MATH 721, Algebra II
Exercises 1
Due Fri 18 Jan
Exercise 1. Let k be a field and let $f \in k[x]$ be a polynomial of degree 3 .
(a) Show that either f has a root in k or is irreducible.
(b) Is the polynomial $x^{3}-5 x^{2}+1$ irreducible over \mathbb{Q} ?

Exercise 2. Show that $x^{4}+1$ is irreducible over \mathbb{Q}.
Exercise 3. Let R be a ring, $I \subset R$ a two-sided ideal and M a left R-module. Show that, if $a m=0$ for all $a \in I$ and all $m \in M$, then M has a well-defined R / I-module structure given by $(r+I) m=r m$. (Note that this shows that the class of R / I-modules is the same as the class of R-modules M such that am =0 for all $a \in I$ and all $m \in M$.)

Exercise 4. Let R be a commutative ring and let M and N be R-modules.
(a) For each $f \in \operatorname{Hom}_{R}(M, N)$ and each $r \in R$, define $r f: M \rightarrow N$ by the formula $(r f)(m):=r(f(m))=f(r m)$. Show that this definition makes $\operatorname{Hom}_{R}(M, N)$ into an R-module.
(b) Show that the natural bijection $\operatorname{Hom}_{R}\left(R^{n}, R^{m}\right) \rightarrow M_{m, n}(R)$ is an R-module isomorphism.

