MATH 720, Algebra I Exercises 3 Due Fri 14 Sep

Exercise 1. Show that every finitely generated subgroup of \mathbb{Q}/\mathbb{Z} is cyclic.

Exercise 2. Let $f: G \to G'$ be a group homomorphism.

- (a) If $H' \leq G'$, then $f^{-1}(H') \leq G$.
- (b) If $H' \leq G'$, then $f^{-1}(H') \leq G$.
- (c) If $H' \leq G'$, then the function $\overline{f} \colon G/f^{-1}(H') \to G'/H'$ is a well-defined group monomorphism

Exercise 3. Find all groups of orders ≤ 7 up to isomorphism.

Exercise 4. Let H and K be groups. An *automorphism* of H is a group isomorphism $f: H \to H$. Let Aut(H) denote the set of all automorphisms of H.

- (a) Show that Aut(H) is a group under composition.
- (b) Let $\phi: K \to \operatorname{Aut}(H)$ be a group homomorphism. For each $k \in K$ set $\phi_k = \phi(k)$. Define $H \times_{\phi} K$ to be the cartesian product of H and K with multiplication $(h,k)(h',k') := (h\phi_k(h'),kk')$. Show that $H \times_{\phi} K$ is a group, that $H \cong H \times \{e_K\} \triangleleft H \times_{\phi} K$, that $K \cong \{e_H\} \times K \triangleleft H \times_{\phi} K$, and that under these identifications $\phi_k(h) = khk^{-1}$. (The group $H \times_{\phi} K$ is the *semi-direct product* of H and K with respect to ϕ .)
- (c) Let $f: H \times K \to H \times_{\phi} K$ be given by f(h, k) = (h, k) Show that $\phi = \mathrm{id}_H$ if and only if f is a group homomorphism. (Note that f is bijective, so it is a homomorphism if and only if it is an isomorphism.)
- (d) Let G be a group and assume $H \leq G$ and $K \leq G$. Assume that HK = Gand $H \cap K = \{e\}$. For $h \in H$ and $k \in K$, define $\phi_k(h) = khk^{-1}$. Show that $\phi_k \in \operatorname{Aut}(H)$, that the function $\phi \colon K \to \operatorname{Aut}(H)$ given by $\phi(k) = \phi_k$ is a group homomorphism, and that $G \cong H \times_{\phi} K$.