
Automatic Memory Reductions for RTL Model Verification

Panagiotis Manolios†, Sudarshan K. Srinivasan‡, and Daron Vroon†

†College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280 USA
{manolios, vroon}@cc.gatech.edu

‡School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332-0250 USA
darshan@ece.gatech.edu

ABSTRACT
We present several techniques for automatically reducing memories
in RTL designs. This includes a new memory abstraction algorithm
that allows us to greatly reduce the size of memories and a tech-
nique based on-term rewriting that further improves the abstraction.
In contrast to previously proposed methods for abstracting memo-
ries of RTL designs, our methods are general—e.g., they allow us
to arbitrarily and directly compare memories—and they are sound
and complete—e.g., there are no false positives or negatives. In
addition, the combination of our techniques allows us to automat-
ically verify RTL pipelined machine designs beyond the reach of
current state-of-the-art methods, as our experimental results show.

1. INTRODUCTION
Reference models for industrial designs tend to be defined at the

Register Transfer Level (RTL). These models are used for perfor-
mance evaluation, testing, generation of lower-level models such
as netlists, etc. Ideally, hardware verification efforts should target
these models as well. Unfortunately, due to the practical limita-
tions of current verification technology, most techniques can only
handle abstractions of RTL models. For example, in the case of
pipelined machine verification, RTL designs are often abstracted
to term-level models, which can be verified using various decision
procedures such as UCLID [4] and DPLL(T) [10]. The problem
with such approaches is that the connection between the RTL de-
signs and their abstractions is often difficult to establish formally.
In the case of term-level models, the data path and memories are
abstracted away, only a small subset of the instruction set is im-
plemented, and processor elements such as decoders and ALUs are
replaced by uninterpreted functions. The resulting models are not
executable and therefore difficult to relate back to the original RTL
models either formally or empirically. Due to this limitation, the
impact that such techniques have had in industry has been limited.

In principle, one can use SAT solving techniques to directly ver-
ify RTL designs, but this is infeasible. One of the central problems
with this approach is that the read and write logic for memories,
including register files and caches, leads to prohibitively large SAT
problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

Current state-of-the-art tools for RTL verification address this
problem by abstracting memories away completely [8, 9]. Instead,
the forwarding property of memories (i.e., a read access from a
memory gets the most recent value written to the read address) is
preserved by constraining the memory interface signals. The prob-
lem with such methods is that removing the memories altogether
means that they cannot be referred to directly; in fact, the only op-
erations allowed on memories by such methods are reading and
writing data. So, for example, it is not possible to test memories
for equality and inequality in all contexts without testing the equal-
ity of every individual word in the memory, which can lead to a
problem as large and intractable as the unabstracted version.

In this paper, we present a collection of novel techniques that
allows us to attain drastic improvements over current methods for
verifying RTL designs. The first of these is a sound and complete
memory abstraction algorithm that reduces memories to a manage-
able size without eliminating them completely. This technique is
more general than current state-of-the-art methods for memory ab-
straction, since it allows for direct reasoning about memories (e.g.,
efficient comparison of memories for equality and inequality). In
addition, where the functionality of our algorithm does overlap with
that of current techniques (i.e., memory reads and writes), our ab-
straction gives savings that are comparable to those provided by the
current state-of-the-art methods.

In addition to the main memory abstraction algorithm, we present
two auxiliary techniques that improve its effectiveness. The first of
these is a hashing heuristic that reduces the size of Boolean formu-
las by increasing sharing. The second is a rewriting algorithm that
removes unnecessary memory accesses, which allows us to further
decrease memory sizes.

We have implemented our memory abstraction techniques in the
Bit-level Analysis Tool (BAT), which can be used as a bounded
model checker andk-induction engine for RTL models. BAT op-
erates over a simple but powerful core language that could easily
be used as the target language of synthesizable subsets of Verilog
and VHDL. Experimental results demonstrate the effectiveness of
our memory reduction techniques and the ability of BAT to prove
theorems about RTL models that are beyond the range of current
state-of-the-art methods and tools.

The rest of the paper is organized as follows. In Section 2, we
briefly review previous RTL verification techniques. In Section 3,
we provide a high-level description of our Bit Analysis Tool (BAT).
Section 4 describes our memory reduction techniques. In Section 5,
we evaluate our work using a number of benchmarks and also pro-
vide comparisons with other methods and tools. We end with con-
clusions and future work in Section 6.

2. RELATED WORK
A variety of techniques for verifying RTL designs that contain

memories have been proposed in the literature. An early example
is the CLI stack, where alists were used to only keep track of the
list of address-value pairs used [2]. A similar technique appears
in [20] and a variation of this approach is proposed in [4], where
memory is abstracted using restricted lambda expressions. These
last two methods are used in the context of term-level reasoning
and the memory abstraction is performed manually. In contrast,
our approach is automatic.

Ganai et al. [8, 9] give a method for automatically abstracting
memories (we refer to this as the GMA approach) by removing
the memory from the specification and retaining only the memory
interface signals. The forwarding property of memory semantics is
preserved by imposing constraints on the memory interface signals.
The GMA approach is implemented in a SAT-based bounded model
checker for RTL Verilog models. This approach is not as general as
ours, as it does not provide the capability to reason directly about
memory components. That is, it is limited to reasoning about reads
and writes. In this domain our main abstraction algorithm gives
comparable savings to the GMA approach, and our hashing and
rewriting techniques provide additional savings.

A more recent approach for verifying RTL models is based on
predicate abstraction and Counter Example Guided Abstraction and
Refinement (CEGAR). The approach is implemented in the VCE-
GAR tool [12]. Given a Verilog model, VCEGAR abstracts the
model using predicate abstraction. A model checker is used to
check the property on the abstracted model. If a counter-example
is found, it is evaluated on the original model. If it is spurious, the
abstract model is refined. This process is repeated until either the
property is proved, a real counter example is generated, or no new
predicates can be determined. This method is not complete and
fails on examples we can easily handle.

Another approach for verifying RTL Verilog models based on
CEGAR is introduced in [1] and implemented in the Reveal system.
This approach automatically abstracts Verilog models and prop-
erties to the logic of Counter arithmetic, with restricted Lambda
expressions and Uninterpreted functions (CLU) logic, which can
then be checked efficiently using a decision procedure. If a spu-
rious counter example is generated, the abstract model is refined
using minimal unsatisfiable subset (MUS) extraction. The Reveal
system has been used to check parts of the safety property based
on the Burch and Dill commuting diagram for a 4-bit pipelined
machine [5]. Our tool can handle much more complex systems
than this. As our experimental results show, BAT can be used to
check both safety and liveness properties of more complex 32-bit
pipelined machine models.

RTL designs can be verified using theorem provers but this re-
quires extensive user effort. In [16], the authors present an ap-
proach for verifying RTL pipelined machine models using a combi-
nation of deductive reasoning and decision procedures. The pipelined
machine models they verified are more complex than the machines
verified in this paper, but their approach still requires person-weeks
of time and theorem proving expertise, whereas verification with
BAT is automatic.

3. BIT-LEVEL ANALYSIS TOOL
Our memory analysis and reduction techniques are implemented

in the Bit-level Analysis Tool, or BAT, which solves RTL bounded
model checking andk-induction problems. Given a machine de-
scription and LTL property in our own S-Expression based lan-
guage (similar to Lisp or Scheme in syntax) and a number of steps,

BAT checks the property using SAT-based methods and returns
a counter-example if one exists. In this section, we give a brief
overview of BAT, highlighting its key features.

We carefully designed the BAT tool to be simple to use, expres-
sive, and as general as possible. Because of its generality, the BAT
specification language can easily be the target language of syn-
thesizable subsets of Verilog and VHDL. In fact BAT can handle
features of these languages not present in other state-of-the-art bit-
level analysis tools. For example, as can be seen in Figure 1, BAT
supports user-defined functions, which are not supported in VCE-
GAR [12].

BAT is implemented in Lisp, and can be used interactively using
Lisp’s built-in development environment. This makes it easy to set
up automatic interaction between Lisp and BAT. For example, users
can write functions to generate BAT models given a set of input pa-
rameters, or even add features to the language by writing code to
translate new features into the core BAT language. The code in Fig-
ure 1 was generated by a function that takes a positive integer,n,
and generates ann-bit ALU specification. In this case,n = 2. Lisp
makes writing model generators and language extensions particu-
larly easy, since it has a built-in parser for S-expressions.

The BAT machine description has four required sections::vars,
:init,:trans, and:spec. The:vars section contains global
variable declarations. These variables represent the state of the ma-
chine. The:init section is a Boolean formula over the variables
declared in:vars that returns 1 (representing true) iff a machine
state is a valid initial state of the machine. The:trans section
is another Boolean formula over the current and next state of vari-
ables that describes the transition relation. Given two states,s and
s′, the transition relation will return true ifs can transition tos′ in
one step. Finally, the:spec section describes the LTL formula to
be checked for the machine. In addition, users may define functions
in the:functions section, constants in the:consts section,
and static definitions that do not change with the transition relation
in the:definitions section.

The BAT language operates over three kinds of data types: bit
vectors, memories, and multiple-value types (tuples of bit vectors
and memories). Bit vectors can be given in Boolean, octal, hex-
adecimal, signed decimal or unsigned decimal representations. The
Boolean, octal, and hexadecimal representations are symbols be-
ginning with 0b, 0o, and 0x respectively,e.g., 0b0011, 0o72, and
0x4A3. Decimal numbers are by default interpreted as a signed (2’s
compliment) bit vector. To specify the use of the unsigned repre-
sentation, the character ‘u’ is added to the end,e.g., 7u. There is no
constant representation for memories. Multiple value expressions
are written as(mv . . .).

The BAT language is strongly typed. Each bit vector has a fixed
number of bits, and each memory has a fixed wordsize and num-
ber of words. Bit vectors with different numbers of bits cannot
be compared or combined. For example, the bitwise and function,
and, cannot be given a 3-bit bit vector and a 4-bit bit vector as
arguments. However, the number of bits in a vector specified as
a decimal number is ambiguous. For example, the number 7 can
be represented as the bit vectors0b0111, 0b00111, 0b000111,
etc. In these cases, the BAT type checker performs type inference
to discover what type the integer should have based on its context.
For example, ifx is a 5-bit bit vector variable, and the BAT specifi-
cation contains the formula(and x 7), then 7 will be interpreted
as0b00111 in this instance. The only requirement in cases of type
inference is that integers be representable in the number of bits dic-
tated by the context. For example, the previous example would not
work if x were a bit vector of length 2, since 7 requires 4 bits to be
represented as a signed bit vector.

((:functions
(maj (1) ((a 1) (b 1) (c 1))

(or (and a b) (and b c) (and a c)))
(fa (2) ((a 1) (b 1) (cin 1))

(cat (maj a b cin) (xor a b cin)))
(mux-4 (1) ((i0 1) (i1 1) (i2 1) (i3 1) (sel 2))

(local
((nsel0 (not (sel 0)))
(nsel1 (not (sel 1)))
(v0 (and i0 nsel0 nsel1))
(v1 (and i1 (sel 0) nsel1))
(v2 (and i2 nsel0 (sel 1)))
(v3 (and i3 (sel 0) (sel 1))))

(or v0 v1 v2 v3)))
(alu-slice (2) ((a 1) (b 1) (cin 1) (bn 1) (op 2))

(local
((nb (xor bn b))
(res0 (and a nb))
(res1 (or a nb))
(((cout 1) (res2 1)) (fa a nb cin)))

(cat cout (mux-4 res0 res1 res2 1u op))))
(alu-2-bit (4) ((a 2) (b 2) (bn 1) (op 2))

(local
((c 2))
(((t0 (c 0))

(alu-slice (a 0) (b 0) bn bn op))
((t1 (c 1))
(alu-slice (a 1) (b 1) t0 bn op))

(zero (= c 0)))
(cat t1 c zero))))

(:vars (i1 2) (i2 2) (bn 1) (op 2)
(out 2) (cout 1) (zero 1))

(:init (and (= out 0)
(= cout 0b1)
(= zero 0b0)))

(:trans (= (cat (next cout) (next out) (next zero))
(alu-2-bit i1 i2 bn op)))

(:spec (AG (<-> zero (not cout)))))

Figure 1: A simple ALU description in BAT

The example in Figure 1 defines a simple ALU. It contains only
bit vectors, but demonstrates many of the features of the BAT lan-
guage. The ALU description begins with function definitions. The
first of these ismaj, which is the majority function on 3 inputs.
The first field in a function definition is the name, followed by the
type. The type ofmaj is a bit vector of one bit. The third element
of the definition is the function parameters, which are also typed.
In this case, all of the inputs are bit vectors of length 1. The last
element of the definition is the body of the function, which should
be in terms of the parameters only (not the global variables). The
majority function tests to see if any pair of the three inputs are both
true.

The second function is a full adder, which returns a bit vector of
length 2, which is the concatenation of the majority and the exclu-
sive or of the three inputs. This is followed by a 4-bit multiplexer,
which demonstrates the basic usage of thelocal construct. In its
simplest form, alocal is similar to alet* in Lisp or Scheme. Its
first argument is a list of bindings, each of which consists of a vari-
able name and an expression to which the variable should be bound.
The bindings occur in the order in which they appear. For example,
nsel0 is set to(not (sel 0)), nsel1 is set to(not (sel
1)), andv0 is set to(and i0 nsel0 nsel1). The seman-
tics of these bindings are simply to replace each variable with the
expression to which it is bound. So, for example,v0 is bound to
(and i0 (not (sel 0)) (not (sel 1))).

Thealu-slice andalu-2-bit functions demonstrate two
other features of thelocal. In alu-slice, the last binding
contains a list of variable declarations where we expect a single
variable. Herecout andres2 are declared to be 1-bit bit vectors.
Recall that the full adder returns 2 bits. These bits are split between

((:vars (mem 8 4)
(adr 3)

(val 4))
(:init 0b1)
(:trans 0b1)
(:spec (= (get (set mem adr val) adr) val)))

Figure 2: A trivial example of memory usage in BAT.

cout andres2. The leftmost bit is the most significant in the BAT
language, socout gets the high bit of the output. In general, any
number of variables can be bound at once in this manner, but their
lengths must add up to the length of the expression to which they
are being bound (which must be a bit vector). Inalu-2-bit, an
extra argument is given at the beginning of the local, which is a list
of variable declarations. In this case, there is 1 2-bit variable,c,
declared. Now the user may bind single bits or bit ranges ofc in
the bindings. For example, the first binding bindst0 and the 0th
bit of c simultaneously. All of the bits must be bound exactly once.

The :vars section declares the seven variables to be used as
the machine state. The:init formula says that all initial states
should have anout of 0, a cout of 0b1, and azero of 0b0.
The :trans states that the concatenation of the next states of
thecout, out, andzero variables should be the output of the
alu-2-bit function applied to thei1, i2, bn, andop argu-
ments. Finally, the:spec says that for every step of every com-
putation, it should be the case thatzero is the negation ofcout.

Figure 2 shows a trivial example of a machine description using
memories. A memory is defined by giving 2 positive integers for
the type instead of 1, as is the case with bit vectors. The first of
these is the number of words in the memory, and the second is the
number of bits in each word. In this case,mem is declared to be a
memory with 8 4-bit words. The use of memories is limited toget,
set, =, andif. That is, memories can be read from (get), written
to (set), tested for equality (=), and conditionally returned (if).
The set function takes a memory, an address, and a value, and
returns the memory resulting from updating the given address in
the given memory to the given value. In this case, theset returns
the memory resulting from setting addressadr to val. Likewise,
theget function takes a memory and an address, and returns the
value of the word at the given address in the given memory. In this
example, theget takes the result of theset function, and reads
the address corresponding toadr from it. Note that the memory,
the address, and the value are all arbitrary. The:init function
does not place any restrictions on their value.

3.1 BAT Compilation
After syntax and type checking a model, BAT compiles it into a

SAT problem. First, the initialization, transition, and specification
formulas are converted to a formula containing onlyset, get,
if, =, <->, and, not, andnext formulas. All variables except
memories are replaced by sequences of 1-bit bit vectors. This is
roughly a Reduced Boolean Circuit (RBC) plusif and memory
operations.

Next, BAT “unrolls” the transition and specification formulas the
user-specified number of steps using standard techniques [7]. To
unroll the descriptionn steps,n+1 new variables of the formVi v
are created for each variable,v, in our model (where 0≤ i ≤ n). The
initialization function,I is instantiated withV0 v for each variable,
v. For each 0≤ i < n, we create formulaTi by substitutingVi v
for v andV j v for (next v) (where j = i + 1) in the transition
relation,T. We make the same substitutions in our specification,S
to getSi for each 0≤ i ≤ n if it is an AG or AF formula.

The resulting formula isI ∧
Vn

i=0Ti ∧
Vn

i=0¬Si if S is anAF

form, andI ∧
Vn

i=0Ti ∧
Wn

i=0¬Si if S is anAG function.
Finally, we perform our memory abstraction and translate the

resulting RBC into CNF.

4. MEMORY ABSTRACTION
In this section, we describe our memory reduction techniques.

These include the main memory abstraction algorithm, as well as
heuristic uniqueness reductions and a term rewriting algorithm that
improve the overall effectiveness of the main algorithm.

4.1 Memory Reduction Algorithm
Through the rest of the paper, we denote log base 2 as lg. Letf be

a Boolean formula resulting from the unrolling of a BAT machine
description. LetM f be the set of variables inf of some memory
type.

In order to preserve memory equality and inequality for the ab-
stract model, we need to apply the same abstraction to memories
that are tested for equality, or memories that are used in the same
context. For example, if our formula contains the subformula(=
m1 (if (= x y) m2 m3)), thenm1, m2, andm3 need to be
abstracted in the same way so thatm1 can be easily compared to
m2 or m3, whichever is returned by theif statement. The follow-
ing two definitions help us capture this notion as an equivalence
relation.

DEFINITION 1. Thebase memoriesof a formula, f , which has
a memory type is defined recursively as follows:

• base((if e1 e2 e3)) = base(e2)∪base(e3),

• base((set e1 e2 e3)) = base(e1),

• base(x) = {x} when x is a variable.

DEFINITION 2. The equality test relation for formulaf , de-
noted Rf is the relation over Mf such that Rf = {(m1,m2) ∈ M f ×
M f | (∃e :: {m1,m2} ⊆ base(e)) ∨ ((= e1 e2) ⊑ f ∧ m1 ∈
base(e1) ∧ m2 ∈ base(e2))}. We denote the transitive closure of
Rf as Ef .

LEMMA 1. Ef is an equivalence relation.

We denote the equivalence class induced byEf containing a
memory variable,m, as [m]Ef . Now, in order to compare mem-
ories, we need to know what addresses we use inset andget
formulas containing memories of a given class. The idea is that the
data at these addresses is now constrained by our formula, and must
therefore be constrained in the same way for the abstract version of
the formulas. The following definition serves this purpose.

DEFINITION 3. The address setof a class of memories, C∈
{[m]Ef | m∈ M f }, in formula f , is the set

Af
C = {e⊑ f | ((set e1 e e2)⊑ f ∨ (get e1 e)⊑ f) ∧ base(e1)⊆C}.

For all the addresses in the address set of a class of memories,
we create a shorter bit vector for addressing the abstract memories.

DEFINITION 4. Given an equivalence class of memory vari-
ables, C, induced by Ef , and an expression e∈ Af

C, an abstract

addressof e is a fresh (in f) variable of⌈lg |Af
C|⌉ bits. We denote

the abstract address for e asê.

A first approximation at memory abstraction would be to replace
each memory,m by a new memory with|Af

[m]Ef
| words. The idea

would be that we only care about those words that we read and
write, so the others can be thrown out. However, recall that the
ability to test the equalities of memories is an important feature
of BAT. The problem with our first approximation of memory ab-
straction is that even if we know that all the addresses we look at
are the same, it is still possible for the words we haven’t seen to be
different. As a simple example, suppose we have two uninitialized
memories,m1 andm2, each with two words of two bits each. Now
suppose we had the formula(not (= (set m1 0 0) (set
m2 0 0))). Our first approximation of a memory abstraction
would reducem1 andm2 each to 1 word apiece, corresponding to
word 0 of each memory. Those reduced memories would be triv-
ially equal. However, since word 1 of each memory is uninitialized,
it is possible for word 1 ofm1 to be 0 and word 1 ofm2 to be 1. So,
this abstraction is not equisatisfiable with the original function.

In order to allow for memory equality and inequality, we need to
represent those parts of the memory that is never accessed. Since
we never view these words, they have unconstrained values, so the
SAT solver can give them any value it needs to in order to find a
satisfying assignment. In order to abstract away a large portion of
these unseen words while still allowing the SAT solver to assign
values as it needs to, we use the following abstraction.

DEFINITION 5. Given a function m∈ M f with wordsize w, an
abstract memoryfor m, denotedm̂, is a memory variable that has
|Af

[m]Ef
|w+ ⌈lg |[m]Ef |⌉ bits, and the same wordsize as m.

Since⌈lg |[m]Ef |⌉ bits have|[m]Ef | different configurations, this
allows the SAT solver to give each memory in a given class a differ-
ent value for the abstraction of the “unseen” parts of the memories.

Finally, we abstract the formula,f , by replacing memories and
addresses with their abstract counterparts and constraining the ab-
stract values appropriately to be sure that we maintain the forward-
ing property of memories.

DEFINITION 6. Thememory abstractionof f is obtained by do-
ing the following.

• Create f1 by adding constraints that imply that e1 = e2 ⇔
ê1 = ê2 for every pair of addresses e1,e2, and for each equiv-
alence class, C, induced by Ef , u2n(e) < ⌈lg |Af

C|⌉ for all

e∈ Af
C, where u2n converts an unsigned bit vector to the nat-

ural number it represents.

• Substitute each memory variable m⊑ f1 with m̂ to create f2.

• Substitute every subformula of f2 of the form(set e1 e2 e3)
with (set e1 ê2 e3) to get f3.

• Substitute every subformula of f3 of the form(get e1 e2)
with (get e1 ê2) to get f̂ .

We denote the abstract version of f asf̂ .

THEOREM 1. f is satisfiable if and only if̂f is satisfiable.

4.2 Cost
In order to compile a BAT specification to SAT, we need to

transform memories into sequences of bits. In this section, we de-
scribe the compilation of memory-related formulas, and calculate
their cost in number of SAT clauses generated. Letµ be an arbi-
trary memory-typed subformula of a formula,f . Let vµ ∈ base(µ),

m= |[vµ]Ef |, Af
[vµ]Ef

= {α1, . . . ,αn}, sbe the number of bits in each

αi , andw be the wordsize ofvµ. Let µ̂ be the abstracted version
of µ, and α̂i denote the abstract address forαi . Note thatµ̂ has
nw+ ⌈lgm⌉ bits, and eacĥαi has⌈lgn⌉ bits.

First, there is a one time cost for the address abstraction con-
straints. One way to express these constraints is the way they are
given in Definition 6. While this is simple to state, it does not lead
to the most efficient translation to SAT. Instead, we further limit the
values of theα̂i as follows. First, for all 1≤ j < i ≤ n, we create
a variable,Ei

j , and constrain it with the formulaEi
j ⇔ (αi = α j).

Each of these is representable in 4s+ 1 clauses, giving us a total
of (4s+1) 1

2n(n−1) clauses. Next, we constrain eachα̂k with the
formula

[∀1≤ i < k, (¬Ek
1 ∧ . . .∧¬Ek

i−1∧Ek
i) ⇒ (α̂k = n2u(i −1,⌈lgn⌉))] ∧

[(¬Ek
1 ∧ . . .∧¬Ek

k−1) ⇒ α̂k = n2u(k−1,⌈lgn⌉)]

wheren2u(n,w) returns thew-bit unsigned bit vector representing
the natural number,n. This setsα̂1 to be 0,α̂2 to be 0 ifα1 = α2,
or 1 otherwise, and so on. Notice that these constraints imply the
simpler constraints from Definition 6. However, we have further
constrained eacĥαi to a small set of concrete values: we now
know thatα̂i < i for every 1≤ i ≤ n. This will allow us to cre-
ate more efficient translations forset andget formulas. Each
α̂i requiresi⌈lgn⌉ clauses to constrain, leading to12n(n−1)⌈lgn⌉
clauses. Adding this to the clauses needed to constrain theEi

j , we
get a total clause count of

(

2s+
1
2
⌈lgn⌉+

1
2

)

(n2−n) (4.1)

Given a form(get µ̂ α̂i) we create a new bit vector variable,
v, of w bits. Recal that̂αi < i. We therefore know that this particular
get form will return one of the firsti words of µ̂. We therefore
constrainv with the formulas∀0≤ j < i, (α̂i = n2u(j,⌈lgn⌉)) ⇒
(v = µ̂i), whereµ̂i is theith word ofµ̂. Finally, we replace theget
form with v. Each constraint requires 2w clauses to represent in
CNF, resulting in a total of 2wi clauses to read from addressα̂i .

For the form(set µ̂ α̂i e), we again know thatewill be writ-
ten to one of the firsti words of µ̂. For 0≤ j < i, and for all
0≤ k < w, we create the formula(α̂i = n2u(j) ∨ µ̂k

j) ∧ (α̂i 6=

n2u(j) ∨ ek), whereek is thekth bit of e, andMk
j is thekth bit of

the jth word of µ̂. This formula simply returnsek if α̂i = n2u(j),
andµ̂k

j otherwise. We concatenate these formulas together with all
the words at addressi or higher to create the new memory. Each of
these formulas requires 2 clauses, so the number of clauses required
to write to addresŝαi is 2wi.

Finally, for memory equality, between two abstract memories
with nw+ ⌈lgm⌉ bits, which takes 2(nw+ ⌈lgm⌉) clauses.

Therefore, if there aren unique accesses (sets orgets), andk
equality tests, for a class of memories, the total number of clauses
needed for memory-related formulas is

(

2s+w+
1
2
⌈lgn⌉+

1
2

)

(n2−n)+2k(n+ ⌈lgm⌉) (4.2)

4.3 Heuristic Uniqueness Reductions
From Equation 4.2, it is clear that the number of memory ac-

cesses is the factor that has the greatest effect on the efficiency of
our abstraction. Therefore, prior to performing the main memory
abstraction algorithm, we perform analyses in order to minimize
the number of memory accesses. The first of these is an aggressive,
heuristically guided uniqueness reduction. This is based on well-
known techniques for SAT conversions [3], but we do not know of
any work regarding the heuristics we use to guide our reductions.

We begin by storing subformulas in a hashtable. Each entry has
a key of the function name and pointers to each argument of the
function. The value is a pointer to a data structure representing the
formula. Whenever we create a new formula, we check if it exists
in our hashtable already. If so, we use its value. Otherwise, we
create a new data structure, and add it to the hashtable. This way,
syntactic equality and pointer equality are the same, and we can
easily tell if two addresses are syntactically equal.

In order to improve sharing and syntactic equality, we leverage
the associativity and commutativity of certain functions in our lan-
guage. Each formula, as it is created is given a unique integer value.
Arguments to commutative functions are sorted according to this
value, so that two formulas will not be syntactically different just
because they have their arguments in different orders.

We also leverage the associativity of certain functions. How-
ever, we have found that it is not always beneficial to normalize
in this way. The problem comes when applying associativity de-
stroys subformula sharing. For example, if there is a formula of
the form(and e1 (and e2 e3) e4), then aggressive normal-
ization would transform this into(and e1 e2 e3 e4). However,
if the subformula(and e2 e3) exists elsewhere, the structure will
be shared in the original formula, but not in the normalized formula.
Since sharing is a powerful tool for decreasing the size of CNF
formulas, performing this normalization is counterproductive. We
therefore have a heuristic so that associativity normalization does
not occur when normalization would decrease sharing in the final
formula. As we show in Section 5, these heuristic uniqueness re-
ductions have a significant effect on the performance of our mem-
ory abstraction technique.

4.4 Memory Rewriting
Another technique that we use to improve the effectiveness of

our memory abstraction is the use of rewrite rules designed to sim-
plify away unnecessary memory accesses. In this section, we de-
scribe our rewriting technique.

LEMMA 2. The following hold for all values v1 and v2, all ex-
pressions of memory type m, m1, and m2, and all expressions of the
appropriate bit vector type, e1, e2, and e3:
• (get (set m e1 v1) e2)= (if (= e1 e2) v1 (get m e2))
• e1 = e2 ⇒ (set m e1 (get m e2))= m
• (get (if e1 m1 m2) e2)= (if e1 (get m1 e2) (get m2 e2)).

We apply these rules before abstracting the memories in order to
reduce the number ofsets andgets. The result is a sometimes
dramatic reduction in the number of addresses we need to consider
(see Section 5).

The first rule is useful when a given memory is only used for
reading and writing, and not for comparison. Here, everyset for-
mula that lies inside aget formula gets rewritten away.

The second rule is applied in a similar manner as the first, allow-
ing us to eliminate one address. The final rule pushesgets inside
if statements. At first glance, this rule seems to increase the size
of our formula, rather than decrease it. The outerget is replicated
twice inside theif formula. However, due to our formula unique-
ness reductions, this does not cause much of an increase in the size
of the resulting CNF formula. In addition, this rule can greatly re-
duce memory sizes, leading to an overall savings. Suppose we had
two expressions of memory type,m1 andm2 that had different base
memories. Then consider the following formula:

(get (set (if e1 m1 m2) a1 v1) a2)

Recall from Section 4.1 that the base memories of theif state-
ment are the union of the base memories ofm1 andm2. This means

.01

.1

1

10

100

1000

10000

16B 32B 64B 128B 256B 512B 1KB 2KB 4KB 8KB

V
er

ifi
ca

tio
n

tim
e

(s
ec

)

ICRAM size

BAT
VCEGAR

Figure 3: The graph compares the verification times for
the icram benchmarks using both BAT and VCEGAR.

that these memories will be in the same equivalence class, and all
the addresses read or written to in either base memory must be rep-
resented in the abstraction of both base memories. Now consider
what happens when we apply the final rewrite rule:

(if e1
(get (set m1 a1 v1) a2)

(get (set m2 a1 v1) a2))

Now theif has a bit vector type rather than a memory type,
since theget happens inside the “then” and “else” clauses. There-
fore, the base memories ofm1 andm2 are no longer equated (un-
less there is some other place in the overall formula where they
are equated). So, for example, if there were 10 sets inm1 and 10
sets inm2, whose addresses do not overlap, then the application of
this rule decreased the size of the abstract memories for the base
memories ofm1 andm2 from 20 to 10 each.

5. RESULTS
We evaluate the memory abstraction technique implemented in

BAT using five benchmark sets. We compare BAT with the VCE-
GAR tool and find that we can efficiently verify problems with
large memories that VCEGAR cannot handle, and with other bench-
marks, we get several orders of magnitude speed up in verification
time over VCEGAR. All the experiments described in this paper
were run on a 3.06 GHz Intel Xeon with an L2 cache size of 512KB.
We used the Siege SAT solver (variant 4) [17] to check the SAT
problems generated by BAT.
Instruction Cache RAM (ICRAM) Unit (icram) Benchmarks:
The icram benchmarks are obtained from the Sun PicoJava II mi-
croprocessor’s [19] Instruction Cache RAM unit, and were also
used to evaluate the VCEGAR tool in [12]. The property verified
is that the data input is written to the higher 32 bits of the loca-
tion in the RAM corresponding to the input address if the memory
write signal is enabled. We translated the PicoJava’s ICRAM unit
(described in Verilog) and the property to a BAT specification.

The variousicram benchmarks are obtained by varying the size
of the RAM unit. The results obtained by checking the property
using both BAT and VCEGAR are shown in Figure 3. Note that
the y-axis is a log scale. The VCEGAR verification times increase
exponentially in the size of the RAM, while they remain constant
for BAT. In fact, BAT was able to solve the specification without
calling the SAT solver by using the rewrite rules described in Sec-
tion 4.
Two Stage Pipelined Machine (2f) Benchmarks: The 2f is a
flushing based refinement theorem [14] for a simple 2 stage pipelined

0.1

1

10

100

1000

4 8 16 32 64

V
er

ifi
ca

tio
n

tim
e

(s
ec

)

Number of words in instruction memory and register file

BAT
VCEGAR failures

Figure 4: The graph compares the running times of
BAT and VCEGAR obtained from verifying the 2 stage
pipelined machine benchmarks.

machine that implements only an add instruction and has two mem-
ory elements, which are the instruction memory and the register
file as shown in Figure 5(a). We used the2f benchmarks to com-
pare BAT with VCEGAR, and found that VCEGAR cannot handle
any of these benchmarks. Since the verification of pipelined ma-
chines is an interesting class of problems [13, 18, 11], we give a
detailed analysis of the memory accesses patterns and the reduc-
tions in the size of the memory elements that can be obtained using
BAT’s memory abstraction technique for these benchmarks.

Figure 4 compares the running times from verifying the2f bench-
marks using both BAT and the VCEGAR tool. The various2f
benchmarks are obtained by increasing the number of words in the
instruction memory and the register file. BAT is able to handle all
the benchmarks in less than a second. For the benchmarks with 4
words in both the memory elements, VCEGAR fails to find any so-
lution at all. On all others, VCEGAR is unable to find a solution in
1000 seconds.

Figure 5(b) shows the memory accesses that occur for2f. The
statesw, s, v, u, andr(v), in Figure 5(b) are used to describe the
property being checked. These states are obtained starting from
an arbitrary initial pipelined machine statew using operationsma-
step, isa-step, flush, and some other operations that do not access
any of the memory elements (not shown in the figure as they are not
relevant to our analysis). Thema-stepand theisa-stepoperations
correspond to single steps of the pipelined machine and its instruc-
tion set architecture.isa-stepalways incurs a read access to the
instruction memory, and two read accesses and one write accesses
to the register file. If there is a valid instruction in the first latch
of a pipelined machine state, thenma-stepincurs a read access to
the instruction memory, and two read accesses and one write ac-
cesses to the register file. Theflushoperation steps the pipelined
machine forward without fetching any new instructions by intro-
ducing a bubble in the first latch (in this case, the only latch) in the
pipeline. If there is a valid instruction in the first latch, then the
flushoperation incurs only a write access to the register file. The
flushoperation reads the instruction memory once and the register
file twice, but the result of these accesses are not used to update any
state variables.

We call the accesses to the memory that have an effect on the
final property being checked as relevant accesses and those that do
not have an effect as irrelevant accesses. It is not always possible
for BAT to determine if an accesses is relevant or not. The num-
ber of words in the abstraction of a memory element is the sum
of all unique and relevant read and write accesses to that mem-

(a) High-level organization of the
2Stage pipelined machine.

(b) Analysis of memory access
for the 2Stage pipelined machine
benchmark.

Figure 5: 2Stage pipelined machine benchmark.

ory element. For the2f benchmark, the instruction memory incurs
only one read access corresponding to instructioni1 in Figure 5(b),
so the abstracted instruction memory should have only one word.
The register file incurs two reads and a write corresponding to in-
structioni1, and a write corresponding to instructioni2, and so the
abstracted register file should have four words. The size of the
abstract instruction memory and data memory obtained using BAT
are one and four, respectively, irrespective of the size of the original
memories, which is consistent with the abstractions obtained from
our analysis. Note that all these accesses occur twice when stating
the flushing theorem as can be seen from Figure 5(b). Therefore, if
we do not use uniqueness analysis, the abstract instruction memory
and register file have 2 and 8 words, respectively.
Out-of-order Memory Update (omu) Benchmarks: The omu
benchmark models out-of-order retirement of instructions—a fea-
ture that can be found in many commercial microprocessors such
as the Intel XScale [6]—as a sequence of out-of-order updates to
a memory. The effectiveness of using rewrite rules described in
Section 4 for abstracting memories is demonstrated using theomu
benchmark. In theomubenchmark, an initial memorymemwith
65536 words is modified by a sequence of writes, where each write
in the sequence writes to a different memory location, resulting in
memorymem1. This sequence of writes is again used to modify
memorymem, but, in a different order resulting in memorymem2.
The property checked is that a read frommem1at one of the lo-
cations updated by the write sequence is equal to a read from the
same location atmem2.

The verification results for theomubenchmark are shown in Ta-
ble 1. In the table, NW is the number of writes to the memory,
n is the number of words in the abstract memory, and T is the to-
tal verification time. The columns D, D-U, D-R, D-UR in Table 1
indicate using BAT with default options (includes uniqueness anal-
ysis and the use of rewrite rules), with uniqueness analysis turned
off, with rewrite rules turned off, and with both uniqueness analy-
sis and rewrite rules turned off, respectively. A “FAIL” entry in the
table indicates that BAT ran out of memory and could not solve the

D D-U D-R D-URNW
n T(secs) n T(secs) n T(secs) n T(secs)

8 0 .07 0 .07 8 0.22 17 0.54
16 0 .13 0 .14 16 0.78 33 2.21
32 0 .27 0 .27 32 4.29 65 12.47
64 0 .61 0 .57 64 43.13 129 FAIL
128 0 1.21 0 1.36 128 FAIL 257 FAIL
256 0 3.16 0 3.25 256 FAIL 513 FAIL
512 0 12.45 0 9.95 512 FAIL 1,025 FAIL

Table 1: Verification statistics for the Out-of-order mem-
ory update (omu) benchmark.

3c 5fb 5fN
(secs) (secs) (secs)

22 0.79 0.77 1.29
24 1.58 2.97 7.13
28 4.19 3.22 34.80
216 13.47 15.10 282.67
232 50.74 58.33 1,278.65

Table 2: Variation in BAT verification times for the 3c and
5f benchmarks with increases in data path and memory
sizes. N indicates the number words in the register file
and memories.

problem.
When rewrite rules are used, the verification problem is solved

by using BAT’s simplification engine and no SAT solver is required.
If rewrite rules are not used, the number of words in the resulting
memory abstractions are large, and are significantly more difficult
for BAT to analyze.
Five Stage Pipelined Machine (5f) Benchmarks: The5f bench-
mark is a flushing based refinement theorem [14] for a 5 stage
pipelined machine model that implements simple ALU, load, store,
and branch instructions. To support these instructions, the model
has an instruction memory, a register file, and a data memory. We
also use BAT to check a buggy version of5f, we call5fb.

The flushing based refinement theorem for5f and5fb is similar
to that for2f, the difference being in the number offlushoperations
required to state the correctness property. The 5 stage pipelined
machines requires at least 5flushoperations. The number offlush
operations used to state the theorem can be an upper bound on the
actual number offlushoperations required. The number of words
in the abstracted register file, data memory and instruction memory
are 12, 7, and 2, respectively. If uniqueness analysis is not used,
the number of words in the abstracted register file and data memory
increase to 24 and 20, respectively.

Table 2 shows the variation in BAT running times for the5f and
the 5fb benchmarks, with increase in the number of words in the
memory elements (N). The data path width (s) also increases as N
increases. For example, for the model that has 232 words in the
memory elements,s is 32. The increase in the verification times is
primarily due to the increase in the data path width, as the number
of words in the abstracted memories does not change with increase
in N, except when N is 22 as the actual memories are smaller than
their abstractions. Note that we can verify a 32-bit 5 stage pipelined
machine in under 1,279 seconds. As far as we know, BAT is the first
verification tool to verify a 32-bit 5 stage pipelined machine at the
register transfer level. We did not use VCEGAR to check the5f
and the5fb benchmarks, as they are far more complex than the2f
benchmarks, which VCEGAR was not able to handle.
Three Stage Pipelined Machine (3c) Benchmarks: The3cbench-

mark is a commitment based refinement theorem [14] for a 3 stage
pipeline, which has an instruction memory, a register file, and a
data memory. Table 2 shows the BAT verification times for the
3c benchmarks obtained by increasing the number of words in the
memory elements (N). Irrespective of the size of the original mem-
ories, the abstracted instruction memory, register file, and data mem-
ory have only 5, 8, and 3 words. The increase in the verification
times is primarily due to the increase in the data path width. We
did not use VCEGAR to check the3f benchmarks, as they are far
more complex than the2f benchmarks, which VCEGAR was not
able to handle.

6. CONCLUSIONS AND FUTURE WORK
We have introduced a collection of techniques for automatically

reducing memories in bit-level designs. Our experimental evalua-
tion shows that we attain significant improvements over the current
state-of-the-art methods,e.g., as far as we know, our method is
the first that can automatically prove the correctness of non-trivial
pipelined machines with large (32-bit) memories and register files.
The key techniques we introduced include a method for abstract-
ing memories that also reduces the size of addresses and a term-
rewriting technique that improves the effectiveness of the main al-
gorithm. Our methods are also more general than previous work
because they are sound and complete and they allow us to directly
compare memories in arbitrary contexts. There are multiple in-
teresting opportunities for future work, including: combining our
work with a counterexample guided abstraction-refinement frame-
work; exploiting more advanced term-rewriting techniques; auto-
matically abstracting the data path; improving our translation to
SAT; and using compositional reasoning [15] to handle more com-
plex problems.

7. REFERENCES
[1] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah.

Refinement strategies for verification methods based on
datapath abstraction. In F. Hirose, editor,Asia South Pacific
Design Automation Conference (ASP-DAC’06), pages
19–24. IEEE, 2006.

[2] W. R. Bevier, W. A. Hunt, Jr., J. S. Moore, and W. D. Young.
An approach to systems verification.Journal of Automated
Reasoning, 5(4):411–428, December 1989.

[3] P. Bjesse and A. Boralv. DAG-aware circuit compression. In
IEEE/ACM International Conference on Computer Aided
Design, 2004 (ICCAD-2004), pages 42–49, 2004.

[4] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and
verifying systems using a logic of counter arithmetic with
lambda expressions and uninterpreted functions. In
E. Brinksma and K. G. Larsen, editors,Computer Aided
Verification (CAV’02), volume 2404 ofLecture Notes in
Computer Science, pages 78–92. Springer, 2002.

[5] J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. InComputer-Aided
Verification (CAV ’94), volume 818 ofLNCS, pages 68–80.
Springer-Verlag, 1994.

[6] L. Clark, E. Hoffman, J. Miller, M. Biyani, Y. Liao,
S. Strazdus, M.Morrow, K. Velarde, and M. Yarch. An
embedded 32-bit microprocessor core for low-power and
high-performance applications.IEEE Journal of Solid-State
Circuits, 36(11):1599–1608, 2001.

[7] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model
checking using satisfiability solving.Formal Methods in
System Design, 19, July 2001.

[8] M. K. Ganai, A. Gupta, and P. Ashar. Efficient modeling of
embedded memories in bounded model checking. In R. Alur
and D. Peled, editors,Computer Aided Verification
(CAV’04), volume 3114 ofLecture Notes in Computer
Science, pages 440–452. Springer, 2004.

[9] M. K. Ganai, A. Gupta, and P. Ashar. Verification of
embedded memory systems using efficient memory
modeling. InDesign, Automation and Test in Europe
(DATE’05), pages 1096–1101. IEEE Computer Society,
2005.

[10] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and
C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur
and D. Peled, editors,Proceedings of the 16th International
Conference on Computer Aided Verification, CAV’04
(Boston, Massachusetts), volume 3114 ofLecture Notes in
Computer Science, pages 175–188. Springer, 2004.

[11] R. Hosabettu, M. Srivas, and G. Gopalakrishnan. Proof of
correctness of a processor with reorder buffer using the
completion functions approach. In N. Halbwachs and
D. Peled, editors,Computer-Aided Verification–CAV ’99,
volume 1633 ofLNCS. Springer-Verlag, 1999.

[12] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke. Word
level predicate abstraction and refinement for verifying rtl
verilog. In W. H. J. Jr., G. Martin, and A. B. Kahng, editors,
Design Automation Conference (DAC’05), pages 445–450.
ACM, 2005.

[13] S. Lahiri, S. Seshia, and R. Bryant. Modeling and verification
of out-of-order microprocessors using UCLID. InFormal
Methods in Computer-Aided Design (FMCAD’02), volume
2517 ofLNCS, pages 142–159. Springer-Verlag, 2002.

[14] P. Manolios and S. Srinivasan. Automatic verification of
safety and liveness for XScale-like processor models using
WEB-refinements. InDesign Automation and Test in Europe,
DATE’04, 2004.

[15] P. Manolios and S. Srinivasan. A complete compositional
reasoning framework for the efficient verification of
pipelined machines. InACM-IEEE International Conference
on Computer Aided Design (ICCAD’05), November 2005.

[16] P. Manolios and S. K. Srinivasan. Verification of executable
pipelined machines with bit-level interfaces. InACM-IEEE
International Conference on Computer Aided Design
(ICCAD’05), November 2005.

[17] L. Ryan. Siege homepage. See URL
http://www.cs.sfu.ca/ ∼loryan/personal.

[18] J. Sawada and W. A. Hunt, Jr. Processor verification with
precise exceptions and speculative execution. In A. J. Hu and
M. Y. Vardi, editors,Computer Aided Verification (CAV ’98),
volume 1427 ofLNCS, pages 135–146. Springer-Verlag,
1998.

[19] Ultrasparc processors. See URLhttp://-
www.sun.com/processors/technologies.html.

[20] M. N. Velev, R. E. Bryant, and A. Jain. Efficient modeling of
memory arrays in symbolic simulation. In O. Grumberg,
editor,Computer Aided Verification (CAV’97), volume 1254
of Lecture Notes in Computer Science, pages 388–399.
Springer, 1997.

