MATH 721, Algebra II Exercises 2 Due Fri 25 Jan

Exercise 1. Let R be a ring, $I \subset R$ a left ideal and M a left R-module.

- (a) Show that, if $\emptyset \neq S \subseteq M$, then $IS = \{\sum_{i=1}^{n} a_i s_i \mid n \in \mathbb{N}, a_i \in I, s_i \in S\}$ is a submodule of M.
- (b) Assume that I is a two-sided ideal. Show that the R-module M/IM has a well-defined R/I-module structure given by (r + I)(m + IM) = rm + IM.

Exercise 2. Let R be a ring with identity. Show that every unital cyclic R-module is isomorphic to an R-module of the form R/J where J is a left ideal of R.

Exercise 3. Let R be a ring with identity. A unital R-module $M \neq 0$ is simple if its only submodules are 0 and M.

- (a) Show that every simple *R*-module is cyclic.
- (b) Assume that M is simple and $f: M \to M$ is an R-module homomorphism. Show that either f = 0 or f is an isomorphism.
- (c) Assume that R is commutative. Show that M is simple if and only if $M \cong R/\mathfrak{m}$ where \mathfrak{m} is a maximal ideal of R.

Exercise 4. Let R be a ring and let $f: M \to N$ and $g: N \to M$ be R-module homomorphisms such that $gf = id_M$. Show that $N \cong Im(f) \oplus Ker(g)$.