MONOMIAL IDEALS: HOMEWORK 4

Exercise 1. Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Fix a monomial $z \in [R]$ and set $(\mathbf{X}) = (X_1, \ldots, X_d)R$.

(a) Prove that rad $(P_R(z)) = rad((\mathbf{X}))$.

(b) Prove that, if A is a field, then $rad(P_R(z)) = rad((\mathbf{X})) = (\mathbf{X})$.

Exercise 2. Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Let z_1, \ldots, z_n be monomials in [R] and $(\mathbf{X}) = (X_1, \ldots, X_d)R$. Prove that, if $I = \bigcap_{i=1}^n P_R(z_i)$, then rad $(I) = \operatorname{rad}((\mathbf{X}))$.

Exercise 3. Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Let f and g be monomials in R.

(a) Prove that if $f \in (g)R$, then $\deg(f) \ge \deg(g)$.

(b) Prove or disprove: If $\deg(f) \ge \deg(g)$, then $f \in (g)R$.

(c) Prove that if $\deg(f) = \deg(g)$ and $g \in (f)R$, then g = f.

(d) Prove that if $\deg(f) = \deg(g)$ and $f \neq g$, then $f \in P_R(g)$.

Exercise 4. Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Let f be a monomial in R and let n be an integer such that n > 1. Prove that $\deg(f) < n$ if and only if there exists a monomial g of degree n - 1 such that $g \in (f)R$.