MONOMIAL IDEALS: HOMEWORK 4

Exercise 1. Let A be a commutative ring with identity and let R be the polynomial $\operatorname{ring} R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Fix a monomial $z \in[R]$ and $\operatorname{set}(\mathbf{X})=$ $\left(X_{1}, \ldots, X_{d}\right) R$.
(a) Prove that $\operatorname{rad}\left(\mathrm{P}_{R}(z)\right)=\operatorname{rad}((\mathbf{X}))$.
(b) Prove that, if A is a field, then $\operatorname{rad}\left(\mathrm{P}_{R}(z)\right)=\operatorname{rad}((\mathbf{X}))=(\mathbf{X})$.

Exercise 2. Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let z_{1}, \ldots, z_{n} be monomials in $[R]$ and $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$. Prove that, if $I=\cap_{i=1}^{n} \mathrm{P}_{R}\left(z_{i}\right)$, then $\operatorname{rad}(I)=\operatorname{rad}((\mathbf{X}))$.

Exercise 3. Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let f and g be monomials in R.
(a) Prove that if $f \in(g) R$, then $\operatorname{deg}(f) \geqslant \operatorname{deg}(g)$.
(b) Prove or disprove: If $\operatorname{deg}(f) \geqslant \operatorname{deg}(g)$, then $f \in(g) R$.
(c) Prove that if $\operatorname{deg}(f)=\operatorname{deg}(g)$ and $g \in(f) R$, then $g=f$.
(d) Prove that if $\operatorname{deg}(f)=\operatorname{deg}(g)$ and $f \neq g$, then $f \in \mathrm{P}_{R}(g)$.

Exercise 4. Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let f be a monomial in R and let n be an integer such that $n>1$. Prove that $\operatorname{deg}(f)<n$ if and only if there exists a monomial g of degree $n-1$ such that $g \in(f) R$.

