MONOMIAL IDEALS: HOMEWORK 5

Exercise 1. Prove Theorem II.5.13(a): Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Set $(\mathbf{X})=$ $\left(X_{1}, \ldots, X_{d}\right) R$. If J is a monomial ideal in R, then $\left(J:_{R}(\mathbf{X})\right)=J+\left(\mathrm{C}_{R}(J)\right) R$.
Exercise 2. Prove the following facts for use in Corollary II.5.3: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a monomial ideal in R, and fix a monomial $w \in[R]$.
(a) If $w \notin J$, then $J \subseteq \mathrm{P}_{R}(w)$.
(b) If w is an J-corner element, then $J \subseteq \mathrm{P}_{R}(w)$.
(c) In the notation of Corollary II.5.3, we have $J \subseteq J^{\prime}$.

Exercise 3. Let A be a commutative ring with identity and let R be the polynomial $\operatorname{ring} R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Set $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$ and let J be a monomial ideal in R such that $\operatorname{rad}(J)=\operatorname{rad}((\mathbf{X}))$.
(a) Prove that, for each $n \geqslant 0$, the set of monomials $[R] \backslash\left[J^{n}\right]$ is finite.
(b) Define the function $F: \mathbb{N} \rightarrow \mathbb{N}$ by the formula

$$
F(n)=\left[\text { the number of monomials in } R-(\mathbf{X})^{n}\right]=\left|[R] \backslash\left[(\mathbf{X})^{n}\right]\right|
$$

Prove that there is a polynomial $f \in \mathbb{Q}[x]$ of degree d such that $F(n)=f(n)$ for all $n \in \mathbb{N}$.
The function F is the Hilbert function of R associated to the ideal (\mathbf{X}), and f is the associated Hilbert polynomial.

A deeper result (one that we do not expect you to prove) says the following. Let $F_{J}: \mathbb{N} \rightarrow \mathbb{N}$ be the function

$$
F(n)=\left[\text { the number of monomials in } R-J^{n}\right]=\left|[R] \backslash\left[J^{n}\right]\right| .
$$

There exists $n_{0} \in \mathbb{N}$ and a polynomial $f_{J} \in \mathbb{Q}[x]$ of degree d such that $F_{J}(n)=f_{J}(n)$ for all $n \geqslant n_{0}$.

Exercise 4. Prove Corollary II.5.11: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a monomial ideal in R and let $z \in \mathrm{C}_{R}(J)$. If $d \geqslant 2$, then the monomials $X_{1} z, \ldots, X_{d} z$ are members of distinct principal ideals generated by monomials in J.

