(Homg (M, Homg(S,C)), Homp(S, C)) = 0 for
all 4 > 1 if and only if Exti (Hompr(M,C),C) =0 for all i > 1.
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Finally, there is a commutative diagram

Homp (S,0)

M - Homg(Homg (M, Homg(S, C)), Homg(S, C))

al lg

Hompg(Homp (M, C),C) = Hom g (Homg (M, Homg(S, C)), C)

)

where the unspecified isomorphisms are combinations of Hom tensor adjointness

and tensor cancellation. It follows that (5%”“’?‘(5’0) is an isomorphism if and only if

8¢, is an isomorphism. O



CHAPTER 6
G-Dimension

6.1. Definitions and Basic Properties of G¢o-dimension

Definition 6.1.1. Let C be a semidualizing R-module and M a finitely generated
R-module. An augmented Gg-resolution of M is an exact sequence

+ 0%, ., o o7, o | .
G :'~'—>Gi—>Gi_1—>'-'G1—>G0—>M—>O

wherein each Gj is totally C-reflexive. The Gg-resolution of M associated to G
is the sequence obtained by truncating:

Folsh % ag | a¢

Gt=... 224G, —5G_1— .G 5 Gy—0

Definition 6.1.2. Let C' be a semidualizing R-module and M a finitely generated
R-module. If M admits a Gg-resolution G such that G; = 0 for ¢ > 0, then we say
that M has finite Geo-dimension. More specifically, the Go-dimension of M is the
shortest such resolution:

Ge-dimg(M) = inf{sup{n > 0| G,, # 0} | G is a G¢-resolution of M}.

Example 6.1.3. Let C be a semidualizing R-module. A non-zero finitely generated
R-module is totally reflexive if and only if it has Go-dimension 0. By definition,
we have Go-dimg (M) = —oo if and only if M = 0.

Since every finitely generated projective R-module is totally C-reflexive, it fol-
lows that every (augmented) resolution by finitely generated projective R-modules
is an (augmented) Gc-resolution.

Proposition 6.1.4. If D is a dualizing R-module, then Gp-dimg(M) < oo for
each finitely generated R-module M.

Proor. Example [2.1.11| implies that d = dim(R) < co. Let F be a resolution
of M by finitely generated free R-module,. and let ¢ > d+ 1. Proposition 5.4.10@
implies that Coker(9f, ) is totally D-reflexive. It follows that the exact sequence

0 — Coker(df},) = Fjoy — - = Fy = M —0

is an augmented G p-resolution of length 4, so we have Gp-dimg(M) <i < oco. O

Corollary 6.1.5. If R is Gorenstein, then G-dimgr(M) < oo for each finitely
generated R-module M.

PROOF. This is the case D = R of Proposition [6.1.4] a

Here is a version of Schanuel’s Lemma for Go-resolutions.

81
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Lemma 6.1.6. Let C be a semidualizing R-module, and let M be a finitely gener-
ated R-module. Assume that there are exact sequences

0 Kn Gn—l e G() M 0

0 Ly, Hy o Hy M 0

such that each G;, H; is totally C-reflexive. Then K, is totally C-reflexive if and
only if L, is totally C-reflezive.

PrOOF. The case n = 0 is straightforward, so we assume that n > 1.
Assume first that each H; is finitely generated and projective. The proof of
Schanuel’s Lemma [17] shows that there is an exact sequence

0_>Ln_)Kn@Hn71 2\’(:7'77,7169]:[7172_)"'_)671169]_-’0_>C"‘0_’0~
Set N = Im(0) and consider the exact sequence
0—-N—-G,_19H,_9o—-—G1 D Hy— Gy — 0.

Since each of the modules G,,_1, H,_o, ..., G1, Hp, Gy is totally C-reflexive, Propo-
sition implies that IV is totally C-reflexive. Now, using the exact sequence

0—-L,—>K,®H,,-.1 —>N—0

another application of Proposition shows that L, is totally C-reflexive if and
only if K,, ® H,_1 is totally C-reflexive, that is, if and only if K,, is totally C-
reflexive; see Proposition [2.1.4]

Now, for the general case. Consider an exact sequence

0—-2,—P,1—-FP—-M-—0

obtained from an augmented resolution of M by finitely generated projective R-
modules. The previous paragraph shows that L, is totally C-reflexive if and only
if Z,, is totally C-reflexive if and only if K, is totally C-reflexive, as desired. = [J

Proposition 6.1.7. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. For each integern > 0, the following conditions are equivalent:
(i) Go-dimp(M) < n;
(il) M has a Ge-resolution G such that G; =0 for all i > n;
(iil) M has a Ge-resolution G such that Gp41 = 0;
(iv) for each Go-resolution G of M, the module Coker(9F) is totally C-reflexive
for each i > n;
(v) there is a resolution F' of M by finitely generated free R-modules such that
Coker(9%, ) is totally C-reflexive; and
(vi) Ge-dimg(M) < oo and Exty (M, C) =0 for all m > n.
In particular, if Go-dimg(M) < oo, then
Go-dimp(M) = sup{i > 0 | Ext'y(M, C) # 0}.

ProoF. The equivalence (i) <= (ii) is by definition, and the equivalence
= is routine. The implication == (ED follows from the fact that
M has a resolution by finitely generated free R-modules and that every such reso-
lution is a Gg-resolution. For the implication (v)) = (ii]), argue as in the proof of
Proposition Also, once the equivalence ({ij) <= (vi)) is shown, the displayed
equality follows directly.
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For the remainder of the proof, let G be a Gg-resolution of M. For each i > 0,
set M; = Coker(9¢.,), and consider the exact sequences

0— M; = Giq1— - — Gy — M — 0. (6.1.7.1)

Since Extz (G;,C) = 0 for each j and each m > 1, a standard dimension shifting
argument implies that

Ext} (M, C) = Ext} " (M;,C) (6.1.7.2)
for each m > i.
= Assume that G471 = 0. It follows that M, = G,,. With i = n,
the exact sequence (6.1.7.1) has the form
0—-G,—:+—Gy— M —0.
so we have Go-dimg(M) < n. Furthermore, the isomorphism (6.1.7.2)) implies that
Exty (M,C) =2 Exty ™ "(M,,C) = Exty " (G,,C) =0

for all m > n.

= Assume that g = Ge-dimg(M) < oo and Ext'y (M, C) = 0 for all
m > n. Then M has a Gg-resolution H such that H; =0 for all ¢ > g.

We claim that ¢ < n. Suppose by way of contradiction that g > n. Let
M’ = Coker(9}"). As we noted above, the exact sequence

0—>M —H;, 9—--+— Hy— M—0. (6.1.7.3)
implies that Ext; (M’,C) = 0 for all m > 1. Hence, because of the exact
0—>Hg—>Hg,1—>M/—>O

Proposition implies that M’ is totally C-reflexive. The sequence is
thus an augmented Ge-resolution of length g—1. This implies that Ge-dimp (M) <
g—1=Geg-dimg(M) — 1, a contradiction.

We now show that M, is totally C-reflexive. Indeed, we have exact sequences

0 M, Gn—1 e Go M 0

0 Hy, Hy, Hy M 0

such that the modules G;, H; are totally C' reflexive for ¢ = 0,...,g — 1. Since H,
is also totally C-reflexive, Lemma implies that M, is also totally C-reflexive.
Finally, for each ¢ > n, we have i > g. Because of the exact sequence

0—-M;,—-Gi-1— - —Gg— My —0

the fact that the modules G;_1,...,G4, My are totally C-reflexive implies that M;
is totally C-reflexive by Proposition [5.1.1] O

The next result says that the class of R-modules of finite G¢o-dimension satisfies
the two-of-three property.

Proposition 6.1.8. Let C be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules:

0— M — M? - M3 —0.
If two of the M; have finite Gg-dimension, then so does the third.
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PrOOF. Let P! and P3 be resolutions of M; and Mg, respectively, by finitely
generated projective R-modules. For each n > 0, the horseshoe lemma yields a
commutative diagram

0 0 0
0 M} M2 M 0
0 Py Py &P | —=P  —0

0 P} P& P} P} 0
0 M? M? M3 0
0 0 0

with exact columns and rows.

Assume that Ge-dimpg(M?), Go-dimg(M3) < n. Then Proposition im-
plies that M2 and M} are totally C-reflexive. From the top row of the diagram,
we conclude that M} is totally C-reflexive; see Proposition Hence, the first
column of the diagram is a bounded augmented G¢ resolution of M?, so we have
Ge-dimp(M?') < n.

A similar argument shows that, if Go-dimg(M?!), Go-dimg(M3) < n, then
Ge-dimg(M?) < n.

Assume that Ge-dimg(M?!), Go-dimpg(M?) < n. Again, it follows that M}
and M? are totally C-reflexive. Thus, the top row of the diagram shows that
Ge-dimgz(M32) < 1. Furthermore, by combining the top row and the right-most
column of this diagram, we obtain an exact sequence

0—>Mé—>M2—>P73hl—>~~~—>P§’—>M?’—>O.

This is an augmented G¢ resolution of M? of length n + 1, so we conclude that
Ge-dimp(M3) < n+ 1. O

Remark 6.1.9. Let C be a semidualizing R-module, and consider an exact se-
quence of finitely generated R-modules:

0— M'— M? - M3 —0.
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The proof of Proposition [6.1.§ shows the following:
Go-dimpg(M?') < sup{Ge-dimgr(M?), Go-dimg (M?)}
Go-dimg(M?) < sup{Ge-dimg(M?'), Go-dimg (M3)}
Go-dimpg(M?) < sup{Ge-dimg(M*), Go-dimp(M?)} + 1.
The next result shows how the third displayed can be improved.

Proposition 6.1.10. Let C' be a semidualizing R-module, and consider an exact
sequence of finitely generated R-modules of finite Go-dimension:

0— M'"— M? - M?> —0.

(a) If Ge-dimg(M?') > Ge-dimg(M3) or Geo-dimg(M?) > Ge-dimg(M3),
then Go-dimg(M?') = Go-dimg(M?).

(b) If Go-dimg(M?3) > 1 and M? is totally C-reflexive, then Ge-dimp(M?!) =
Gc—dimR(M?’) —1.

PROOF. @ Assume that Go-dimg(M?) > Geo-dimg(M?). Suppose by way of
contradiction that Go-dimg(M?) > Ge-dimp(M?). Remark then yields
Ge-dimp (M) < sup{Ge-dimg(M?), Go-dimpg(M3)}
= Ge-dimp (M?)
< Ge-dimg(M1)

which is a contradiction.
Hence, we have G¢-dimg(M3) < Ge-dimpg(M?). This yields the next sequence

Ge-dimp(M?) < sup{Ge-dimp(M'), Go-dimp(M?)}
= Ge-dimp(M")
< sup{Ge-dimg(M?), Go-dimp(M3)}
= Ge-dimp(M?)
and hence the equality Go-dimg(M?!) = Geo-dimg(M?).
The case where Go-dimg(M?) > Go-dimp(M?3) is handled similarly.
([b) Assume that Ge-dimp(M?) > 1. We then have Exty (M3, C) # 0 for some
i > 1, specifically for i = Go-dimp(M3), by Proposition

By assumption, we have Exté%(MQ, C) =0 for all ¢ > 1. Hence, a dimension
shifting argument shows that

Exth(M',C) = Ext' (M3, 0)
for all i > 1. Proposition explains the first and last steps in the next sequence
Ge-dimp (M) = sup{i > 0 | Exthy (M, C) # 0}

=sup{i > 0 | Ext' (M3, C) # 0}
=sup{i > 1| Extihy(M3,C) #0} — 1
=sup{i > 0 | Extihy(M3,C) #0} — 1

= Ge-dimp(M?) — 1.
The fourth step is due to the previous paragraph. ([
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6.2. Stability Results
The next two results compliment Propositions and

Proposition 6.2.1. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. If N is an R-module locally of finite flat dimension, then

Torl(M, N) = 0 = Ext%(M,C ®g N)
for alli > Geo-dimpg(M).
PROOF. Assume without loss of generality that g = Go-dimg(M) < co. We
proceed by induction on g. The case g = 0 is in Proposition [5.4.8] For the inductive

step, assume that g > 1 and that the result holds for all R-modules of G¢-dimension
n — 1. There is an exact sequence

0—-M —-G—M-—0
such that G is totally C-reflexive and G¢o-dimp(M’) = g—1. The base case implies
that Tor®(G, N) = 0 = Extz(G,C®r N) for all i > 1. Hence, a dimension-shifting
argument yields the following isomorphisms for i > 2:
Tor[ (M, N) = Tor ;(M’, N)
Exthy(M,C @ N) = Extly '(M',C @g N)

The induction hypothesis implies that Tor, ; (M’,N) = 0 = Ext’> '(M’,C @g N)
when i —1> g—1. Fori > g, we have i > g+1 > 2, so the displayed isomorphisms
imply that Tor®(M, N) = 0 = Exth(M,C ®r N) when i > g. O

The next result is proved like the previous one.

Proposition 6.2.2. Let C be a semidualizing R-module, and let M be a finitely
generated R-module. If N is an R-module locally of finite injective dimension, then

Extiy (M, N) = 0 = Tor{'(M, Homp(C, N))
for all i > Go-dimg(M).

Proposition 6.2.3. Let C be a semidualizing R-module, and let N be an R-module.
Let G be a Ge-resolution of a finitely generated R-module M.
(a) If Extj.;z(H7 N) =0 for all t = 1 and for each totally C-reflexive R-module
H, then Exto(M,N) = H_;(Homg(G, N)) for eachi > 0.
(b) If Torl(H,N) = 0 for all i > 1 and for each totally C-reflexive R-module
H, then Torl(M,N) = H;(G ®g N) for each i > 0.

PROOF. (a) The assumption Exto(H,N) = 0 for all i > 1 and for each
totally C-reflexive R-module H says that the totally C-reflexive R-modules are
Extr(—, N)-acyclic. So the desired result follows from standard homological non-
sense.

The proof of part (]ED is similar. O

Corollary 6.2.4. Let C' be a semidualizing R-module, and let N be an R-module.
Let G be a Ge-resolution of a finitely generated R-module M.
(a) If N is locally of finite flat dimension, then Tori'(M, N) = H;(G ®r N) and
Ext%(M,C @r N) = H_;(Homg(G,C ®g N)) for each i > 0.
(b) One has Extiy(M,C) = H_;(Homg (G, C)) for each i > 0.
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(¢) If N s locally of finite injective dimension, then one has Exts(M, N) =
H_;(Homg(G, N)) and Tor®(M,Hompz(C, N)) = H;(G @ (Homg(C, N)))
fori>0.

PROOF. Combine Propositions O

Proposition 6.2.5. Let C' be a semidualizing R-module. Let M and N be finitely
generated R-modules such that the quantities g = Go-dimg(M) and p = pdz(NV)
are finite. If TorzR(N7 M)=0 fori=1,...,g, then Go-dimr(N ®r M) < p+g,
with equality when R is local. Also, there is an isomorphism

Exth (N ®@g M, C) = Exth (N, R) ®@g Ext% (M, C). (6.2.5.1)

PROOF. Our assumptions imply that g,p > —oo, and hence M # 0 # N.
Assuming that TorlR(N7 M) =0 for i = 1,...,g, Proposition implies that
Torl(N, M) = 0 for all i > 1.

Let P be a resolution of N by finitely generated projective R-modules, and let
G be a Ge-resolution of M such that P, = 0 = G; for ¢ > p and for j > g. The
Tor-vanishing assumption implies that the complex P ®pr G is acyclic, that is, it
is a Gg-resolution of N ® p M. Since this resolution has length at most g + p, we
have the inequality Go-dimg(N g M) < p+g.

Furthermore, Corollary yields the first step in the next sequence:

Exto(N ®@p M,C) =2 H_;(Homgp(P @ G,C))
~ H_,(Homp(P, Homg (G, C)))

>~ H_,(Homp(Homg(Hompg (P, R), R), Homg (G, C)))
> H_;(Homg(P,R) ® g Homr (R, Homg (G, C)))
~H_;(Homgr(P,R) ® g Homg(G, C)).

The second step is Hom-tensor adjointness. The third step follows from the fact
that finitely generated projective R-modules are reflexive. The fourth step is Hom-
evaluation, and the fifth step is Hom-cancellation.

Note that the complex Hompg (P, R) lives in homological degrees 0 to —p, and
Hompg (M, C) lives in homological degrees 0 to —g. It follows that the complex
Hompg (P, R) @ g Hompg (G, C) lives in homological degrees 0 to —(p+ g). Hence, the
second step in the next sequence is from the right-exactness of tensor product:

Exth, (N ®g M,C) 2 H_(,,) (Homp(P, R) ® Homg (G, C))
= H_,(Homg(P,R)) ®r H_y(Homg(G, C))
=~ Exth, (N, R) ® g Ext$, (M, C).
The previous display explains the first step, and the third step is from Corol-

lary This explains the isomorphism (6.2.5.1)).

Finally, assume that R is local. To prove that Go-dimg(N ® g M) =p+ g, we
need to show that Ext? (N @z M, C) # 0; see Proposition Using a minimal
free resolution of N, we know that Ext!,(N,R) # 0. Since Ext},(M,C) # 0 by
Proposition Nakayama’s Lemma implies that Exth, (N, R)® gExt% (M, C) # 0,
so the condition Ext% (N @g M, C) # 0 follows from (6.2.5.1). O

The proof of the next result is similar.
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Proposition 6.2.6. Let C' be a semidualizing R-module. Let M and N be finitely
generated R-modules such that the quantities g = Go-dimg(M) and p = pdr(N)
are finite. If Ext%(N, M) =0 for all i < p, then Geo-dimg(Exth,(N,M)) <p+g,
with equality when R is local. Also, there is an isomorphism

Ext}™ (Exth (N, M), C) = N @ Ext} (M, C).

Proposition 6.2.7. Let C be a semidualizing R-module. Let M be a finitely gen-
erated R-module such that g = Geo-dimg(M) is finite. If Extz(M,C) = 0 for all
i < g, then there is an equality Go-dimp(Ext% (M, C)) = g, and one has

Extl (Ext% (M, C),C) = {0 zfz;ég
M ifi=g.

PROOF. Again note that our assumptions imply that M #£ 0.

Let G be a G¢-resolution of M such that G; = 0 for all ¢ > g. The assumption
Ext(M,C) = 0 for all i < g implies that the induced complex X9 Homg (G, C) is a
Gc-resolution of Ext%, (M, C'); see Corollary . (Here the operator ¥9 shifts
a complex g steps to the left. That is, we have (X9X),; = X;_, for each integer i.)
Since this resolution has length g, we have Ge-dimpg(Ext% (M, C)) < g. Once we
show that Ext%,(Ext%(M,C),C) = M, we have G¢-dimp (Ext%, (M, C)) = g since
M # 0; see Proposition [6.1.7

Corollary provides the first step in the next sequence:

Ext (Ext% (M, C), C) = H_;(Homp(X? Homg(G, C),C))
~ H,;(X 79 Homg(Homg(G, C),C))
H i(I‘IOI’HR(}IOIHR(C;7 C), C))

Il

o
= H, (G)

L )0 ifi#g
:{M ifi=g.

The second and third steps are straightforward. The fourth step is due to the fact
that each G; is totally C-reflexive, and the fifth step follows because G is a Gg-
resolution of M. This proves the desired isomorphisms and hence the result. O

Proposition 6.2.8. Let C' be a semidualizing R-module. Let M and N be finitely
generated R-modules such that the quantities g = Go-dimg(M) and p = pdz(NV)
are finite. If Ext(M,C ®r N) = 0 for all i < g, then there is an inequality
Ge-dimp(Ext%(M,C ®r N)) < p+ g, with equality when R is local. Also, there is
an isomorphism

Ext?H 9 (Ext%(M,C ®@p N),C) = Exth (N, M). (6.2.8.1)

PROOF. Let P be a resolution of N by finitely generated projective R-modules,
and let G be a Gc-resolution of M such that P; =0 = G, for i > p and for j > g.
Step 1: We prove that the complex Hompg(P, G) has homology

H_;(Homg(P,G)) = Ext’ (N, M) (6.2.8.2)

for all ¢« € Z. (This is somewhat routine. However, it is good preparation for
the next step.) The augmented resolution G is essentially a mapping cone: GT =2
¥ ! Cone(G S M ) where « is the quasi-isomorphism induced by the augmentation
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map Go — M. The complex GV is exact. Since P is a bounded below complex
of projective R-modules, it follows that the complex Hompg (P, GT) is exact. There
are isomorphisms

Homp(P,G") = Homp(P, X! Cone(a)) = X! Cone(Homp (P, a))
and it follows that Homp (P, @) is an isomorphism. In particular, we have
H_;(Homg(P,G)) = H_;(Hompg(P, M)) = Ext’ (N, M)

as desired.
Step 2: We prove that the complex Homg(G, C ® g P) has homology

H_;(Homp(G,C ®p P)) = Ext'h(M,C @r N) (6.2.8.3)

for all i € Z. Let 3: P = N be the quasi-isomorphism induced by the aug-
mentation map Py — N. Proposition implies that N € Ac(R), and hence
Torl(C,N) = 0 for all i > 1. It follows that the morphism

C@Rﬂt CRrP—-C®rN
is a quasiisomorphism. Thus, the complex
(C®r P)T =¥ ! Cone(C ®r )

is exact.
For each i, set N; = Coker(@ﬁrl). Thus, we have N = Ny, and the exactness
of P yields exact sequences

0—>Ni+1—>PZ‘—>NZ‘—>0

for each 7. Each module N; has finite flat dimension, and hence Torf(C, N;) = 0
for each 7. Thus, the induced sequence

0*>C®RN1'+1—>C®RP1‘*>C®RN¢—>O

is exact. Corollary [6.2.4f[) implies that Extj(G;,C ®g Niy1) = 0 for each i and
j. Hence, the sequence

0— HOmR(Gj,C XRRr NZ‘+1) — HOmR(Gj,C XRRr B) — HOmR(Gj,C KRR NZ) —0

is exact for each ¢ and each j. It follows that the sequence Homg(G,, (C ®g P)T)
is exact for each j, and hence that the following sequence is exact:

Hompg (G, (C ®r P)T) = Homg(G, L~ Cone(C @ 3))
>~ ¥ ! Homp(G, Cone(C ®g 3))
>~ 3 ! Cone(Homp(G, C ®r 3)).
It follows that the morphism
Homp(G,C ®r B8): Homg(G,C ®r P) — Homg(G,C ®r N)
is a quasi-isomorphism, and hence the first step in the next sequence:
H_;,(Homg(G,C ®g P)) 2 H_;(Homg(G,C ®r N))
>~ Exth(M,C &g N).

The second step is from Corollary |6.2.4fal).
Step 3: We verify the isomorphism ([6.2.8.1f). The complex P lives in homolog-

ical degrees p to 0, hence so does C' ®p P. Since G lives in homological degrees g
to 0, it follows that Homg(G,C ® g P) lives in homological degrees p to —g. Since




90 6. G¢-DIMENSION

each module HomR(Gz, C ®g Pj) is totally C-reflexive by Proposition [5.2.4)(d), it
follows from ([6.2.8.3)) that the complex Y9Hompg(G,C ®g P) is a Go-resolution of
Ext% (M, C ®R N) of length at most p 4+ g. This explains the inequality

Ge-dimp(Ext%h,(M,C ®r N)) <p+g.
We compute:

Ext?" (Ext}(M,C @z N),C) 2 H_(,4 ) (Homp(L¢ Homp(G, C ®f P),C))

~H_,(Homgr(Homg(G,C ®@g P),C))

~H omp(Hompg(G,C)®g P,C))
omp(P,Homgr(Homg(G, C),C)))
r(P,G))
(P,
)-

||2 IIZ

IIZ

_p(H
—p(H
_p(Hom

H_,(Hom M))

R
~ Ext?, (N, M

The first step is by Corollary [6.2.4] , and the second step is routine. The third
step is tensor-evaluation, and the fourth step is Hom-tensor adjointness. The fifth
step is due to the fact that each G; is totally C-reflexive, and the sixth step is
from (5:25.2).

Step 4: We complete the proof. Assume that R is local. Since pdp(N) = p and
M # 0, it can be shown using a minimal free resolution of N that Extf, (N, M) #
0. Thus, the equality Ge-dimg(Ext%(M,C ®r N)) = p + g follows from the

isomorphism ([6.2.8.1]) and Proposition (I

Remark 6.2.9. The astute reader will note that Proposition [6.2.7]is a special case
of Proposition [6 We include a separate proof of Proposition [6.2.7] because it is
slightly simpler than the proof of Proposition [6.2.8|

6.3. Base Change for G¢-dimension
The Tor-vanishing hypothesis in the next result is automatic when ¢ is flat.

Proposition 6.3.1. Let ¢o: R — S be a ring homomorphism of finite flat di-
mension, and let C' be a semidualizing R-module. Let M be a finitely generated
R-module such that Torf(S, M) =0 for all i > 1. Then one has

Gsepe-dims(S ®r M) < Ge-dimp(M)

with equality when @ is faithfully flat or when o is surjective with kernel generated
by an R-regular sequence.

PROOF. Let P be a resolution of M by finitely generated free R-modules. The
Tor-vanishing hypothesis implies that the complex S®g P is a resolution of S®r M
by finitely generated free S-modules. For each n > 0, there is an isomorphism

Coker(@f%fp) S ®@g Coker(9), ).

Using Theorem [5.4.13] we conclude that if Coker(d},,) is totally C-reflexive, then

Coker(@fff P is totally S® rC-reflexive; the converse holds when ¢ is faithfully flat
by Proposition the converse holds when ¢ is surjective with kernel generated
by an R-regular sequence by Proposition [5.3.2] The desired conclusions now follow

from Proposition O
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Here is a local-global principle.

Proposition 6.3.2. Let C' be a semidualizing R-module, and let M be a finitely
generated R-modules. For an integer n > 0, the following conditions are equivalent:
(i) Ge-dimg(M) < n;
(i) Gy-1o-dimy-1z(U"TM) < n for each multiplicatively closed subset U C R;
(iii) Gg,-dimpg, (Mp) < n for each prime ideal p C R; and
(iv) Ge,, -dimpg,, (M) < n for each mazimal ideal m C R.

In particular, there are equalities

m

Ge-dimg(M) = sup{Gg,, -dimg,, (Mn) | m C R is mazimal}
= sup{Ge¢,, -dimp,, (My) | m € Suppr(M) is mazimal}.

PROOF. As usual, the implications (i) = (i) = = are routine.
Furthermore, once we verify the implication (iv)) = (i), the displayed equality
follows from a routine argument.

= (i) Assume that G¢,, -dimpg,_ (My) < n for each maximal ideal m C R.
Let P be a resolution of M by finitely generated free R-modules. for each maximal
ideal m C R, the complex P, is a resolution of My, by finitely generated free
R-modules such that

Coker(@f}‘rl) =~ Coker(0%, 1 )m.

Proposition then implies that Coker(9),;)m is totally Cy-reflexive for each

m, so we conclude from Proposition that Coker(9%, ) is totally C-reflexive.
Another application of Proposition implies that Go-dimpg (M) < n. O

Corollary 6.3.3. Let C' be a semidualizing R-module, and let M be a finitely
generated R-modules. For an integer n > 0, we have G¢ -dimR(M) < nif and only
if Ge,, -dimp,, (My) < oo for each mazimal ideal m C R and Ext®r(M,C) =0 for
all i > n.

PROOF. The forward implication follows from Propositions[6.1.7]and For
the reverse implication, assume that G¢,,-dimg,, (M) < oo for each maximal ideal
m C R and Extih(M,C) =0 for all i > n. As M is finitely generated, we have

0 = Ext,(M, C)n = Extly_(Mmn, Cn)
for each m and each ¢ > m. Proposition implies that G¢, -dimpg, (Mn) < n
for each m, so the inequality Geo-dimpg (M) < n follows from Proposition m O

Remark 6.3.4. Avramov, Iyengar, and Lipman [7], (3.3)] prove the following result
that is stronger than Corollary Let C be a semidualizing R-module, and let
M be a finitely generated R-modules. Then Ge-dimp(M) < oo if and only if
G, -dimp,, (My) < oo for each maximal ideal m C R. Unfortunately, the proof of
this result is beyond the scope of this manuscript.

6.4. The AB-formula and Some Consequences
The next result is the case depth(R) = 0 of the AB-formula for G¢-dimension.

Proposition 6.4.1. Assume that R is local with depth(R) = 0, and let C be
a semidualizing R-module. If M is a finitely generated R-module of finite G¢-
dimension, then M is totally C-reflexive.
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PrOOF. Set (—)! = Hompg(—,C). We have depthyp(C) = depth(R) = 0.
Hence, a routine argument shows that for a finitely generated R-module N one
has NT = 0 if and only if N = 0.

Let n > 1 such that Go-dimpg (M) < n. We prove by induction on n that M is
totally C-reflexive.

Base case: n = 1. This implies that there is an exact sequence

0—-G1—-Gy— M—0

such that G; and Gy are totally C-reflexive. The associated long exact sequence in
Extr(—, C) begins as follows:

0— M — G} — Gl - Exth(M,C) — 0.

Applying the left exact functor (—)' to this sequence yields the exact sequence in
the bottom row of the next commutative diagram:

0 G1 Go

mlégl ul&go

0 — BExth(M,0)f —= @it —=G{'.

It follows that Ext}{(M, C)' = 0, so the first paragraph of this proof shows that
Extp(M,C) = 0. Since Gg-dimg(M) < 1, we also have Extz (M, C) = 0 for all
1 > 2, hence Proposition implies that Go-dimp (M) = 0, that is, that M is
totally C-reflexive.

Induction step: Assume that n > 1 and that every finitely generated R-module
N with Ge-dimp(N) < n is totally C-reflexive. The assumption Go-dimg(M) < n
yields an exact sequence

0—-G,— - — Gy iGOHM—N).
Setting M’ = Im(9) this yields two exact sequences
0 Gn cee Gl M’ 0

0 M’ Go M 0.

The first of these sequences implies that Go-dimg(M’) < n, so our induction
hypothesis implies that M’ is totally C-reflexive. Thus, the second sequence implies
that Go-dimpg(M) < 1, so the base case implies that M is totally C-reflexive. O

Here is the AB-formula for G¢-dimension.

Proposition 6.4.2. Assume that R is local, and let C be a semidualizing R-module.
If M is a finitely generated R-module of finite Go-dimension, then

Ge-dimpg(M) = depth(R) — depthp (M).

PROOF. Let M be a finitely generated R-module of finite G¢-dimension. (In
particular, this implies that M # 0.) We prove the result by induction on d =
depth(R).

Base case: d = 0. Proposition implies that M is totally C-reflexive, hence
the first equality in the next sequence:

Ge-dimp(M) = 0 = depth(R) — depthp(M).
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For the second equality, we need to show that depthp(M) = 0, that is, that the
maximal ideal m of R is an associated prime of M. We compute:

Assgp(M) = Assp(Homp(Homp(M, C),C) = Suppgr(Hompg(M, C)) N Assr(C).

Since M # 0 is totally C-reflexive, we have Homg(M,C) # 0, and thus m €
Suppr(Hompg (M, C)). Because depth(R) = 0, we have m € Ass(R) = Assgr(C); see
Proposition @ Hence, the displayed sequence implies that m € Assg(M),
as desired.

Induction step: Assume that d > 1 and that the result holds for local rings S
with depth(S) < d.

Case 1: depthr(M) > 1. Since d = depth(R) > 1, a prime avoidance argument
yields an element x € m that is R-regular and M-regular. In particular, the natural
map R — R/xR has finite flat dimension and Tor*(R/zR, M) = 0 for all i > 1.
Thus, Proposition yields the first equality in the next sequence

Ge-dimp(M) = Gr/prepo-dimp/r(R/TR @R M)
= depth(R/xR) — depthp,,g(R/tR ®r M)
= (depth(R) — 1) — (depthg(M) — 1)
= depth(R) — depth(M).

The second equality is from our induction hypothesis since
GR/mR@RC-dimR/mR(R/.%R KR M) = Gc—dimR(M) < 00.

The third equality follows from the fact that x is R-regular and M-regular.

Case 2: depthr(M) = 0. We first note that M is not totally C-reflexive.
Indeed, from a previous computation, if M were totally C-reflexive, we would have
Assp(M) C Assg(C) = Ass(R). Since depthp(M) = 0, we have m € Assr(M),
and hence m € Ass(R). This contradicts the fact that depth(R) > 1.

Consider an exact sequence

0—-M —-P—->M-—0

wherein P is a finitely generated free R-module. In particular, the R-module P
is totally C-reflexive. Furthermore, since depthyp(P) = depth(R) > 1, we have
depthp(M’) = 1. Since depth (M) = 0 a standard argument using the long exact
sequence in Extr(R/m,—) shows that depthp(M’) =1 = 1+ depthz(M). This
explains the third step in the next sequence:
Gc—dimR(M) = Gc—dimR(M/) +1

= [depth(R) — depthz(M")] + 1

= [depth(R) — (depthp(M) + 1)] + 1

= depth(R) — depthy(M).

The first step is by Proposition |6.1.10{[b)), and Step 1 explains the second step. O

Corollary 6.4.3. Let C be a semidualizing R-module. If M is a finitely generated
R-module of finite Go-dimension, then deptth(Mp) < depth(R,) for each p €

Suppg(M).
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PROOF. Assume that Go-dimp(M) < oo. For each p € Suppr (M), we have
G, -dimpg, (M,) < oo by Proposition so the AB-formula explains the second
step in the next sequence:

0 < Ge,-dimp, (M) = depth(R,) — depthp (My).
The desired inequality now follows. O

Corollary 6.4.4. Let C be a semidualizing R-module. If M is a finitely generated
R-module of finite Go-dimension, then Go-dimg(M) < dim(R).

PROOF. For each maximal ideal, the first step in the next sequence is by the
AB-formula [6.4.2]

G, -dimp,, (My) = depth(Ry) — depthp (M)

< depth(Ra)

< dim(Ry)

< dim(R).
The remaining steps are standard. Hence, the inequality Geo-dimp(M) < dim(R)
follows from Proposition [6.3.2 ]

Corollary 6.4.5. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. There is an inequality

Ge-dimg(M) < pdg(M)
with equality when pdg(M) < oco.

PROOF. Assume without loss of generality that pdg (M) < co. For each max-
imal ideal m C R, a bounded resolution of My, by finitely generated projective
Rn-modules is also a bounded Gg,, -resolution of My,. Thus, we have

Gcm_dimRm (Mm) < dem (Mm) < de(M) <00
for each maximal ideal m C R. Thus, the AB-formulas for G¢-dimension and
projective dimension explain the second and third equality in the next sequence:
Ge-dimg(M) = sup{Gc,,-dimg,, (My) | m C R is maximal}
= sup{depth(Rpy) — depthg_(My) | m C R is maximal}
=sup{pdy_(Mpn) | m C R is maximal}
= pdp(M).
The first step is from Proposition [6.3.2] and the last step is standard. O

Proposition 6.4.6. Let C' be a semidualizing R-module, and let n > 0. The
following conditions are equivalent:
(i) C is dualizing for R and dim(R) < n;
(ii) every finitely generated R-module M has Go-dimg(M) < n;
(iii) for each prime ideal p C R, one has Go-dimpg(R/p) < n;
(iv) for each mazximal ideal m C R, one has Go-dimpg(R/m) < n.

Proor. The implications == = (liv)) are straightforward.

= (i) If C is dualizing, then Proposition says that Go-dimp(M) < o0
for each finitely generated M. So, Corollary implies that Go-dimp(M) <
dim(R) < n.
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= (i) Assume that Go-dimg(R/m) < n for each maximal ideal m C R.
Proposition implies that Ext(R/m,C) = 0 for all i > n and for each m.
It follows that idg(C) < n, so C is dualizing. Since Suppr(C) = Spec(R) and
idr(C) < o0, it follows that dim(R) = idg(C) < n. O

Corollary 6.4.7. Let C be a semidualizing R-module. The following conditions
are equivalent:

(i) C is dualizing for R;

(ii) every finitely generated R-module has finite Go-dimension;

(iil) for each prime ideal p C R, one has Go-dimg(R/p) < oo;

(iv) for each mazimal ideal m C R, one has Go-dimg(R/m) < co; and

(v) C is point-wise dualizing for R.
The implications (i) = = (i) = (iv) = always hold. When
dim(R) < oo, the conditions 7 are equivalent.

PrOOF. The implication (i) = is from Proposition This uses the
fact that, when C' admits a dualizing module, one has dim(R) < oo. The implica-
tions (i) = (i) = (iv]) are routine.

(i) = (i) Assume that for each prime ideal p C R, one has Go-dimg(R/p) <
o0o. Let M be a finitely generated R-module. Then M has a filtration

O=MycMyC---CM,=M

such that for each i = 1,...,n there is a prime p; € Spec(R) such that M;/M;_; =
R/p;. Since each R/p; has finite G¢-dimension by assumption, we may use induc-
tion on n with Proposition to conclude that Ge-dimpg(M) < oco.

= (v Assume that Go-dimpg(R/m) < oo for each maximal ideal m C R.
Proposition implies that Gg,,-dimpg,, (Rm/mRy) < oo for each m. Propo-
sition [6.4.6] implies that Cy, is dualizing for Ry, for each m, that is, that C is
point-wise dualizing for R.

== Assume that C' is point-wise dualizing for R, that is C, is dualizing
for Ry, for each maximal ideal m C R. It follows that G¢, -dimpg, (Rm/mRy) < 00
for each m. Since m is the only maximal ideal in Suppy(R/m), we conclude from
Proposition that Go-dimg(R/m) < oo.

Finally, if dim(R) < oo, then we have (v) => (i) by Example O

The next two results are the cases C = R of the previous two results.

Proposition 6.4.8. Let n > 0. The following conditions are equivalent:
(i) R is Goreinstein and dim(R) < n;
(i) every finitely generated R-module M has G-dimg(M) < n;
(iii) for each prime ideal p C R, one has G-dimg(R/p) < n;
(iv) for each mazimal ideal m C R, one has G-dimpr(R/m) < n.

Corollary 6.4.9. The following conditions are equivalent:

(i) R is Goreinstein;

(ii) every finitely generated R-module has finite G-dimension;

(ili) for each prime ideal p C R, one has G-dimg(R/p) < oo;

(iv) for each mazimal ideal m C R, one has G-dimp(R/m) < oo; and

(v) R is point-wise Goreinstein.
The implications (i) = = = <~ (v) always hold. When
dim(R) < oo, the conditions ({)-(v)) are equivalent.
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Proposition 6.4.10. Assume that R is local, and let C be a semidualizing R-
module. Let M and N be finitely generated R-modules such that the quantities
g = Ge-dimg(M) and p = pdr(N) are finite.
(a) If Tortf'(N,M) =0 fori=1,...,g, then
depthr(N ®@r M) = depthr (M) + depthr (V) — depth(R).
(b) If Extizs(N, M) =0 for all i < p, then
depth p (Exth, (N, M)) = depthy(M) 4 depthz(N) — depth(R).
(c) If Ext(M,C) =0 for all i < g, then
depth (Ext%, (M, C)) = depthy (M).
(d) If Extiy(M,C ®@g N) =0 for alli < g, then
depth (Ext%,(M,C ®@g N)) = depth (M) + depth,(N) — depth(R).
In particular, in cases @, (]ED, and @, we have
depth(R) < depthy (M) + depthyz(N).
PRroOF. @ The AB-formula yields the second and fourth steps in the next
sequence, and the third step is from Proposition [6.2.5
0 < depthz(N @ M)
= depth(R) — Go-dim(N ®r M)
= depth(R) — (p+9)
= depth(R) — (depth(R) — depthr(N) + depth(R) — depthy (M)
= depthp(M) + depthp (V) — depth(R).
The proofs for @f@ are similar. O

6.5. More Relations between Semidualizing Modules
The next result compares to Proposition [4.1.1

Proposition 6.5.1. Let C' be a semidualizing R-module, and let M be a finitely
generated R-module. Then M is semidualizing and totally C-reflezive if and only
if Extﬁ{(M, C) =0 for alli =2 1 and Homp (M, C) is semidualizing and totally
C-reflexive.

PROOF. Proposition says that M is totally C-reflexive if and only if
Exto(M,C) = 0 for all i > 1 and Homg(M, C) is totally C-reflexive. Thus we
may assume that M is totally C-reflexive and prove that M is semidualizing if and
only if Hompg(M, C') is semidualizing.

Lemma [5.1.8] implies that

Ext,(Homp (M, C), Homp(M, C)) = Extly (M, M)

for all 4 > 0. It follows that Ext%(Hompg(M,C), Homp(M,C)) = 0 for all i > 1
if and only if Exth (M, M) = 0 for all i > 1. Also, we have an isomorphism
R = Homp(Hompg (M, C),Homg(M,C)) if and only if R = Hompg(M,M). By
Proposition7 this means that the homothety map XgomR (M,c) 18 an isomor-

phism if and only if x% is an isomorphism, hence the desired result. O
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Here is a companion for Proposition | also discuss order reversing for
generalized dagger duality in &¢(R) and So(R). companion to

Proposition 6.5.2. Let B and C be a semidualizing R-modules. The following
conditions are equivalent:

(i) B is totally C-reflexive;

(ii) Ge-dimp(B) is finite;

(iii) C € Bg(R); and

(iv) Homg(B,C) is a semidualizing R-module and Ext’s(B,C) = 0 for alli > 1.
When these conditions are satisfied, the module Hompg(B, C) is totally C-reflexive,
and B € Atomy(B,c)(R) and Homg(B,C) € Ap(R) and C = B ®g Homg(B,C).

PRrROOF. O






APPENDIX A

Some Aspects of Homological Algebra

A.1. Natural Maps

Definition A.1.1. Let L, M, N be R-modules.
The tensor evaluation homomorphism

WLMN : HOHIR(L7M) QRr N — HOHIR(L,M®R N)

is given by wryn (¥ @ n)(1) = (1) ® n.
The Hom evaluation homomorphism

Orvn: L ®gr HomR(M, N) — HomR(HomR(L, M), N)
is given by Opmn (I @ ¥)(¢) = P (6(1)).
The next two lemmata are from Ishikawa.

Lemma A.1.2. Let L, M, N be R-modules. The tensor evaluation homomorphism
wrymn: Homp(L,M)®pr N — Hompg(L, M ®g N) is an isomorphism under either
of the following conditions:

(1) L is finitely generated and projective; or

(2) L is finitely generated and N is flat.

PRroOOF. First observe that, for R-modules L', L”, the following commutative
diagram shows that the map w(r/qr/)pn is an isomorphism if and only if wr an
and wr N are isomorphisms:

Homp(L' ® L", M) ® g N — (Homp(L', M) @ N) & (Homp(L", M) @r N)
c“’(L/@L”)MN\L \LWL’JWN@WL”MN
Homp(L' ® L, M ®x N) —— Homp(L', M @ N) & Homp(L", M @5 N).

It is straightforward to show that wy/n is an isomorphism when L = R.
Hence, an induction argument using the above observation shows that wy sy is an
isomorphism when L = R" for some n. When L is finitely generated and projective,
there is an R-module L” such that L & L” = R™ for some n, so again the previous
paragraph implies that wy v is an isomorphism in this case.

Assume that L is finitely generated and NN is flat. Since R is noetherian,
there exists an exact sequence

rm L pr L 0.
The left-exactness of Hompg(—, M) implies that the next sequence is exact
gl\/I f]\l
0 — Homp (L, M) =— Homp(R", M) — Hompg(R™, M)

99
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where fM = Hompg(f, M) and g™ = Hompg(g, M). Since N is flat, the top row of
the next commutative diagram is also exact

M M
0 — Hom(L, M) @ N 2% Hom(R", M) © N 2% Hom(R™, M) © N

UJLMN\L "-’R"MNiﬁ meMNi:
M®N M@N

0 —— Hom(L,M ® N) g—>H0m(R",M®N) f—>Hom(Rm,M®N).

The bottom row is exact because Hompg(—, M ® N) is left-exact. The maps wgrm prn
and wgn N are isomorphisms by case 7 so a diagram chase shows that wy sy is
an isomorphism as well. (]

Lemma A.1.3. Let L, M, N be R-modules. The Hom evaluation homomorphism
Ormn: L @ Homg(M,N) — Homg(Hompg(L, M), N) is an isomorphism under
either of the following conditions:

(1) L is finitely generated and projective; or

(2) L is finitely generated and N is injective.

PRrROOF. Similar to the proof of Lemma (]
Here is a version that we did not know about before.

Lemma A.1.4. Let L, M, N be R-modules. The tensor evaluation homomorphism
wrymn: Homp(L,M)®pr N — Hompg(L, M ®r N) is an isomorphism under either
of the following conditions:

(1) N is finitely generated and projective; or

(2) L is projective and N is finitely generated.

PROOF. The proof is similar to the proof of Lemma[A.T.2] We provide a sketch.

First observe that, for R-modules N, N”, the map wp(n/gn) is an isomor-
phism if and only if wya N and wy s are isomorphisms.

It is straightforward to show that wpasr is an isomorphism. Hence, the
map wr N is an isomorphism when NV = R” for some n, and thus whenever N is
a finitely generated projective.

When L is projective and N is finitely generated, use a presentation

R LR o

with the fact that wypyrm and wpprge are isomorphisms to conclude that wyyn is
an isomorphism as well. (I

Here is a consequence of the Kiinneth formula.

Proposition A.1.5. Let k be a field, and let R and S be k-algebras. Let B and B’
be R-modules such that B is finitely generated, and let C and C' be S-modules such
that C' is finitely generated. For each i > 0, there are R ®j S-module isomorphisms

Tor®***(B @y C, B' @ C') = &!_, TorX(B, B') ®, Tor{_;(C,C")
Extlg, s(B ® C,B' ®), ") = &'_y Ext}(B, B') @ Exty 7 (C,C").

PROOF. First, let X be a complex of R-modules, and let Y be a complex of S-
modules. The Kiinneth formula [I7, (10.81)] implies that there is a k-isomorphism

Bpgmi Hp(X) @ Hy(V) = Hi(X @ ) (A.1.5.1)
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given by > %) @ Yip — >_,Tp @ yi—p. (Here X ®; Y is the total complex, not
the double complex.) It is straightforward to show that « is R ®j S-linear.

Let P be a resolution of B by finitely generated free R-modules, and let @) be
a resolution of C' by finitely generated free S-modules. Since k is a field, we have
Tor¥(B,C) = 0 for all i > 1. Hence the complex P ®j, Q is a resolution of B ®; C
by finitely generated free R ®j S-modules.

It is straightforward to show that there is an isomorphism of complexes

)

(P ®k Q) ®rays (B' @k C') — (P @r B') @ (Q ®5 C')
given by (pRq)@('@c) — (pRb')®(q®c’). Furthermore, this map is R®y, S-linear.
This explains the second step in the next sequence:
Tor;***(B @1, C, B' @k C') = Hi((P ©1, Q) ©resys (B ® ')
~H,((P®gr B/) ®k (Q ®s Cl))
= Dpig=i Hp(P ®r B') @ Hy(Q @5 C”)
~ @!_, Tor(B, B') ®, Tor; ;(C,C")
The first step comes from the fact that P ®j @ is a resolution of B ®; C by free
R ®; S-modules. The third step is from the Kiinneth formula (A.1.5.1), and the

fourth step is by definition. This yields the desired isomorphism for Tor.
The isomorphism for Ext is verified similarly using the isomorphism

Hompg (P, B') ®; Hom S(Q,C") =N Hompgg,s(P @ Q, B’ ®; C')

given by the formula ¢ ® ¢ — ¢ K 1): here ¢: P,, — B’ and ¢: Q,, — C’, and
PpNRY: Py, Qr Qn — B' @ C' is given by pp, ® g — ¢(pm) ® w(Qn) U

A.2. Fidelity

Lemma A.2.1. Let M and N be non-zero R-modules. If M 1is finitely generated
and Supp (M) = Spec(R), then Homg(M,N) # 0 and M @g N # 0.

PRrROOF. If R is local with maximal ideal m, then Hompg (M, R/m) # 0. Indeed,
Nakayama’s Lemma implies that M/mM is a non-zero vector space over R/m and so
any composition M — M/mM — R/m gives a non-zero element of Hompg (M, R/m).
It follows that, for each p € Spec(R), we have

HOHIR(M, R/p)P = Home (Mp7 Rp/pRp) 7é 0

so Homp (M, R/p) # 0.
Use the fact that R is noetherian to conclude that N has an associated prime
p, and hence a monomorphism R/p — N. Apply Homg(M, —) to find a monomor-
phism 0 # Hompg(M, R/p) — Homp(M, N). It follows that Hompg(M, N) # 0.
For the tensor product, note that the identity N — N is a non-zero element of
Hompg(N, N). Therefore, the previous paragraph provides the nonvanishing in the
next sequence while the isomorphism is by Hom-tensor adjointness:

Homp(M ® N,N) = Homp(M,Hompg(N, N)) # 0.

It follows that M ® N # 0.
Here is an alternate proof for the tensor product. Choose a maximal ideal
m € Suppp (V). Nakayama’s Lemma yields an epimorphism Ny — Ry /mpy. The
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right-exactness of My ®g, — yields the epimorphism in the middle of the next
display:

(M QR N)m = m ORn Ny = My QR Rm/mm = Mm/mmMm 7é 0.

The isomorphisms are standard. The non-vanishing is from Nakayama’s Lemma
since we have m € Spec(R) = Suppr(M). It follows that (M ®g N)m # 0, so
M ®r N # 0. ([

Definition A.2.2. An injective R-module FE is faithfully injective if the func-
tor Hompg(—, F) is faithfully exact, that is, if it satisfies the following condition:
a sequence S of R-module homomorphisms is exact if and only if the sequence
Hompg(S, E) is exact. This is equivalent to the following condition: for each R-
module M, one has M = 0 if and only if Homgr(M, E) = 0. The term faithfully
projective is defined dually.

Example A.2.3. For instance, the R-module E = [],, Er(R/m) is faithfully in-
jective where the coproduct is taken over the set of maximal ideals m C R. [ref]
ichikawa? Every non-zero free R-module is faithfully projective.
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