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Abstract. We have been using ACL2 to verify pipelined machine models for
several years and have compiled a suite of 18 problems that arose in the theorem
proving process. We believe that this suite will be useful for the future develop-
ment of ACL2 because it consists of difficult problems that arise in practice, and
furthermore, these problems can be handled efficiently by other methods. For ex-
ample, ACL2 was able to prove the simplest problem in the suite after 15

1

2
days,

but UCLID was able to prove the same theorem in seconds.

1 Introduction

We have compiled a suite of 18 theorems arising in refinement-based proofs of correct-
ness for term-level pipelined machine models in ACL2. The simplest of these problems
is a correctness theorem for a 5-stage DLX-like pipelined machine, which takes ACL2
about 15 1

2
days to prove. The other problems are significantly more complex.

While ACL2 [7, 6] has been successfully applied to a wide range of commercially
interesting hardware verification problems (e.g., [14, 17, 16, 2, 5, 4]), our suite identifies
a class of problems, naturally arising in practice, that ACL2 has extreme difficulty han-
dling, but which can be easily handled by existing tools, e.g., UCLID [8, 9]. Our hope
is that our suite of problems will stimulate research on improving ACL2’s reasoning
abilities.

The rest of the paper is organized as follows. In Section 2, we give an overview of
refinement-based processor verification, the domain from which the suite of problems
originates. In Section 3, we give an example of a refinement theorem in ACL2. In Sec-
tion 4, we review the UCLID decision procedure, and in Section 5 we give a detailed
description of the suite of problems. In Section 6, we outline an approach to improv-
ing ACL2’s reasoning abilities that we are currently working on, and we conclude with
Section 7.

2 Refinement Based Processor Verification

In this section, we describe the theory of refinement that our microprocessor correctness
proofs are based on. For the full details see [11, 12, 10].



The point of a correctness proof is to establish a meaningful relationship between
ISA, a machine modeled at the instruction set architecture level and MA, a machine
modeled at the microarchitecture level, a low level description that includes the pipeline.
We accomplish this by first defining a refinement map, r, a function from MA states
to ISA states; think of r as showing us how to view an MA state as an ISA state.
We then prove a stuttering bisimulation refinement: for every pair of states w, s such
that w is an MA state and s = r(w), for every infinite path σ starting at s, there is a
“matching” infinite path δ starting at w, and conversely. That σ and δ match implies
that applying r to the states in δ results in a sequence that can be obtained from σ

by repeating, but only finitely often, some of σ’s states, as MA may require several
steps before matching a single step of ISA. A problem with this approach is that it
requires reasoning about infinite paths, which is difficult to automate. In [11], we give
an equivalent formulation, WEB-refinement, that requires only local reasoning. We now
give the relevant definitions, which are given in terms of general transition systems (TS).
A TS M is a triple 〈S, 99K, L〉, consisting of a set of states, S, a transition relation, 99K,
and a labeling function L with domain S, where L(s) is what is visible at s.

Definition 1. (WEB Refinement) Let M = 〈S, 99K, L〉, M′ = 〈S′, 99K′, L′〉, and r :
S → S′. We say that M is a WEB refinement of M′ with respect to refinement map r,
written M ≈r M′, if there exists a relation, B, such that 〈∀s ∈ S :: sBr(s)〉 and B is
a WEB on the TS 〈S ] S′, 99K ] 99K

′,L〉, where L(s) = L′(s) for s an S′ state and
L(s) = L′(r(s)) otherwise.

In the above definition, it helps to think of M′ as corresponding to ISA and M as
corresponding to MA. Note that in the disjoint union of M and M′, the label of every
M state, s, matches the label of the corresponding M′ state, r(s). WEBs are defined
next; the main property enjoyed by a WEB, say B, is that all states related by B have
the same (up to stuttering) visible behaviors.

Definition 2. B ⊆ S × S is a WEB on TS M = 〈S, 99K, L〉 iff:

(1) B is an equivalence relation on S; and

(2) 〈∀s, w ∈ S :: sBw ⇒ L(s) = L(w)〉; and

(3) There exist functions erankl : S × S → N, erankt : S → W, such that

〈W, l〉 is well-founded, and

〈∀s, u, w ∈ S :: sBw ∧ s 99K u ⇒

(a) 〈∃v :: w 99K v ∧ uBv〉 ∨

(b) (uBw ∧ erankt(u) l erankt(s)) ∨

(c) 〈∃v :: w 99K v ∧ sBv ∧ erankl(v, u) < erankl(w, u)〉〉

The third WEB condition says that given states s and w in the same class, such that
s can step to u, u is either matched by a step from w, or u and w are in the same class
and a rank function decreases (to guarantee that w is eventually forced to take a step),



or some successor v of w is in the same class as s and a rank function decreases (to
guarantee that u is eventually matched). To prove that a relation is a WEB, reasoning
about single steps of 99K suffices.

The refinement theorem contains quantifiers and involves exhibiting the existence
of certain rank functions. We would prefer to reduce the proof obligation to a decidable
fragment of first-order logic, which we do as follows. First, we strengthen the refine-
ment theorem in such a way that it can be reduced to a formula expressible in CLU (the
logic of Counter arithmetic with Lambda expressions and Uninterpreted functions).
Second, we show how to define rank functions in a general way that does not require
deep understanding of the pipelined machine.

To strengthen the WEB-refinement proof obligation so that we obtain a CLU ex-
pressible statement, we start by defining the equivalence classes of B to consist of one
ISA state and all the MA states that map to the ISA state under r. Now, condition 2 of
the WEB definition clearly holds. Our ISA and MA machines are deterministic (actually
they are nondeterministic, but we use oracle variables to make them deterministic [12]),
thus, after some symbolic manipulation, we can strengthen condition 3 of the WEB def-
inition to the following “core theorem”, where rank is a function that maps states of
MA into the natural numbers.

〈∀w ∈ MA :: s = r(w) ∧ u = ISA-step(s) ∧

v = MA-step(w) ∧ u 6= r(v)

=⇒ s = r(v) ∧ rank(v) < rank(w)〉

In the formula above s and u are ISA states, and w and v are MA states; ISA-step
is a function corresponding to stepping the ISA machine once and MA-step is a func-
tion corresponding to stepping the MA machine once. The core theorem says that if w

refines s, u is obtained by stepping s, v is obtained by stepping w, and v does not refine
u, then v refines s and the rank of v is less than the rank of w. The proof obligation re-
lating s and v is the safety component, and the proof obligation that rank(v) < rank(w)
is the liveness component.

We use two types of refinement maps. One is based on flushing, where partially ex-
ecuted instructions in the microprocessor state are completed without fetching any new
instructions. Thus, all the pipeline latches are invalidated, giving rise to an instruction
architecture state. The other is based on the commitment approach that can be loosely
thought of as the dual of flushing, since partially completed instructions are invalidated
instead of being completed.

3 Refinement Theorems in ACL2

In this section we examine the ACL2 core WEB-refinement theorem for the 5-stage
pipelined model mentioned previously.

The refinement theorem has three parts: one describes the microprocessor model,
one describes the instruction set architecture model, and one contains the actual the-
orem that relates these models. The models are at the term-level, i.e., the data path is
abstracted away, as is combinational circuitry such as the ALU (using encapsulate).



Recall that the term-level refinement theorem is specified in a decidable fragment of
first-order logic. The complexity of the refinement theorem arises from defining refine-
ment maps that map microprocessor states to instruction set architecture states and from
invariants that characterize the set of reachable states. The refinement maps and invari-
ants are defined using sequences of symbolic simulation steps of the microprocessor
model, and for brevity, are not shown.

The ACL2 code fragment below shows part of the refinement theorem for the 5-
stage DLX pipeline. The implementation and specification states are initialized with
arbitrary constants using the initialize function. The types of these constants are
defined in the antecedent of the implication. Then, the implementation and specification
states are “stepped” using the simulate function. This example uses the refinement
map based on the commitment approach and requires the use of invariants such as
Good MA. Since the theorem also checks liveness, we see that a rank function is used
in the consequent.

(defthm WEB CORE
(implies
(and
(integerp fdpPC0)
(integerp depPC0)
(booleanp deRegWrite0)
...
)

(let* ((ST0 (initialize fdpPC0 depPC0 ...))
(ST1 (simulate ST0 nil pc0 nil nil pc0

(g ’pRF (g ’impl ST0))
(g ’pDMemHist 1 (g ’impl ST0))))

(ST2 (simulate ST1 nil pc0 nil nil pc0
(g ’pRF (g ’impl ST1))
(g ’pDMemHist 1 (g ’impl ST1))))

...
(Good MA V (Good MA a

Equiv MA 0
Equiv MA 1
Equiv MA 2
Equiv MA 3
Equiv MA 4))

...
(Rank V (rank a (g ’mwWRT (g ’impl ST34))

(g ’emWRT (g ’impl ST34))
(g ’deWRT (g ’impl ST34))
(g ’fdWRT (g ’impl ST34))
ZERO))

(S pc1 (g ’sPC (g ’speci ST35)))
(S rf1 (g ’sRF (g ’speci ST35)))
(S dmem1 (g ’sDMem (g ’speci ST35))))

(and
Good MA V



(or
(not
(and
(equal S pc0 I pc0)
(equal (read-sRF a a S rf0) (read-pRF a a I rf0))
(equal S dmem0 I dmem0)))

(or
(and
(equal S pc1 I pc)
(equal (read-sRF a a S rf1) (read-pRF a a I rf))
(equal S dmem1 I dmem))

(and
(equal S pc0 I pc)
(equal (read-sRF a a S rf0) (read-pRF a a I rf))
(equal S dmem0 I dmem)
(< Rank V Rank W))))

...))))

4 UCLID System

UCLID [3, 9] is a decision procedure for formulas expressed in a decidable fragment
of first order logic called CLU. The CLU logic contains Booleans connectives, uninter-
preted functions, equality, counter arithmetic, ordering, and restricted lambda expres-
sions. Terms of the logic are used to abstract word-level values and uninterpreted func-
tions are used to abstract combinational circuit blocks. Uninterpreted functions only
satisfy the property of functional consistency, i.e., if the inputs of two different instances
of an uninterpreted function are equal, then their outputs are equal.

The UCLID specification language is used to model processors and to specify the
correctness formulas. The processor models in UCLID are specified at the term level.
A symbolic simulation engine that is part of UCLID takes the processor model and the
correctness formula as input, and generates the corresponding CLU formula, which is
then translated to a propositional formula. The translation process takes advantage of
innovative encoding techniques. The propositional formula is checked using a state-of-
the-art SAT solvers such as Chaff [15] and Siege [18]. The UCLID system has been
used to verify out-of-order microprocessors models at the term level [8].

Using UCLID, we were able to prove the core refinement theorem of the 5-stage
pipeline example in about 3 seconds. Note that the UCLID system does not have enough
expressive power to state the full correctness theorem, but ACL2 was able to complete
the rest of the proof in under a minute.

5 Suite of Theorems

The problem suite is a set of refinement theorems for processor models in ACL2. As we
have stated earlier, the simplest of these refinement theorems took ACL2 151

2
days to

prove. The other benchmarks are an order of magnitude harder. An interesting feature



of the suite is that the ACL2 theorems are restricted to a decidable fragment of first
order logic. We used the UCLID decision procedure to prove the theorems and report
the verification times below, but first we give a detailed description of each benchmark.

5S, 5S-Part: The ‘5S’ benchmark is a refinement theorem for a 5-stage pipelined ma-
chine model with register-register, register-immediate, and store instruction types.
The pipelined machine model is similar to the DLX pipeline. The refinement map
is based on the commitment approach. The 5S-Part benchmark is part of the cor-
rectness proof described in 5S. We ran 5S-Part to completion using ACL2 and the
proof took 15 1

2
days to complete. When ACL2 was configured to suppress printing,

the proof took 10 days.
CXS: This benchmark is a refinement theorem for a 7 stage pipelined machine in-

spired by the Intel XScale architecture. It has 5 abstract instruction types including
register-register, register-immediate, branch, loads, and stores. The refinement map
used is based on the commitment approach. The benchmark includes ACL2 models
of both the 7 stage pipelined machine (implementation model) and its instruction
set architecture (specification model).

CXS-BP: This benchmark is an extension of the CXS benchmark. It is obtained by
adding branch prediction to the 7 stage pipelined machine model. The refinement
map is based on the commitment approach and is modified from CXS to accom-
modate branch prediction.

CXS-BP-EX: This benchmark is obtained by including exceptions to CXS-BP imple-
mentation model. The refinement map is again based on the commitment approach.
The specification model and the refinement map are modified to incorporate excep-
tions.

CXS-BP-EX-INP: This benchmark adds interrupts to CXS-BP-EX. The refinement
map is based on the commitment approach and makes use of oracle variables to
deal with the interrupts.

FXS, FXS-BP, FXS-BP-EX, FXS-BP-EX-INP: The benchmarks FXS, FXS-BP, FXS-
BP-EX, FXS-BP-EX-INP are similar to CXS, CXS-BP, CXS-BP-EX, and CXS-
BP-EX-INP, respectively, in that they are refinement proofs for the same imple-
mentation models. The main difference is that these benchmarks use flushing as a
refinement map.

Table 1 lists the problems and also provides the time taken by the UCLID decision
procedure to prove the theorems. UCLID was run with the Siege SAT solver, and we
also report statistics for the CNF formulas produced by UCLID. The UCLID results are
based on our previous work [13]. The suffix “-S” indicates that the theorem is a safety
theorem, while the suffix “-SL” indicates that the theorem is the full core theorem,
containing both the safety and liveness components.

The total column in Table 1 is the sum of the time taken for running UCLID and
Siege. We would like to point out here that only the 5S-Part problem was run to com-
pletion in ACL2. The other problems are an order of magnitude harder, as can be seen
from the UCLID verification times. The ACL2 times for the other problems are there-
fore extrapolated values and are shown in italics.



Table 1 Verification times and CNF statistics for the benchmark suite using UCLID and
Siege

UCLID [sec]Benchmark CNF Vars CNF Clauses
UCLID Siege Total

ACL2 [sec]

5S-Part 5,285 15,457 1 2 3 1,339,200
5S 5,285 15,457 1 2 3 1,339,200
CXS-S 12,930 38,215 3 35 38 16,963,200
CXS-SL 12,495 36,925 3 29 32 14,284,800
CXS-BP-S 24,640 72,859 5 284 289 129,009,600
CXS-BP-SL 23,913 70,693 5 300 305 136,152,000
CXS-BP-EX-S 24,651 72,841 5 244 249 111,153,600
CXS-BP-EX-SL 24,149 71,350 5 233 238 106,243,200
CXS-BP-EX-INP-S 24,669 72,880 6 255 261 116,510,400
CXS-BP-EX-INP-SL 24,478 72,322 6 263 269 120,081,600
FXS-S 28,505 84,619 14 140 154 68,745,600
FXS-SL 53,441 159,010 15 160 175 78,120,000
FXS-BP-S 33,964 100,624 15 170 185 82,584,000
FXS-BP-SL 71,184 211,723 16 187 203 90,619,200
FXS-BP-EX-S 35,827 106,114 16 179 195 87,048,000
FXS-BP-EX-SL 74,591 221,812 17 163 180 80,352,000
FXS-BP-EX-INP-S 38,711 11,4742 19 128 147 65,620,800
FXS-BP-EX-INP-SL 781,121 241,345 19 170 189 84,369,600

The ACL2 theorems were obtained by translating UCLID specifications to ACL2
with a translator we wrote. There is the danger that the translation is what is respon-
sible for the slow ACL2 verification times. To better understand how the translator
affects verification times, we considered the correctness theorem for a 3 stage pipelined
machine written for ACL2. After considerable effort was devoted to ACL2 efficiency
considerations, ACL2 took 130 seconds to prove the theorem. We then translated (by
hand) the theorem to UCLID, which took about 1.7 seconds to complete the proof. We
then used our tool to translate the UCLID specification back to ACL2. The resulting
theorem took ACL2 430 seconds to prove. Even accounting for the factor of four slow-
down, there is still a big gap between the time taken by UCLID and the time taken by
ACL2.

6 Integrating Decision Procedures in ACL2

Our suite of problems convincingly shows that UCLID is a useful tool for pipeline
machine verification, but why do we need ACL2 and why would we want to integrate
UCLID into ACL2? We give three reasons, though there are several other good reasons.
First, UCLID models are at the term-level and are not executable. Second, ACL2 is far
more expressive than the CLU specification language, which is not expressive enough
to even state the WEB refinement theorem, though it can be used to state the “core”
theorem. ACL2 allows us to state the WEB theorem and to formally reduce it to the core



theorem. Third, ACL2 can be used to model and reason about pipelined machines at
various levels of abstraction, including at the term and bit levels. However, the UCLID
decision procedure is only suitable for term-level models.

We believe that integrating UCLID (and other similar decision procedures) into
ACL2 will result in a system that is more powerful than the sum of its parts. We are
currently exploring this possibility. The difficulty with the fine-grained integration of
decision procedures into heuristic theorem provers is well-known [1], but we hope to
avoid these problems by integrating UCLID in a course-grained way. The idea is to
embed the CLU logic into ACL2, something that is not entirely trivial, as it is possible
in UCLID to have variables that are assigned lambdas and the ACL2 universe does
not contain functions. However, the lambdas used in UCLID are sufficiently restricted
that this obstacle can be overcome. Once this embedding is complete, we plan to verify
processor models too complex to handle with ACL2 or UCLID alone, but which can be
easily handled by our combined system.

7 Conclusion

We have presented a benchmark suite of 18 theorems from the domain of processor
verification that ACL2 has difficulty proving. We hope that the suite will help stimulate
research on extending ACL2’s ability to reason about such problems, and we proposed
a first step in this direction.
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