MONOMIAL IDEALS: HOMEWORK 6

Exercise 1. Let A be a commutative ring with identity and let R be the polynomial ring R = A[X, Y, Z] in three variables. Set

$$J = (Z^4, Y^2 Z^3, Y^3, XYZ, XY^2, X^2)R.$$

- (a) Find the *J*-corner-elements.
- (b) Find an irredundant parametric decomposition of J.

Exercise 2. Show that the conclusion of Corollary III.1.3 does not hold when we drop the assumption that $\operatorname{rad}(I) = \operatorname{rad}((\mathbf{X}))$. (Here is a statement of that corollary: Let A be a commutative ring with identity and let R be the polynomial ring $R = A[X_1, \ldots, X_d]$ in d variables. Set $(\mathbf{X}) = (X_1, \ldots, X_d)R$ and let I and J be monomial ideals in R such that $\operatorname{rad}(J) = \operatorname{rad}((\mathbf{X})) = \operatorname{rad}(I)$. Then I = J if and only if $C_R(I) = C_R(J)$.

Exercise 3. Let A be a commutative ring with identity and let R be the polynomial ring R = A[X, Y] in two variables. Set $(\mathbf{X}) = (X, Y)R$. Find monomial ideals I and J in R such that rad $(I) = \operatorname{rad}((\mathbf{X})) = \operatorname{rad}(J)$ and $I \subseteq J$ and $C_R(I) \cap C_R(J) = \emptyset$; in particular, you will have $C_R(I) \not\subseteq C_R(J)$ and $C_R(I) \not\supseteq C_R(J)$.

Exercise 4. Let A be a commutative ring with identity and let R be the polynomial ring R = A[X, Y, Z] in three variables. Set

 $I = (X^2, Y, Z)R \cap (X, Y^2, Z)R \cap (X^3, Y, Z^2)R \cap (X, Y^2, Z^3)R \cap (X^2, Y^2, Z^2)R.$

Find an irredundant parametric decomposition for I and list the I-corner elements.