MONOMIAL IDEALS: HOMEWORK 1

Exercise 1. (Fact I.3.7) Let R be a commutative ring with identity. Prove the following.

- (a) Let $I = (f_1, \ldots, f_n)R$ and let $J = (g_1, \ldots, g_m)R$. Then I + J is generated by the set $\{f_1, \ldots, f_n, g_1, \ldots, g_m\}$.
- (b) Let n be a positive integer and let S_1, S_2, \ldots, S_n be subsets of R. Then $\sum_{i=1}^n (S_j)R = (\bigcup_{i=1}^n S_j)R$.
- (c) If $\{S_{\lambda}\}_{\lambda \in \Lambda}$ is a collection of subsets of R, then $\sum_{\lambda \in \Lambda} (S_{\lambda})R = (\bigcup_{\lambda \in \Lambda} S_{\lambda})R$.

Exercise 2. (Fact I.3.10) Let R be a commutative ring with identity. Prove the following.

- (a) (0 and 1) If I is an ideal of R, then RI = I and 0I = 0.
- (b) (commutative law) If I and J are ideals of R, then IJ = JI. Moreover, if I_1, \ldots, I_n are ideals of R and i_1, \ldots, i_n is a permutation of the numbers $1, \ldots, n$, then $I_1 \cdots I_n = I_{i_1} \cdots I_{i_n}$.
- (c) (associative law) If I, J and K are ideals of R, then (IJ)K = IJK = I(JK). (More general associative laws hold by induction on the number of ideals involved.)
- (d) (distributive law) If I, J and K are ideals of R, then (I + J)K = IK + JK = K(I + J). (More general distributive laws hold by induction on the number of ideals involved.)

Exercise 3. (Fact I.3.11) Let R be a commutative ring with identity. Prove the following.

(a) If $I = (f_1, ..., f_n)R$ and $J = (g_1, ..., g_m)R$, then

$$J = (\{f_i g_j \mid 1 \leq i \leq n, 1 \leq j \leq m\})R.$$

(b) If $I_j = (S_j)R$ for $j = 1, \ldots, n$ then

$$I_1 \cdots I_n = (\{s_1 \cdots s_n \mid s_i \in S_i \text{ for } i = 1, \dots, n\})R.$$

(c) If n is a positive integer and $I = (f_1, \ldots, f_m)R$, then

$$I^n = (\{f_{i_1} \cdots f_{i_n} \mid 1 \le i_j \le m \text{ for } j = 1, \dots, n\})R.$$

Exercise 4. (Proposition I.3.13) Let R be a commutative ring with identity. Let I, J, and K be ideals of R, and let $\{I_{\lambda}\}_{\lambda \in \Lambda}$ be a collection of ideals of R. Prove the following:

- (a) There are containments $(I:_R J)J \subseteq I \subseteq (I:_R J)$.
- (b) There is an equality $(\bigcap_{\lambda \in \Lambda} I_{\lambda} :_R J) = \bigcap_{\lambda \in \Lambda} (I_{\lambda} :_R J).$
- (c) There is an equality $(J:_R \sum_{\lambda \in \Lambda} I_{\lambda}) = \cap_{\lambda \in \Lambda} (J:_R I_{\lambda}).$
- (d) Given a subset $S \subseteq R$, an element $r \in R$ is in $(I :_R (S)R)$ if and only if $rs \in I$ for each $s \in S$.