MONOMIAL IDEALS: HOMEWORK 8

Exercise 1. Let A be a commutative ring with identity and let R be the polynomial $\operatorname{ring} R=A[X, Y, Z]$ in three variables. Show that

$$
\left(X^{3}, Y^{2}, X Z, Z^{3}\right) R=\left(X^{3}, Y^{2}, Z\right) R \cap\left(X, Y^{2}, Z^{3}\right) R .
$$

Use this to find the irredundant parametric decomposition of $\left(X^{6}, Y^{4}, X^{2} Z^{2}, Z^{6}\right) R$.
Challenge Exercise 2. Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables. Let J be a monomial ideal in R. Prove or disprove: $\mathrm{C}_{R}\left(J^{[k]}\right)=\left\{z^{(k)} \mid z \in \mathrm{C}_{R}(J)\right.$. (Maybe start with the cases $d=1,2$ first.)
Exercise 3. Let A be a commutative ring with identity and let R be the polynomial ring $R=A[X, Y, Z]$ in three variables. Let $(\mathbf{X})=(X, Y, Z) R$.
(a) Find an irredundant monomial generating sequence (in lexicographic order) for $\mathrm{P}_{R}\left(X^{3} Y^{6} Z^{5}\right) \cap \mathrm{P}_{R}\left(Y^{3} Z^{6}\right) \cap \mathrm{P}_{R}\left(X^{4} Y\right)$.
(b) Find an irredundant monomial generating sequence (in lexicographic order) for an ideal I such that $\operatorname{rad}(I)=\operatorname{rad}((\mathbf{X}))$ and $\mathrm{C}_{R}(I)=\left\{X^{2} Z, X Y Z\right\}$.
(c) Is your answer for part (b) unique? Justify your response.
(d) Can you find a monomial ideal J such that $\mathrm{C}_{R}(J)=\{X Y, Y Z, X Y Z\}$? Justify your response.

Exercise 4. Let A be a commutative ring with identity and let R be the polynomial ring $R=A\left[X_{1}, \ldots, X_{d}\right]$ in d variables.
(a) Let I_{1}, \ldots, I_{k}, and J be monomial ideals in R. Prove that $\left(I_{1}+\cdots+I_{k}\right) \cap J=$ $\left(I_{1} \cap J\right)+\cdots+\left(I_{k} \cap J\right)$.
(b) Give an example (where $d=2=k$) to show that this is not true without the assumption that each of the ideals I_{1}, I_{2}, and J are monomial ideals.

