MONOMIAL IDEALS: HOMEWORK 7

Exercise 1. Let A be a commutative ring with identity and let R be the polynomial ring $R=A[X, Y, Z]$ in three variables. Set

$$
I=\left(Z^{4}, Y^{2} Z^{3}, Y^{3}, X Y Z, X Y^{2}, X^{2}\right) R
$$

and $f=X$. Compute the irredundant parametric decomposition of $f J$ and find the complete list of $f J$-corner elements.
Exercise 2. Let A be a commutative ring with identity and let R be the polynomial $\operatorname{ring} R=A[X, Y]$ in two variables. Let

$$
J=\left(X^{6}, X^{4} Y, X^{3} Y^{2}, Y^{6}\right) R=\mathrm{P}_{R}\left(X^{2} Y^{5}\right) \cap \mathrm{P}_{R}\left(X^{3} Y\right) \cap \mathrm{P}_{R}\left(X^{5}\right)
$$

and $I=\left(X^{5}, X^{4} Y^{2}, X Y^{3}, Y^{4}\right) R$. Compute an irredundant parametric decomposition of $\left(J:_{R} I\right)$ and compute $\mathrm{C}_{R}\left(\left(J:_{R}(f) R\right)\right)$.
Exercise 3. Prove Proposition III.2.17: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a monomial ideal of R. For $k=1,2, \ldots$ we have $\operatorname{rad}\left(J^{[k]}\right)=\operatorname{rad}(J)$.
Exercise 4. Prove Lemma III.2.19: Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let $f=\mathbf{X}^{\mathbf{m}}$ and $g=\mathbf{X}^{\mathbf{n}}$ for some $\mathbf{m}, \mathbf{n} \in \mathbb{N}^{d}$. For $i=1, \ldots, d$ set $p_{i}=\max \left\{m_{i}, n_{i}\right\}$, and set $w=\mathbf{X}^{\mathbf{p}}$. Then $(f) R \cap(g) R=(w) R$.

