MONOMIAL IDEALS: HOMEWORK 6

Exercise 1. Let A be a commutative ring with identity and let R be the polynomial ring $R=A[X, Y, Z]$ in three variables. Set

$$
J=\left(Z^{4}, Y^{2} Z^{3}, Y^{3}, X Y Z, X Y^{2}, X^{2}\right) R
$$

(a) Find the J-corner-elements.
(b) Find an irredundant parametric decomposition of J.

Exercise 2. Show that the conclusion of Corollary III.1.3 does not hold when we drop the assumption that $\operatorname{rad}(I)=\operatorname{rad}((\mathbf{X}))$. (Here is a statement of that corollary: Let A be a commutative ring with identity and let R be the polynomial $\operatorname{ring} R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Set $(\mathbf{X})=\left(X_{1}, \ldots, X_{d}\right) R$ and let I and J be monomial ideals in R such that $\operatorname{rad}(J)=\operatorname{rad}((\mathbf{X}))=\operatorname{rad}(I)$. Then $I=J$ if and only if $\mathrm{C}_{R}(I)=\mathrm{C}_{R}(J)$.

Exercise 3. Let A be a commutative ring with identity and let R be the polynomial ring $R=A[X, Y]$ in two variables. Set $(\mathbf{X})=(X, Y) R$. Find monomial ideals I and J in R such that $\operatorname{rad}(I)=\operatorname{rad}((\mathbf{X}))=\operatorname{rad}(J)$ and $I \subseteq J$ and $\mathrm{C}_{R}(I) \cap \mathrm{C}_{R}(J)=\emptyset$; in particular, you will have $\mathrm{C}_{R}(I) \nsubseteq \mathrm{C}_{R}(J)$ and $\mathrm{C}_{R}(I) \nsupseteq \mathrm{C}_{R}(J)$.

Exercise 4. Let A be a commutative ring with identity and let R be the polynomial ring $R=A[X, Y, Z]$ in three variables. Set

$$
I=\left(X^{2}, Y, Z\right) R \cap\left(X, Y^{2}, Z\right) R \cap\left(X^{3}, Y, Z^{2}\right) R \cap\left(X, Y^{2}, Z^{3}\right) R \cap\left(X^{2}, Y^{2}, Z^{2}\right) R
$$

Find an irredundant parametric decomposition for I and list the I-corner elements.

