MATH 721, Algebra II
Exercises 6
Due Fri 22 Feb
Exercise 1. Prove Proposition 5.8.2 from the notes.
Exercise 2. Let k be a field and let $k(x)$ be the function field over k in one variable. Let $a, b, c, d \in k$ such that $a d-b c \neq 0$. Show that there is a unique k-isomorphism $\phi: k(x) \rightarrow k(x)$ such that $\phi(x)=\frac{a x+b}{c x+d}$.
Exercise 3. Let k be a field and let $k(x)$ be the function field over k in one variable. Let $\phi: k(x) \rightarrow k(x)$ be a k-isomorphism. Show that there exist $a, b, c, d \in k$ such that $a d-b c \neq 0$ and $\phi(x)=\frac{a x+b}{c x+d}$.

