MATH 721, Algebra II
Exercises 9 and 10
Due Fri 28 Mar
Exercise 1. Let $K \rightarrow L$ be a field extension, and let $u, v \in L$ be algebraic over K. Show that, if the minimal polynomials of u and v over K have relatively prime degrees, then the minimal polynomial of u is irreducible in $K(v)[x]$.

Exercise 2. Let K be a splitting field for the polynomial $g=x^{3}-2$ over \mathbb{Q}. Find an element $u \in K$ such that $K=\mathbb{Q}(u)$.

Exercise 3. Find the Galois groups of the following field extensions:
(a) $\mathbb{Q} \subseteq K$ where K is a splitting field for the polynomial $f=x^{2}-2$,
(b) $\mathbb{Q} \subseteq L$ where L is a splitting field for the polynomial $g=x^{3}-2$,
(c) $\mathbb{Q} \subseteq M$ where M is a splitting field for the polynomial $h=\left(x^{3}-2\right)\left(x^{2}-2\right)$.
(d) $\mathbb{Q} \subseteq N$ where N is a splitting field for the polynomial $h=x^{5}-7$.

Exercise 4. Show that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbb{Q} of degree 4 .
Exercise 5. Let p_{1}, \ldots, p_{n} be distinct positive prime integers. Show that the extension $\mathbb{Q} \subseteq \mathbb{Q}\left(\sqrt{p_{1}}, \ldots, \sqrt{p_{n}}\right)$ is Galois and has degree 2^{n}.

