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Abstract—We present a refinement-based compositional frame-
work for showing that pipelined machines satisfy the same safety
and liveness properties as their non-pipelined specifications. Our
framework consists of a set of convenient, easily applicable, and
complete compositional proof rules. We show how to apply our
compositional framework in the context of microprocessor verifi-
cation to verify both abstract, term-level models and executable,
bit-level models. Our framework enables us to verify machine
models that are significantly more complex than the kinds of
models that can be verified using current state-of-the-art auto-
mated decision procedures. For example, using our framework,
we can verify a 32-bit, 10-stage, executable pipelined machine
model. In addition, our compositional framework offers drastic
improvements in the context of design debugging over monolithic
approaches, in part because bugs are isolated to particular steps
in the compositional proof and because the counter examples
generated are much smaller.

Index Terms—Compositional reasoning, pipelined machine ver-
ification, refinement.

I. INTRODUCTION

P IPELINING is a key optimization technology that is used
extensively in hardware systems such as microprocessors,

multicore systems, and cache coherence protocols. For example,
the Intel Pentium 4 microprocessor uses hyper-pipelined tech-
nology and has pipelines with as many as 31 stages [8]. Even
though pipelining has been around for decades, there are cur-
rently no efficient and scalable techniques that can check that
pipelines work correctly.

The focus of the verification of pipelined machine
models—models that describe the pipelined behavior of
hardware designs—has been to show that pipelined machines
implement or refine their non-pipelined specifications. Typ-
ically, the verification times required for pipelines increases
exponentially with increase in the number of stages or the
complexity of the model. Therefore, the verification of the
pipelines of many industrial designs is beyond the complexity
threshold of automatic verification tools. As a result, the goal
of much of the current work in mechanical verification is to
design tools and techniques that extend the range of automatic
methods. While there has been much success, we are still far

Manuscript received September 5, 2006. This work was supported in part
by the National Science Foundation (NSF) under Grant CCF-0429924, Grant
IIS-0417413, and Grant CCF-0438871, and by ND EPSCoR under NSF Grant
EPS-0447679.

P. Manolios is with the College of Computer and Information Science, North-
eastern University, Boston, MA 02115 USA (e-mail: pete@ccs.neu.edu).

S. K. Srinivasan is with the Department of Electrical and Computer En-
gineering, North Dakota State University, Fargo, ND 58105 USA (e-mail:
sudarshan.srinivasan@ndsu.edu).

Digital Object Identifier 10.1109/TVLSI.2008.918120

away from being able to use such methods to verify industrial
designs.

We present a compositional reasoning framework based on
well-founded equivalence bisimulation (WEB) refinement for
pipelined machine verification that provides a high degree of
scalability and takes us a step closer in handling industrial
designs. The framework allows us to decompose correctness
proofs for pipelined machines into manageable pieces and
can therefore be used to substantially extend the complexity
threshold of automatic tools. We show how to apply our frame-
work in the context of both term-level and bit-level pipelined
machine verification. The work presented in this paper extends
a previous conference version [20] by showing how to apply
our compositional reasoning framework to the verification of
bit-level pipelined machine models and also by including a
detailed description of the techniques developed.

We show that using our framework, we can verify a 32-bit,
10-stage pipelined machine model defined at the bit-level. Such
a proof was previously not possible using automatic verifica-
tion tools and would have required a heroic amount of the-
orem proving effort to complete. We also show that using our
framework we can obtain exponential savings in verification
time when checking the correctness of a complex term-level
pipelined machine. Our compositional framework takes advan-
tage of the way we defined the models. For example, the term-
level machine is quite complicated and to make its definition a
manageable process, we defined a series of machines starting
with the base processor model , a six-stage pipelined ma-
chine, which we extended first with a pipelined fetch stage, then
with an instruction queue holding up to three instructions, then
with a direct mapped instruction cache, then a direct mapped
data cache, and, finally, a write buffer, to obtain . Our
compositional framework allows us to verify the machine the
same way we defined it, one feature at a time, which leads to a
manageable process. Each stage of the proof essentially entails
establishing a WEB-refinement proof, which means that, rela-
tive to a refinement map and up to stuttering, the two machines
have exactly the same infinite behaviors.

We introduce compositional proof rules that guarantee
that this sequence of refinement proofs implies that the final
pipelined machine has the same behaviors as the instruction
set architecture. In terms of temporal logic, we have that the
machines satisfy exactly the same properties express-
ible at the instruction set architecture level. Our overall proof
strategy is highly-automated as the proof obligations required
by our compositional framework can be automatically handled
using satisfiability testing (SAT)-based decision procedures.
For the term-level verification, we use the UCLID decision
procedure [4], [15]. For verification at the bit-level, we use the
bit-level analysis tool (BAT) [26], [27]. The Siege [33] and
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the RSat [32] SAT solvers are used to check the conjunctive
normal form (CNF) problems generated by UCLID and BAT,
respectively.

A major advantage, perhaps even more important than the
increased performance, of our compositional framework over
monolithic approaches is that counterexamples are shorter and
clearer, which greatly simplifies debugging. Suppose that mod-
ifications are made to the design and in the process a bug is in-
troduced. Compositional verification allows us to focus in on
where the bug first appears and the counterexample generated
is with respect to a specific refinement stage, i.e., the coun-
terexample is at exactly the right level of abstraction required
to easily understand and correct the problem. For example, if
the bug does not involve the cache, then neither does the coun-
terexample, whereas in a monolithic approach, there is no way
to know if the cache was involved; thus, as the verification en-
gineer is trying to understand the counterexample, she is forced
to manually rule out the possibility that the cache contributed
to the error. By using our compositional approach, the engineer
can bridge the abstraction gap on her own terms and at a rate that
makes sense given available tools and the development process.

Can we really obtain the benefits of composition without
paying a price? Actually, we often have to provide invariants.
But, invariants are needed to verify complex designs anyway.
For example, to verify a write-through cache, we need the in-
variant that the valid cache entries are consistent with memory.
The invariants we used were straightforward, requiring a few
hours of thought; in contrast, defining the refinement maps can
easily take days. If one uses a hierarchical, refinement-based
approach to design, then the invariants should be known, as
they allow for the separation of concerns that enables different
engineers to implement different parts of the system indepen-
dently. Therefore, composition can fit nicely into the design
cycle, which is also compositional.

This paper is organized as follows. In Section II, we review
the theory of refinement upon which our correctness proofs de-
pend. In Section III, we describe the compositional proof rules
developed for pipelined machine verification. In Sections IV and
V, we describe the application of our compositional reasoning
framework to the verification of complex pipelined machine
models at the term-level and the bit-level, respectively. Every-
thing required to reproduce our results, e.g., machine models,
correctness statements, CNF formulas, etc., is available upon
request. We give related work in Section VI. Conclusions and
an outline of future work appear in Section VII.

II. PRELIMINARIES ON REFINEMENT

In this section, we review the required background on the
theory of refinement used in this paper; for a full account, see
[17] and [18]. Pipelined machine verification is an instance of
the refinement problem: given an abstract specification and
a concrete specification show that refines (implements) .
In the context of pipelined machine verification, the idea is to
show that , a machine modeled at the micro-architecture level,
a low level description that includes the pipeline, refines ,
a machine modeled at the instruction set architecture level. A
refinement proof is relative to a refinement map, , a function
from states to states. The refinement map shows us
how to view an state as an state, e.g., the refinement

map has to hide the components (such as the pipeline) that
do not appear in the .

The and machines are arbitrary transition systems
(TS). A TS is a triple , consisting of a set of
states a left-total transition relation and a labeling
function whose domain is and where (we sometimes
use an infix dot to denote function application) corresponds to
what is “visible” at state .

Our notion of refinement is based on the following definition
of stuttering bisimulation [2], where by we mean that

is a fullpath (infinite path) starting at . The definition also
depends on the notion of matching which we only informally
describe here. We are given a relation on a set . We say that
an infinite sequence (of elements from ) matches an infinite
sequence (of elements from ), written match , if the
sequences can be partitioned into non-empty, finite segments
such that elements in related segments are related by .

Definition 1: is a stuttering bisimulation (STB)
on TS iff is an equivalence relation and
for all , such that

match

match

Browne, Clarke, and Grumberg have shown that states that
are stuttering bisimilar satisfy the same next-time-free temporal
logic formulas [2].

Lemma 1: Let be an STB on and let . For any
formula , , iff , .

We note that stuttering bisimulation differs from weak bisim-
ulation [30] in that weak bisimulation allows infinite stuttering.
Stuttering is a common phenomenon when comparing systems
at different levels of abstraction, e.g., if the pipeline is empty,

will require several steps to complete an instruction, whereas
completes an instruction during every step. Distinguishing

between infinite and finite stuttering is important, because
(among other things) we want to distinguish deadlock from
stutter.

When we say that refines , we mean that in the disjoint
union of the two systems, there is an STB that relates every
pair of states , such that is an state and .

Definition 2: (STB Refinement): Let ,
, and . We say that is an

STB refinement of with respect to refinement map , written
, if there exists a relation, , such that

and is an STB on the TS ,
where for an state and otherwise.

In the sequel, we refer to any relation than can serve the role
of , above, as a witness to the refinement .

A major shortcoming of the previous formulation of refine-
ment is that it requires reasoning about infinite paths, some-
thing that is difficult to automate [31]. In [17], WEB-refine-
ment, an equivalent formulation is given that requires only local
reasoning, involving only states, the states they map to
under the refinement map, and their successor states. In [19],
it is shown how to automate the refinement proofs in the con-
text of pipelined machine verification. The idea is to strengthen,
thereby simplifying, the refinement proof obligation; the result
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Fig. 1. Pictorial representation of Theorem 1, showing a strengthening of the
WEB-refinement theorem that facilitates the automation of reasoning about the
correctness of pipelined machines.

is the following theorem, where is a function that maps
states of into the natural numbers.

Theorem 1: if

In the previous formula, and are states, and and
are states; is a function corresponding to stepping
the machine once and is a function corresponding
to stepping the machine once. It may help to think of the first
conjunct of the consequent as the safety component
of the proof and the second conjunct as the
liveness component. The previous formula is also shown picto-
rially in Fig. 1.

Note that the notion of WEB refinement is independent of the
refinement map used. In this paper, we use the standard flushing
refinement map [5], where states are mapped to states by
executing all partially completed instructions without fetching
any new instructions, and then projecting out the visible
components.

It is worth pointing out that the choice of refinement map can
have a big impact on the verification effort [12], [21], [22]. Nev-
ertheless, we will not explore this further here, as the emphasis
of this paper is on exploiting the compositionality of WEB re-
finement.

Theorem 2: (Composition) If and
then .

Above, denotes composition, i.e., .
From the previous theorem, we can derive several other com-

position results; see the following for example.
Theorem 3: (Composition)

The previous theorem states that to prove (that ,
the pipelined machine, executing program satisfies property

Fig. 2. Invariant mismatch. When trying to apply Theorem 2 to prove that M
refines M compositionally, by first proving that M refines M , say with re-
finement map q, and then that M j refines M , say with refinement map r,
we run into the following problem. We need an invariant on M whose image
under q is I ; defining such an invariant can be quite difficult.

, a property over the visible state), it suffices to prove
and : that refines (which can be done

using a sequence of refinement proofs) and that , executing
, satisfies . In this form, the previous rule exactly matches the

compositional proof rules in [6]. What makes such a rule useful
is that it can lead to drastically faster verification times, as we
show in this paper. It will turn out that the verification times
depend much more on the semantic difference between models
than on their complexity, e.g., verifying that a complex pipelined
machine refines a similar complex pipelined machine can
take a fraction of a second, even though current tools may not
be able to verify that refines (the much simpler) instruction
set architecture.

III. COMPOSITION RULES

In this section, we develop techniques that allow us to prove
that refines in a compositional manner, by proving
that refines , which refines , which re-
fines , which refines . We present a sound and complete
method for proving such theorems, where most of the reasoning
is local, i.e., restricted to pairs of machines. By applying our
techniques, we transform the problem of verifying that
refines from one that UCLID cannot handle to one that takes
less than 20 s.

A model in any standard hardware description or specifica-
tion language (e.g., BAT) gives rise to a transition system

, where is a state iff it maps the vari-
ables appearing in the specification to values of the right type.
The transition relation is similarly defined over . An
inductive invariant, , is a subset of that is closed under the
transition relation ( implies that the image of under the
transition relation, , is a subset of ). Put another
way, is an inductive invariant if ,
which we sometimes denote , is a transition system (i.e.,
the restriction of to is a subset of ). It is sometimes
useful to identify a subset of , , as “initial.” If is a
relation, we define to be . We start with two
basic observations.

Lemma 2: If , are
TSs, and with witness , then: (a) if is an inductive
invariant of , then is an inductive invariant of

and and (b) if is an inductive invariant
of , then is an inductive invariant of and

.
Proof: For the proof of (a), let and let ;

we show that . By the definition of , there is some
such that . Since and are stuttering bisimilar,

can be matched by a state reachable from , say by , but since
is an invariant, and, consequently, .
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Fig. 3. This figure depicts the local composition rule. The shaded subset of M for 1 � k � n corresponds to inductive invariant I of TS M . Suppose for
all k 2 [2; . . . ; n], (M )j � M with witness B and I � B (I ). Then, there exists an inductive invariant I � I and refinement map
R = (r ; r ; � � � ; r )j such that (M )j � (M )j .

Therefore, is an inductive invariant of . Also,
with witness . First, note that is

an equivalence relation. Now, consider any , such that .
The fullpaths from and can be matched by , since they
only include states in and , are inductive invariants.
The proof of (b) is similar.

We will make use of the following corollary of Lemma 2,
since it applies to all of our examples in this paper.

Corollary 1: If in Lemma 2 the equivalence class, under ,
of every has exactly one element from , we can replace

by and by .
Let us consider applying what we have so far to show that

refines . Since we consider all states in to be
initial, this means that our refinement map has to be surjective.
Recall that we are after a compositional proof, so we will prove
a sequence of theorems. Let us say that one of these theorems
shows that refines , which implies that: 1) we have an
inductive invariant, , of , giving rise to and 2)
refines , say with refinement map .

To prove that refines , we only need to prove that re-
fines , say with refinement map , as we can then appeal to the
composition theorem and the theorem that refines . When
one tries to do this in practice, the following invariant mismatch
problem arises as shown in Fig. 2: we need an invariant on
whose image under is , but defining such an invariant can
be quite difficult, requiring much trial and error. (For example,
this arises when proving that refines , as we will see in
Section IV.) As we show with the following proof rule, it is in
fact enough if the image of the invariant under is a superset of

.
In the sequel, if is a set, then and denote the identity

relation on and the reflexive, symmetric, transitive closure on
, respectively.
Theorem 4: Suppose that for all , is an induc-

tive invariant of TS . Suppose also that
for all , with witness
and , where . Then, there exists
an inductive invariant such that
with witness and , where

and .
Proof: The proof is by induction on , where the base case

follows from Lemma 2. For the induction step, we have
by the induction hypothesis, , an inductive invariant of ,
such that , , and

, where
and . Now, letting

, we see that and is an inductive invariant, such
that (by Lemma 2). By Theorem 2,

. Finally, let ; by the induction

Fig. 4. Incompleteness of the local composition rule. This figure depicts the
situation we find ourselves in when proving that M7 refines ISA. The use of The-
orem 4 (corresponding to taking the top path through the figure) requires that
rM7(IM7) � IM6 . Unfortunately, is not true, as IM6 is the set of all M6 states. How-
ever, IM7 really does refine ISA with refinement map rM7 � rM6 (corresponding to
taking the bottom path through the figure). Thus, the local proof rule is incom-
plete.

hypothesis, there is a such that . Now, let
, which is non-empty, but since and is an

inductive invariant, .
The proof rule embodied in Theorem 4 is shown pictorially in

Fig. 3. It is completely local—every proof obligation involves
at most two TSs— and should be used where applicable.

Unfortunately, it is incomplete: it is possible that there is an
inductive invariant such that , but
we cannot prove it with the previous proof rule. (This situation
is shown in Fig. 4 and arises, for example, when proving that

refines , as explained in Section IV-C.) In such cases, the
following complete proof rule should be used.

Theorem 5: Suppose that for all , is an in-
ductive invariant of TS . Suppose
also that for all ,
with witness . Then, there exists an inductive in-
variant such that with
witness and iff

, where
and .

Proof: Let . For the
proof from right to left, we show that , are inductive
invariants, that , , and .
For the induction step, we can use the conclusion of the in-
duction hypothesis because
(since ). We now have
that and are inductive invariants, thus so
is , which is not empty as

. Using the induction hypothesis, we get
that , are inductive invariants, that , , and

. The rest of the proof is similar to the proof
of Theorem 4.

We call the proof rule embodied in Theorem 5 the global rule.
It is depicted in Fig. 5. Notice that the global rule gives us much
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Fig. 5. This figure depicts the global composition rule. The shaded subset of M for 1 � k � n corresponds to inductive invariant I of TS M . Suppose
that for all k 2 [2; . . . ; n], (M )j � M with witness B . Then, there exists an inductive invariant I � I such that (M )j � (M )j and

h8s 2 I :: h9u 2 I :: sBuii iff B (� � �B (B (I )) � � �) � I , where R = (r ; r ; � � � ; r )j .

more flexibility than Theorem 4, because the relationship be-
tween and can be arbitrary. Also, if (as is the case in our
applications) the equivalence class of every , under ,
has exactly one element from , then the global rule amounts
to showing that any state can be reached by starting in
some state in and applying the following sequence of refine-
ment maps: . For pipelined machines, this turns
out to be easy to show because applying this sequence of refine-
ment maps to pipelined machines whose non- components
are invalid amounts to projecting out the -visible compo-
nents; thus, every state in is reachable.

IV. TERM-LEVEL COMPOSITIONAL REASONING

In this section, we show how to apply refinement-based com-
positional reasoning to the verification of pipelined machine
models defined at the term-level. In Sections IV-A and IV-B, we
describe the models and show how they are verified monolithi-
cally, respectively. In Section IV-C, we describe how we use the
compositional rules developed in Section III to efficiently verify
complex pipelined machine models.

A. Pipelined Machine Model

We define a complex pipelined machine and describe how to
model it at the term-level using the UCLID system. The ma-
chine is quite complicated and to make its definition a manage-
able process, we defined a series of machines starting with the
base processor model , a six-stage pipelined machine with
the following stages: instruction fetch (IF), instruction decode
(ID), execute (EX), data memory access (M1 and M2), and write
back (WB). has the following instruction types: branches,
loads, stores, and arithmetic logic unit (ALU) instructions. The
addressing modes include register–register and register–imme-
diate. also has a simple branch prediction scheme that always
predicts that the branch is taken. Once was designed and ver-
ified, we extended it with a pipelined fetch stage to obtain ;
then we added an instruction queue holding up to three instruc-
tions, giving rise to machines , , and . Finally, we added
a direct mapped instruction cache, a direct mapped data cache,
and a write buffer, giving rise to machines , , and

. The final machine is shown in Fig. 6.
The term-level pipelined machine models are defined using

UCLID, which allows one to write formulas in the logic of
counter arithmetic with restricted Lambda expressions and
uninterpreted functions (CLU). The CLU logic consists of
Booleans and terms, whose values are integers. Counter arith-
metic includes the successor and predecessor functions, whose
arguments are terms. Terms can be compared using or .
The logic also contains uninterpreted functions (UFs) and
uninterpreted predicates (UPs), which correspond to arbitrary
functions from integers to integers, and integers to Booleans,

Fig. 6. M10IDW is a processor model with 10 pipeline stages, an instruction
queue, an instruction and data cache, and a write buffer.

respectively. Lambda expressions only take integer inputs and
are restricted so that it is not possible to describe any form of
recursion using the CLU logic.

The term-level pipelined machines modeled using UCLID
use numerous abstractions. The data path is abstracted using
terms. Combinational circuit blocks such as the ALU and the
instruction decoder functions are abstracted using UFs and UPs.
Memories are modeled as functions that map addresses to data
values using restricted lambda expressions. Since the instruc-
tion memory is never updated, it can be modeled using a UF.

Since the modeling of pipelined machines using UCLID is
well documented [4], [19], we only describe some of the fea-
tures we have modeled in UCLID. The instruction cache is mod-
eled using three memory elements ,

, and that take the index as input and return
a Boolean value indicating if the entry in the instruction cache
is valid, the tag, and the data block, respectively. Three UFs
GetIndex, GetTag, and GetBlockOffset take the program counter
as input, and return the index, tag, and block offset, respectively.
Another UF SelectWord is used to extract the instruction from
the data block. When an instruction cache is used, the instruc-
tion memory is modeled as a UF that takes two arguments, an
index and a tag, and returns a block of data. This way of mod-
eling the instruction memory allows us to match the contents of
the instruction memory and the instruction cache.

The data cache is direct mapped and is similarly modeled.
Writes to the data memory are write-through and update the data
cache. Similar to the instruction memory, when a data cache is
used, the data memory is modeled using a lambda expression
that takes two arguments, an index and a tag, and returns a block
of data. This way of modeling the data memory allows us to
match the contents of the data memory and the data cache.

The write buffer is implemented as a queue and has four en-
tries. Each entry has a data part, an address part, and a valid bit.
Store instructions do not update the data memory directly, but
write to the tail of the write buffer queue. The head of the write
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buffer queue is read and used to update the data memory. Reads
from the data memory have to take into account the valid entries
in the write buffer, as the write buffer has the most recent data
values. Among the write buffer entries, priority is given to the
entries closer to the tail.

B. Monolithic Verification

In this section, we describe the monolithic verification of the
pipelined machine models described in Section IV-A. For this,
we use UCLID, since it includes a decision procedure for the
CLU logic. Overall, we find that the verification times increase
exponentially with increase in the complexity of the pipelined
machine models. Also, the most complex model cannot
be directly verified using UCLID.

For the monolithic verification, we use the flushing refine-
ment map. As stated earlier, refinement maps are functions
from pipelined machine states to ISA states and are defined
using the programmer visible components of a pipelined ma-
chine state, which are the pipelined machine’s state elements
that are also present in the ISA state. For the machines we
consider, the programmer visible components include the pro-
gram counter, the register file, the instruction memory, and the
data memory. Burch and Dill [5] showed how to automatically
define the flushing refinement map, which is constructed by
completing all the partially executed instructions in the pipeline
without fetching any new instructions and projecting out the
programmer visible components in the resulting state.

For the verification of the pipelined machines with an instruc-
tion cache, we need an invariant stating that valid instruction
cache entries should be consistent with those in the instruction
memory

In the previous formula, is an arbitrary index value and
is an arbitrary tag value. The invariant states that if the entry
corresponding to index in the instruction cache is valid and the
tag in the cache is equal to , then the data block in the cache
should be equal to the data block from the instruction memory.
We also prove that the instruction cache invariant is inductive,
i.e., we prove that if the invariant holds for an arbitrary pipelined
machine state, it also holds for any successor state.

An inductive invariant similar to the instruction cache is re-
quired for the data cache, stating that all the valid entries in the
data cache are consistent with the data memory. We also require
an inductive invariant for the write buffer establishing that if we
update the data memory with all the valid entries in the write
buffer, then we obtain the memory we would have obtained if
a write buffer were not used. That is, if is the data memory
and is the memory state obtained after updating all the valid
write buffer entries to , then , where is a memory
that is similar to except that store instructions directly update

(instead of going through the write buffer).
In Table I we show various verification statistics when

checking that the processor models defined before refine the
instruction set architecture using flushing as the refinement
map. For all experimental results presented in this section, we
used the default settings of the UCLID decision procedure

TABLE I
VERIFICATION TIMES AND CNF STATISTICS FOR THE VARIOUS

TERM-LEVEL PIPELINE MACHINE MODELS

(version 1.0) coupled with the siege SAT solver [33] (variant
4), using an Intel Pentium III Mobile CPU, 1.2-GHz processor
with an L2 cache size of 512 kB.

To understand the experimental results, first note that as was
pointed out in Section II, our refinement proofs imply that the
pipelined machines satisfy all the -expressible safety
and liveness properties satisfied by the machine. Manolios
and Srinivasan have shown that the running time for checking
safety and liveness using WEB refinement increases by about
5% over the running time for only checking safety [19]; hence,
liveness is not the culprit. Second, as can be seen from Table I,
the verification cost increases exponentially as new features or
pipeline stages are added, leading eventually to machines that
are too complex to directly verify with UCLID and Siege. The
reason for the exponential increase in verification times is as
follows.

The flushing refinement map is constructed using the flush
operation, which is a step of the pipelined machine that does
not fetch any new instruction. The flush operation is almost as
complex as stepping the pipelined machine. Therefore, as the
complexity of the machine increases, the flush operation also
becomes more complex. Also, the number of flush operations
required to construct the flushing refinement map increases as
the length of the pipeline increases. Therefore, the verification
conditions generated when using the flushing refinement map
tend to be quite complex, leading to an exponential increase
in the verification times. Other refinement maps also suffer, to
varying degrees, from the problem of exponentially increasing
verification times in the complexity of the pipelined machines
being verified [22].

Would it not be great if we could use the same approach to
verifying that we used to design it? Recall that since

was too complicated to design directly we defined a
sequence of intermediate machines instead. This allowed us to
add features one at a time, making the design a manageable
process. Why not verify in the same way? For example,
when proving refines , why can we not use the already
established result that refines to simplify the proof? In
Section IV-C, we show how to do this.

C. Compositional Verification

All of the theory required to verify in a compositional
manner has been developed in Section III. An overview of the
compositional verification of is shown in Fig. 7. Our
proof scripts are available upon request and the few invariants
required took us less than a day to define. In addition, the rank
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Fig. 7. Refinement maps for the compositional verification of M10IDW.

TABLE II
VERIFICATION TIMES AND CNF STATISTICS FOR THE TERM-LEVEL

COMPOSITIONAL VERIFICATION PROBLEMS

functions required are much easier to define than in the mono-
lithic case, and there is a simple recipe for doing this described
elsewhere [19]. The verification times and related statistics are
given in Table II. The names in the “Refinement Proof” column
indicate which refinement proof the row corresponds to. The
models are expressed in the UCLID language, and are trans-
lated to CNF formulas using the UCLID tool.

Fig. 8 depicts the verification times required for both the di-
rect and the composition methods for each of the processor
models. As can be seen from Fig. 8, if we compare the veri-
fication times required by the direct method versus our compo-
sitional method, then we see that the verification cost increases
exponentially (the -axis uses a logarithmic scale) for the direct
approach for each new feature/pipeline stage, whereas, for the
compositional approach, the verification cost is almost a con-
stant. The data reported for the compositional proofs includes
the total time required, including the time required for the proof
of invariants, and everything else required by our proof rule.
Notice that the SAT solver Siege failed to produce a result when
applying the direct approach to , whereas with the com-
positional approach, the proof of required less than 20 s.

We now explain the refinement proofs shown in Fig. 7 in more
detail. First, we discuss how to deal with deep pipelines. Second,
we show how to handle caches and write buffers. Finally, we
discuss counterexamples.

1) Deep Pipelines: The first five refinement proofs in
Table II, which together show that refines , are de-
scribed next. We use M to denote the invariant on machine ,
and M to denote the refinement map from machine . (The
range is uniquely determined by Table II.) Recall that ISA is the

Fig. 8. Comparison of direct and compositional approaches for term-level rea-
soning.

set of all states. The proof of - is a straightforward
direct proof using flushing as the refinement map, thus M6 is
the set of all states.

Our first refinement proof involving two pipelined machines
relates to using refinement map M7 (see Fig. 7). We now
describe M7 and merely note that the refinement maps for the
other proofs are similar. We name pipeline latches based on the
pipeline stage names surrounding them, e.g., the pipeline latch
between and in the six-stage machine is (see
Fig. 6).

The only essential difference between and is that when
a branch mispredict occurs, the number of cycles required for
to recover is four, while only needs three cycles. To deal with
this stuttering, we define three invariants on ; essentially, they
state that a branch mispredict results in four consecutive bubbles
in the pipeline. The invariants are: 1) if is invalid, then

, , and are invalid; 2) if is valid and
is invalid, then , , and are invalid; and

3) if both and are valid, and and
are invalid, then and are invalid.

The definition of the refinement map M7 consists of two
cases. In both cases, the pipeline latches , , ,
the register file, the instruction memory, and the data memory
in get mapped to their counterparts in . Case 1 occurs
if in , is invalid, is valid and is
invalid, or and are valid and and
are invalid. In this case, the program counter, , and

in get mapped to the program counter, , and
in , and the rank is 1. Otherwise, case 2 occurs and

we map the program counter associated with the instruction in
of to the program counter in , while and

in are mapped to and in . In case
2, the rank is given a value 0 because the situation in which

, , and in are valid and , ,
and are invalid is the result of a stuttering step by .
Note that for states satisfying case 2 that are not the result of a
stuttering step, we could have assigned any value for their rank.

To prove compositionally that refines requires the
use of Theorem 5. To see why, note that the use of Theorem
4 requires that M7 M7 M6, which is not true, as is the
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set of all states. However, M7 satisfies the property that
M6 M7 M7 ISA, and therefore we can use the global rule

embodied in Theorem 5. To prove this using UCLID, we define
a witness function, , that given an state returns the
state with the same programmer visible components, but all of
whose pipeline latches are invalid. It is now enough to show
that for every state in ISA, we have that M6 M7

and that M7.
For the rest of the deep pipeline proofs, it turns out that we

can use the simpler local proof rule embodied in Theorem 4.
For example, in the case of the - proof, we have to show
that M8 M8 M7, which we do by defining a suitable witness
function that maps states in M7 to M8 and then proceed as before.

2) Instruction Caches, Data Caches, and Write Buffers: We
now show how to verify the instruction cache, the data cache,
and the write buffer. This corresponds to the last three refine-
ment proofs in Table II. For all of these proofs, we use the local
proof rule. Since we have seen how to apply the theorem in the
previous section, here we only describe the refinement map, in-
variants, and witness function for each of the proofs.

The state components of and are identical except
for the instruction cache. Thus, the refinement map just ignores
the instruction cache and is the identity mapping for all other
state components. Since the two machines do not stutter with
respect to one another, we can in fact prove a bisimulation. This
means that the WEB-refinement proof can be reduced further,
as no rank function is needed. The only invariant required is
that the valid instruction cache entries are consistent with the
instruction memory.

The data cache is direct mapped and is similar to the instruc-
tion cache. The proof of - is similar to the proof of

- . The refinement map ignores the data cache and re-
tains all the other state components, including the instruction
cache. Also, an invariant similar to the one used for the instruc-
tion cache is required stating that all valid entries in the data
cache are consistent with the data memory.

differs from only in that it contains a write
buffer. These two machines do not stutter with respect to each
other; thus, we can prove a bisimulation result, as before. The re-
finement map is obtained by first updating the data memory with
the valid entries in the write buffer, and projecting out the re-
maining state elements (including the instruction and data cache
states). We prove the invariant that the combined state of the
write buffer and the data memory is consistent with the state of
the data memory of a machine that does not have a write buffer.

Finally, the witness function from M10 to M10I just adds an
instruction cache, all of whose elements are invalid to an M10

state. The witness functions for the other proofs are similarly
defined. Note that we required less than a man-week of expert
user effort to define the refinement maps, rank functions, invari-
ants, and witness functions required for all the compositional
proofs.

3) Counterexamples: The most tedious and time-intensive
part of the verification effort is often debugging and under-
standing counterexamples. Since the compositional approach
reduces the verification problem into simpler subproblems,
the debugging process is much simplified. This is because one
can isolate the cause of failure simply by noting which stage
of the composition proof fails. This is impossible to do when

verifying the complex processor in a monolithic fashion and
it is difficult to overstate the importance of this aspect of our
work, as the differences in the complexity of the error traces
can be quite drastic.

As a concrete example of how compositional verification sim-
plifies the debugging task, we note that when we tried to verify
a buggy variant of the instruction cache—there was a bug be-
cause when determining whether a cache hit has occurred, the
design did not check the validity of the cache block—we found
that the counter example generated by UCLID for the direct ap-
proach was 4429 lines long while the counter example generated
from the composition step was 390 lines long. Obviously, the
shorter counterexample was much simpler to understand and,
consequently, fixing the bug was much easier. All the bugs we
encountered were similarly much easier to check in the compo-
sitional framework and this aspect of compositional verification
may well be more important than the improvement we obtained
in verification times.

V. BIT-LEVEL COMPOSITIONAL REASONING

We now describe how to apply our compositional reasoning
framework to the verification of bit-level models. For this pur-
pose, we define a complex 10-stage 32-bit pipelined machine
model (we call ) and describe the verification of this model
using both monolithic and compositional approaches.

A. Pipelined Machine Models

In this section, we describe the 10-stage, 32-bit pipelined
machine , which is modeled using the specification lan-
guage of the BAT [25], [27], [28]. We give a brief overview of
the BAT specification language, before we describe the model.

The BAT specification language is a strongly typed lisp-based
language that can be a target for synthesizable subsets of VHDL
or Verilog. The language is quite expressive and easy to use. Bit-
vector concatenation, arithmetic, logical, and relational opera-
tors are supported. User defined functions are supported. Func-
tions can be defined to return multiple values, a feature that we
use to define functions that correspond to the operational se-
mantics of pipelined and ISA machines. Memories are treated
as first-class objects and can be compared directly for equality
and passed as arguments to functions.

We now describe the model itself. The high-level pipeline
structure and the pipeline stages of are similar to that
of M10 described in Section IV-A. Whereas M10 is not exe-
cutable and is defined at the term-level using numerous abstrac-
tions, is an executable model defined at the bit-level. As
stated earlier, the word size of the data path is 32 bits. has
an instruction memory and a data memory, both of which have
2 words each. The register file has 16 registers. imple-
ments various ALU, load, store, and branch instructions and has
a simple branch prediction scheme that always predicts that a
branch instruction is taken.

As with term-level modeling, to make the definition of
a manageable process, we define a series of machines starting
with a base processor model , a four-stage 32-bit pipelined
machine that has an instruction fetch (IF), instruction decode
(ID), execute (EX), and a memory access stage (M1). Write
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TABLE III
VERIFICATION TIMES AND CNF STATISTICS FOR THE VARIOUS BIT-LEVEL

PIPELINED MACHINE VERIFICATION PROBLEMS

back is performed in the memory access stage M1. was ex-
tended with a write-back stage (WB) to obtain ; then the
memory access stage was pipelined to get a two-cycle memory
access stage (M1 and M2) resulting in ; next the instruction
fetch stage was pipelined to get a two-cycle fetch stage (IF1
and IF2). Finally, we added an instruction queue holding up to
three instructions, giving rise to machines , , and ,
where is the final machine. All these bit-level machines
implement the same instruction set architecture, . Note that
the high-level pipeline structure and the pipeline stages of the
bit-level models , , , , and are similar to
the term-level models , , , , and , respectively.

B. Monolithic Verification

We verified the bit-level pipelined machines ,
monolithically by showing that they refine . We used
flushing refinement maps for the correctness proofs. The
methods for computing flushing refinement maps and corre-
sponding rank functions for the bit-level pipelined machines are
similar to those for the term-level machines and are described
in more detail in Section IV-B.

The verification conditions for each of the machines is dis-
charged by the BAT. This is achieved by describing the correct-
ness statement for a machine as a BAT specification. BAT trans-
forms the input specification to a SAT problem in CNF format
using a state-of-the-art memory abstraction technique [25] and
a novel and efficient method for generating SAT problems from
a high-level circuit representation [28]. We use version 2.01 of
the RSat SAT solver [32] to check the CNF problems generated
by BAT.

Table III shows the verification times and the CNF statis-
tics for the monolithic verification of the pipelined machines

, using BAT. All the BAT experiments described
in this paper were performed using a 2.40-GHz Intel(R) Pen-
tium(R) 4 processor with an L2 cache size of 512 kB. The
“BAT” column in Table III gives only the time for converting
the bit-level verification problem to a CNF problem. The CNF
problem that BAT generates is then checked using version 2.01
of the RSat SAT solver. The running times for RSat are shown
in the “RSat” column of Table III. The total verification time
is the sum of the BAT and RSat times. A “TO” entry indicates
that the RSat SAT solver timed out. We set a timeout limit
of 5000 s. An “NA” entry in the “Total” column of the table
indicates that RSat timed out, and therefore, we do not have the
total verification time for that problem.

As can be seen from Table III, the verification times increases
as more features are added. Also, for machines , , ,

and , BAT generates CNF that current SAT solvers cannot
handle.

C. Compositional Verification

We now describe the compositional verification of the bit-
level pipelined machine models. We start with the base model

, and show that it refines . Next, we show that re-
fines , refines , and refines . This se-
quence of refinement proofs is performed using the composi-
tional rules described in Section III and guarantees that
refines .

The compositional proofs involve defining refinement maps,
rank functions, witness functions, and invariants. The proof
obligations for the compositional proofs are then automatically
discharged using BAT. The bit-level compositional proofs

- , - , - , and - are similar to
the term-level compositional proofs - , - , - , and

- , respectively.
Under a refinement map that flushes the last stage of ,

machine models and do not stutter with respect to one
another; therefore, we can prove that these machines are bisim-
ilar. For the compositional proof - , the refinement map
is defined from to and maps the program counter, the
instruction memory, the data memory, and the pipeline latches

, , in directly to the program counter, the
instruction memory, the data memory, and the pipeline latches

, , in . If a valid instruction is present in
the latch in , it is made to update the register file and
the refinement map projects the resulting updated register file
onto the register file in . The compositional proof -
also does not require any invariants, and therefore no other proof
obligation is required to establish that refines .

For the compositional proof - , the refinement map,
which is similar to the refinement map for the proof - ,
is defined by mapping all the states in directly onto the cor-
responding states in , except for the pipeline latch
and the register file. The refinement map updates the register
file in with the instruction in , and the resulting up-
dated register file is projected onto the register file in . We
require two invariant properties on for the - com-
positional proof. The first invariant states that the first argument
stored in the pipeline latch is equal to the value in the reg-
ister file corresponding to the first source address stored in the

latch. The second invariant is a similar invariant prop-
erty for the second argument stored in the latch. Note
that the M5B states is the set of all states. Therefore, we
cannot use the local compositional rule defined in Theorem 4
as M6B M6B M5B is not true. Therefore, we use Theorem
5, which is the global compositional rule. The proof -
using Theorem 5 is similar to the proof of - .

Table IV gives the verification times and the CNF statistics
for the bit-level compositional proofs. The organization of
Table IV is similar to the organization of Table III. Also, the
experimental setup used for the monolithic approach described
in Section V-B is also used here. As can be seen from Table IV,
the verification times for the compositional proofs are almost
negligible when compared to the - proof. Fig. 9 com-
pares the bit-level monolithic and compositional approaches.
Fig. 9 shows the increase in the verification times for both
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TABLE IV
VERIFICATION TIMES AND CNF STATISTICS FOR THE BIT-LEVEL

COMPOSITIONAL VERIFICATION PROBLEMS

Fig. 9. Comparison of direct and compositional approaches for bit-level rea-
soning.

approaches as more features are added to the base pipelined
machine model . As can be seen from Fig. 9, the verification
times for the monolithic approach increases as more features
are added and the monolithic approach very quickly reaches its
complexity threshold and cannot handle models , , ,
and , whereas the verification times for the compositional
approach remains almost a constant and the compositional ap-
proach can handle the most complex pipelined machine model

in under 1500 s. As with the term-level verification, we
required less than a man-week of expert user effort to define
the refinement maps, rank functions, invariants, and witness
functions required for the compositional proof.

VI. RELATED WORK

Pipelined machine verification is an active area of research.
Previous work in this area can be classified into approaches that
are based on the use of deductive reasoning engines (otherwise
known as theorem provers) and approaches that use decision
procedures.

Approaches based on decision procedures are highly auto-
mated, but are only applicable to term-level models. An early
and influential paper in this area is due to Burch and Dill
[5], who showed how to compute refinement maps based on
flushing. More directly related to this paper is the work on
decision procedures for the CLU logic [4], which is based on
previous work on exploiting positive equality [3]. The decision

procedure is implemented in UCLID, which has been used to
verify various processor models [15].

In previous work, we have also shown how to automatically
verify pipelined machines using refinement maps based on
commitment [16], [19], which can be thought of as the dual of
flushing as partially executed instructions are invalidated and
the programmer visible components are rolled back to corre-
spond with the last committed instruction. Since refinement
maps have a drastic impact on verification times, there have
been several approaches that use optimized refinement maps,
which lead to drastic improvement in verification times [12],
[21], [22]. The main drawback of these monolithic approaches
is that the verification times increases almost exponentially
with increase in the complexity of the models being verified.
Therefore, these approaches are not scalable. In comparison,
we have shown that our compositional approach provides a
high degree of scalability.

There have also been approaches based on the use of auto-
matic verification engines that aim to decompose correctness
proofs into smaller manageable pieces. Jones et al. [10], [11]
verify an out-of-order execution unit using incremental flushing.
Their approach relates the implementation to an intermediate
machine, where the scheduling logic is abstracted, which is then
related to the . In comparison, we can deal with any refine-
ment map, we have a general theory with a complete rule for re-
lating any number of intermediate machines, and we guarantee
that all safety and liveness properties are preserved. They also
state that the amount of effort required to deductively justify
the proof decompositions offsets the advantages obtained using
the decomposition. In our approach, the individual refinement
proofs can be chained together as WEB-refinement is a compo-
sitional notion.

Jhala and McMillan [9] describe an approach for showing
that processor models behave like their instruction set archi-
tecture models using compositional model checking. The proof
methodology is to decompose the correctness criterion into a
number of temporal properties that can then be automatically
verified using a model checker. The decomposition is performed
using the SMV proof assistant [29]. They apply this approach to
verify an abstract microprocessor model that has many features
such as branch prediction, speculative execution, and out-of-
order execution. In their models, combinational circuit blocks
such as the ALU are abstracted using UFs. They do not quan-
titatively describe the amount of expert user effort required for
the proofs, but state that their approach is “considerably more la-
borious” than model checking finite state machines. In contrast,
we required only about one week of expert user effort for the
compositional refinement proof. Also, our approach accounts
for liveness, whereas, they do not check any liveness properties.

Another popular approach for pipelined machine verification
is based on the use of theorem provers. Theorem provers typi-
cally have underlying logics that are very powerful and expres-
sive, but are also undecidable. Examples of this line of research
include the work by Sawada and Hunt, who use an intermediate
abstraction called MAETT to verify some safety and liveness
properties of complex pipelined machines [34], [35]. Another
example of a theorem proving approach is the work by Hosa-
bettu et al., who use the notion of completion functions [7], and
the work of Arons [1]. While such approaches are applicable to
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bit-level designs, they usually require a prohibitive amount of
effort on the part of the expert user.

In previous work, we have also shown how to verify bit-level
designs using a combination of deductive reasoning and deci-
sion procedures. We integrated the UCLID decision procedure
with the ACL2 theorem proving system. We then used the re-
sulting combined system in a compositional refinement frame-
work to verify a bit-level pipelined machine [23], [24]. The
high-level idea of the approach is to use ACL2 to reduce the
bit-level verification problem to a term-level problem. UCLID
is then used to reason about the pipeline at the term-level.

A recent trend is the development of efficient decision pro-
cedures to reason about designs at the bit-level, an example of
which is BAT [26], [27]. The BAT system has in fact been used
to prove correctness of a five-stage 32-bit pipelined machine in
less than 2 min of running time [25]. In this paper, we show how
to use BAT in a compositional reasoning framework to verify
a 10-stage 32-bit pipelined machine. The correctness proof re-
quired only a week of expert user effort.

The notion of correctness for pipelined machines that we
use was first proposed in [16] and is based on WEB-refine-
ment [17]. The first proofs of correctness for pipelined machines
based on WEB-refinement were carried out using the ACL2
theorem proving system [13], [14]. The advantage of using a
theory of refinement over using the Burch and Dill notion of cor-
rectness—even when augmented with a “liveness” criterion—is
that the Burch and Dill approach cannot detect deadlock [16],
whereas it follows directly from the WEB-refinement approach
that deadlock (or any other liveness problem) will be detected.
There is also work that shows how to automatically verify safety
and liveness properties of pipelined machines using WEB-re-
finement [19]. Our results extend this work by showing how to
use WEB-refinement to automatically prove safety and liveness
in a compositional fashion.

Why has something like this not been done before? Well, con-
sider carrying out this proof using the standard Burch and Dill
notion of correctness. The problem is that, while it is clear how
to prove that a pipelined machine refines an instruction set archi-
tecture, how does one prove that one pipelined machine refines
another? If we use flushing, we have to flush both machines, but
then it would be easier to just verify against the instruction set
architecture directly. Our main contribution is to develop a com-
plete compositional theory of refinement that enables us to do
this for both safety and liveness (the Burch and Dill approach
only provides safety [16]), and with the use of any refinement
map, not just flushing.

VII. CONCLUSION AND FUTURE WORK

We have presented a refinement-based compositional rea-
soning framework for proving that pipelined machines satisfy
the same safety and liveness properties as their instruction set
architectures. We have shown how to apply our framework
to verify complex pipelined machines defined at both the
term-level and the bit-level. Using our framework, we verified
a 32-bit, 10-stage, complex pipelined machine model. Such
a proof is not possible using state-of-the-art decision proce-
dures, and would have required an extraordinary amount of
expert user effort with current theorem proving technology.

In contrast, we required less than one man-week of effort for
the bit-level proof, which was used to define the refinement
maps, rank functions, invariants, and witness functions. We
also showed how compositional reasoning based on refinement
can be integrated into the design cycle and how this leads to
faster verification times, shorter and clearer counterexamples,
and enhanced design understanding by verification engineers.
All of our models are available upon request. For future work,
we plan to extend our compositional results to refinement based
on stuttering simulation and to apply compositional reasoning
to more complex designs.
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