MATH 721, Algebra II Exercises 7 Due Fri 29 Feb

Exercise 1. Let $\phi: K \to L$ be a field extension. Assume that L is algebraically closed, and let $F = \{u \in L \mid u \text{ is algebraic over } K\}$. Show that F is an algebraic closure of K.

Exercise 2. Let K be a finite field. Show that K is not algebraically closed. [Hint: Let $K = \{a_1, \ldots, a_n\}$ with $a_1 \neq 0$ and consider $f = a_1 + (x - a_1) \cdots (x - a_n) \in K[x]$.]

Exercise 3. Let $\phi: K \to L$ be a field extension. Show that the following conditions are equivalent:

- (i) $\phi: K \to L$ is an algebraic closure;
- (ii) $\phi: K \to L$ is algebraic and, for every algebraic extension $\psi: K \to F$ there is a K-homomorphism $\gamma: F \to L$.

Exercise 4. Let $\alpha \in \mathbb{C}$ be a root of the polynomial $x^4 + 1$. Show that the only intermediate fields of the extension $\mathbb{Q} \subseteq \mathbb{Q}(\alpha)$ are the following: $\mathbb{Q}, \mathbb{Q}(\alpha), \mathbb{Q}(\alpha^3 + \alpha), \mathbb{Q}(\alpha^3 - \alpha)$ and $\mathbb{Q}(\alpha^2)$.