
Equivalence Checking For Synchronous Elastic
Circuits

Vidura Wijayasekara and Sudarshan K. Srinivasan
Department of Electrical and Computer Engineering

North Dakota State University
Fargo ND 58104

Email: vidura.wijaysekara@my.ndsu.edu and sudarshan.srinivasan@ndsu.edu

Abstract—Synchronous elastic circuits are clock-based latency
insensitive circuits. Elastic circuits are typically synthesized from
synchronous circuits. After synthesis, additional buffers can
be arbitrarily inserted in the data path of an elastic circuit
without altering its functionality to resolve timing issues. We have
developed a verification tool that can check the equivalence of an
elastic circuit (even after the inclusion of any number arbitrarily
placed additional buffers) with its synchronous parent circuit.
The tool inputs elastic circuits in VHDL. We have developed
an algorithm that automatically computes efficient mapping
functions used to map elastic circuit states with states of the
synchronous parent circuit. Such mapping functions (required
for equivalence checking) can be challenging to compute auto-
matically, as the inclusion of additional buffers can drastically
alter the pattern of data flow through the circuit. The capacity
of the equivalence checker is demonstrated with results from
24 elastic circuit benchmarks, many of which have over 100,000
gates and 1,000 latches.

I. INTRODUCTION

Latency insensitive (LI) [1], [2] design addresses the wire
delay challenge for nanometer technologies within the syn-
chronous framework. The central idea is to use relay stations—
which function like latches—to break long wires that cause
violations of timing requirements imposed by the clock. A
handshaking protocol (known as LI protocol) is used to allow
for insertion of buffers/relay stations without altering the
functionality of the system. One of the primary impacts is
that LI design aids in intellectual-property reuse in systems-on-
chip by reducing the expensive iterations required for timing
closure [3]. LI design is a very active area of research in
both academia and industry and many LI design paradigms,
implementations, and optimizations have been proposed [1],
[2], [4], [5], [6], [7], [8].

Synchronous Elastic Networks (SEN) [4], [9] is one effec-
tive approach to implement LI designs and also synthesize
LI systems from synchronous parents. The idea with SEN
is to replace all flip flops with elastic buffers (EBs) that are
constructed from two elastic half buffers (EHBs), namely a
master EHB and a slave EHB. EHBs are gated latches whose
clock input is produced by elastic controllers that are used
to implement the LI protocol. The clock network is replaced
by a network of elastic controllers, where each controller
is used to control the elastic buffers in a design stage and
synchronize with the controllers of adjacent design stages. In
the resulting elasticized design, elastic buffers can be inserted

in any place in the data path to break long wires. Figure I
shows the example of an elasticized processor data path with
two additional elastic buffers.

In this work, we present an automated equivalence checker
that verifies the functionality of the elastic circuit (even after
the inclusion of any number of arbitrarily placed additional
elastic buffers) against its synchronous parent circuit. Why
would such an equivalence checker be useful in practice?
Consider the IP reuse based SoC design paradigm. The SoC
design is constructed from digital IP components. Some of
these IP components are obtained from third party vendors,
some are proprietary IPs, while others may be designed from
scratch. All these IP components have to be integrated together
in a technology (that some of these IPs may not have been
designed for). At this stage in the design cycle, some of
the IPs will require infeasible and expensive redesign to
resolve timing issues that arise in the new technology. The
designer can instead opt to generate elastic versions of these
IPs and solve the timing issues in the elastic domain without
requiring expensive redesign. However, after generating the
elastic design and fixing all timing issues using additional
elastic buffers, the resulting elastic IP will have undergone
a considerable transformation w.r.t. the original synchronous
IP. The designer cannot assume that the resulting elastic IP
will not have bugs. The designer will instead have to expend
time and resources to verify the elastic IP.

Our fully automated equivalence checker comes to the aid
here and addresses the verification problem of the elastic IP.
One may argue that the transformations used in generating
elastic circuits are already proved to be correct and so verifi-
cation is not required. However, the IP circuits will undergo
considerably significant mutations and there could be many
sources of error in the elasticization process (such as buggy
synthesis tools, and manual tinkering of the circuit). Also,
commercial design processes will not assume the functional
correctness of the resulting design and will require verification.

The equivalence checker takes as input the elastic and
synchronous circuits in RTL VHDL. The checker can currently
handle closed circuits, where the behavior of the elastic
controller network is deterministic. For future work, we will
extend the techniques implemented in the checker to han-
dle elastic controllers with non-deterministic behaviors. The
equivalence verification proof obligations are automatically

L1

L2

Forwarding
Logic

J FFJ

J

RF

MW

IM

F

Instruction
Decode

DM

PC FD DE EM

PC
Logic

write backmemoryexecute

decodefetch

Fig. 1. High-level organization of a 5-stage elastic processor with two additional elastic buffers L1 and L2. The J and F blocks denote the join and fork
structures.

generated. An SMT solver is used in the back end to check the
proof obligations. The notion of equivalence used is described
in Section II. The equivalence verification algorithms incor-
porated in the tool are described in Section III. The overall
tool flow is described in Section IV. Experimental results,
related work, and conclusions are given in Sections V, VI,
and VII, respectively. The capacity of the equivalence checker
is demonstrated with results from 24 elastic circuit bench-
marks.

II. BACKGROUND: EQUIVALENCE NOTION

The notion of equivalence we use is Well-Founded Equiv-
alence Bisimulation (WEB) refinement [11][12]. A formal
and detailed description of WEB refinement is provided
in [11][12]. Here, we provide a brief overview of the key
features of WEB refinement relevant to the problem at hand.
WEB refinement is a notion of equivalence that can be used
to check if an implementation system satisfies its specifica-
tion system, even if the implementation and specification are
defined at very disparate levels of abstraction.

In the context of refinement, digital systems are modeled as
transition systems (TSs). A TS is a three tuple and includes
the set of states of the system and a transition relation that
defines the state transitions of the system. The behaviors of a
system modeled as a TS are defined using the notion of paths.
A path in a TS is a sequence of states, say s0,s1,s2, ..., where
s0 is the initial state and s0 transitions to s1, s1 transitions to
s2, and so on. An infinite sequence of such states is a full path.
The behaviors of a system is the set of all full paths in the TS
of the system.

The implementation behaves correctly as given by the spec-
ification, if every behavior of the implementation is matched
by a behavior of the specification and vice versa. However,
the implementation and specification may not have the same
timing behavior. For example, if the implementation is an
elastic circuit and the specification is a synchronous circuit, the
elastic circuit may take many steps to match a single step of the

synchronous circuit. This phenomenon is known as stuttering.
To account for such situations, multiple but finite transitions
of the implementation system are allowed to match a single
transition of the specification system.

Another issue is that to check equivalence, synchronous
states and elastic circuit states need to be compared. However,
these states look very different. While the synchronous states
have flip-flops, elastic circuit states have elastic buffers and
also possibly additional buffers. WEB refinement employs
refinement maps, functions that map implementation states to
specification states to bridge this abstraction gap.

Refinement-Based Correctness Formula: Manolios [12] has
shown that it is enough to prove the following refinement-
based correctness formula to establish the equivalence of an
implementation and specification based on WEB refinement.
rank is used to distinguish stutter from deadlock. rank is a wit-
ness function from implementation states to natural numbers
whose value decreases when the implementation stutters.

Definition 1. (Refinement-Based Correctness Formula) For
every implementation state w, let s be a specification state such
that s = refinement-map(w). If u is the specification successor
of s (u = Sstep(s)) and v is the implementation successor of
w (v = Istep(w)), then one of the following has to hold:

1) u = r(v) {non-stuttering step}
2) s = r(v) ∧ rank(v) < rank(w) {stuttering step}

In the above, Sstep() and Istep() are functions that define
the transitions of the implementation and specification. Note
that in order to establish the equivalence of an implementation
and specification system, all the reachable states of the imple-
mentation should be checked to see if they satisfy the above
correctness formula. The correctness formula given above
is expressible in a decidable fragment of first-order logic.
Therefore, verifying equivalence of an implementation and a
specification based on WEB refinement can be accomplished
automatically using an SMT solver if a suitable refinement

map and rank function are available.

III. AUTOMATING COMPUTATION OF REFINEMENT MAPS

If an implementation is a refinement of a specification,
then a refinement map does exist [13]. However, find-
ing/constructing a refinement map can be very challenging
in practice and can require deep understanding and analysis
of the systems being compared. Also, often times, the refine-
ment map can be computationally expensive, resulting in the
approach being infeasible. The primary contribution of this
work is a fully automated procedure to compute refinement
maps for the elastic verification problem described in the
introduction section. The refinement maps synthesized by
our procedure leads to an efficient and scalable verification
approach. The key idea is to use reachability analysis of
the elastic controller network (using the notion of token-flow
diagrams) to systematically synthesize refinement maps.

We use the example of a 5-stage elastic processor circuit
(shown in Figure I) to illustrate the ideas presented in the rest
of the paper. We call this elastic circuit example E-2. The
elastic processor pipeline has 5 elastic buffers corresponding
to pipeline latches pc, fd, de, em, and mw. We also inserted
two additional elastic buffers at arbitrary points in the data
path that are labeled l1 and l2. The elastic controller network
is also shown in the figure. The controllers use valid (indicated
by solid lines) and stop signals (indicated by dashed lines) to
implement the LI protocol. The synchronous parent of E-2
would have regular registers instead of EBs, and will not have
the additional EBs. A clock signal would replace the entire
elastic controller network.

A. Token-Flow Diagrams For Elastic Circuits

In this section, we describe a procedure for generating
token-flow diagrams for elastic circuits. Token-flow diagrams
are used for reachability analysis of the elastic control layer
and also for synthesizing refinement maps.

Sy is the set of stages in the synchronous circuit. Sy is
an ordered set. Each stage in Sy is hence identified by a
unique number i, where 0 ≤ i < |Sy|. E is the set of stages
in the elastic circuit. E is an ordered set. Each stage in E
is hence identified by a unique number i, where 0 ≤ i <
|E|. Each stage of the elastic circuit corresponds to an elastic
buffer and vice versa. The elastic buffers are classified as non-
additional elastic buffers and additional elastic buffers. Note
that each non-additional EB would correspond to a stage in
the synchronous parent circuit. An EB is described to be in
an empty, half, or full state, if the EB holds 0, 1, or 2 valid
data units, respectively.

Definition 2. The token state of an elastic controller network
circuit, TE is defined as the set {〈 m0, s0 〉, 〈 m1, s1 〉, ..., 〈
m|E|−1, s|E|−1 〉} such that m0, m1, ..., m|E|−1, s0, s1, ..., s|E|−1
∈ N.

The token state is used to capture the distribution of valid
data in the elastic circuit. mi and si indicate the token values
corresponding to the master and slave EHBs, respectively.

EHBs without valid data are assigned the token value 0.
EHBs with positive non-zero token values indicates valid data.
Unique data tokens are identified by unqiue token values.

We next define elastic token-flow diagrams (etfd), which are
used to compute refinement maps. In the definition, →ecn is
the transition relation of the elastic controller network circuit.

Definition 3. An elastic token-flow diagram (etfd) is a finite
sequence of elastic token states such that, for any adjacent
pair of token states in the sequence, say TEi and TE j, where
TEi and TE j are elastic token states corresponding to the elastic
controller network states ei and e j, (ei , e j) ∈ →ecn.

The token-flow diagram for a sequence of states of the E-2
elastic circuit is shown in Table II. First, we define a procedure
that given a token state of the elastic circuit, computes the next
token state of that circuit. The procedure also takes as input the
connectivity matrix of an elastic circuit MC, which is defined
as follows.

Definition 4. The connectivity matrix of an elastic circuit
MC = [ai j]|E|×|E| such that ai j = 1 if there is a data channel
from EB i to EB j. Otherwise ai j = 0.

TABLE I
DATAPATH CONNECTIVITY MATRIX Mc FOR BENCHMARK E-2

pc fd de em mw l1 l2
pc 0 1 0 0 0 1 0
fd 0 0 1 0 0 0 0
de 0 0 0 1 0 0 0
em 0 0 0 1 1 0 0
mw 0 0 0 1 0 0 1
l1 1 0 0 0 0 0 0
l2 0 0 1 0 0 0 0

Another data structure used in the procedure is the token
transition matrix MT T . For EBs with multiple destinations, it
is possible that in a cycle, data is transferred in only some of
the output channels, but not all. To keep track of this, we use
the MT T matrix. Initially, all entries in the matrix are assigned
a value 0. If data transfers from a source EB on only some
but not all output channels, then the channels on which the
transition takes place is given a value 1 in MT T . When in the
future, the data from the source is transferred on all output
channels, then all the output channels from that source are
reassigned a value 0 in MT T .

Note that unlike synchronous circuits, data need not always
transfer from source EB to destination in a given cycle. In
fact, data transfers only when valid data is available at the
source EB and the destination EB is ready to accept data
(which is indicated by deasserting the stop signal). Therefore,
we define the function ValidDataInputs(i) that determines if
all the sources of a destination EB have valid data.

Definition 5. ValidDataInputs(i) =∧
0≤ j<|E|

{(
Mc[j][i] = 1

)
→
(
MT T [j][i] = 0∧ s j 6= 0

)}

Procedure 1 Next token calculation for master EHBs
1: for i ← 0 to |E| -1 do
2: if mi 6= 0 then
3: m′i← mi
4: else if ValidDataInputs(i) then
5: TokenGenerator← TokenGenerator+1
6: m′i← TokenGenerator
7: for j ← 0 to |E|-1 do
8: MT T [j][i]← 1;
9: end for

10: else
11: m′i← 0;
12: end if
13: end for

In the above definition, a destination EB i has valid data
at all its sources j only if slave EHB (s j) is not empty, and
that data in s j has not previously transferred on that channel
(MT T [j][i] = 0). We only check those EBs that are sources to
EB i (Mc[j][i] = 1).

The algorithm that computes the next token state is given
in two steps. In the first step (shown in Procedure 1), the
next token value of all master EHBs (m′i) is computed. The
procedure enumerates through all the master EHBs and uses
the following property of elastic circuits.

Property 1. [4] For any elastic buffer in a half state (one
of the EHB has valid data and the other EHB is empty), the
master EHB will be empty and the slave EHB will have valid
data.

As can be inferred from the above property, if the master
EHB is not empty, then the corresponding EB is full, meaning
that both master and slave EHBs hold valid data. In this state,
the master EHB retains its previous value and the EB does
not accept any new data. Otherwise, if the master EHB is
empty, then the procedure checks to see if all the sources to
EB i have valid data. If this is the case, a new unique token
number is generated and assigned to m′i, the next value of mi.
The TokenGenerator is a counter that is initialized to a natural
number value greater than the greatest token value in the input
elastic token state. The MT T matrix is updated. If otherwise,
one or more of the sources do not have valid data, then the
Master EHB will become empty. Therefore m′i is assigned zero
in this case.

The second step of the algorithm computes the next value of
slave EHBs and is shown in Procedure 2. If the slave EHB is
currently empty, then it will remain empty. Otherwise, if trans-
fers have taken place on all the output channels (determined
by the DataTransferredAll function), then the slave EHB can
let go of its current token value and is updated to empty. The
DataTransferredAll function is defined as follows.

Definition 6. DataTransferredAll(i) =∧
0≤ j<|E|

{(
Mc[i][j] = 1

)
→
(
MT T [i][j] = 1

)}

Procedure 2 Next token calculation for slave EHBs
1: for i ← 0 to |E|-1 do
2: if si = 0 then
3: s′i← 0
4: else
5: if DataTransferredAll(i) then
6: s′i← 0
7: for j← 0 to N−1 do
8: MT T [i][j]← 0
9: end for

10: else
11: s′i← si
12: end if
13: end if
14: if (s′i = 0)∧ (m′i 6= 0) then
15: s′i← m′i
16: m′i← 0
17: end if
18: end for

The DataTransferredAll(i) function examines only those
entries in MT T corresponding to EB i that are destinations
of EB i (Mc[i][j] = 1). The functions examines the output
channels of EB i to determine if transfers have been completed
on these channels (MT T [i][j] = 1).

Also, the entries in the MT T matrix corresponding to the
output channels of EB i are assigned a value 0 to indicate that
transfers have taken place on all the output channels from EB
i. If there are still output channels in which transfers are yet
to be completed, then the slave EHB retains its token.

After the slave EHBs have been updated (lines 1-13 of
Procedure 2), the procedure checks the new token values of the
master and slave EHBs. If the EB is in a half state where the
slave is empty and the master has a token, then this token is
transferred from master to slave (lines 14-16 of Procedure 2),
due to Property 1. This completes the computation of the next
token state of the elastic circuit.

B. Reachability for Elastic Controller Networks

The reachable states of an elastic controller network can
be computed using token-flow diagrams. At reset, elastic
buffers are initialized to the half state and additional buffers
are initialized to the empty state. Such a reset state is a
requirement of the SEN paradigm. To compute token-flow
diagrams for reachability, the initial token-state is constructed
by assigning a token value 0 to the empty EHBs and a unique
non-zero natural number token value to each of the non-empty
EHBs.

We use the notion of a binary token state for reachability,
which is defined below.

Definition 7. The binary token state corresponding to the
token-state TE of an elastic circuit is defined as the set {〈

TABLE II
TOKEN FLOW DIAGRAM FOR E-2

State 0 (pc) 1 (fd) 2 (de) 3 (em) 4 (mw) 5 (l1) 6 (l2)
m s m s m s m s m s m s m s

0 0 1 0 2 0 3 0 4 0 5 0 0 0 0
1 0 0 1 2 0 0 0 6 0 4 0 1 0 5
2 0 7 0 1 0 8 0 6 6 4 0 0 0 4
3 0 0 0 7 0 9 0 10 0 6 0 7 0 0
4 0 11 0 7 0 0 0 12 0 10 0 0 0 6
5 0 0 0 11 0 13 0 12 12 10 0 11 0 10
6 0 14 0 0 0 15 0 16 0 12 0 0 0 0
7 0 0 0 14 0 0 0 17 0 16 0 14 0 12
8 0 18 0 0 0 19 0 17 17 16 0 0 0 16
9 0 0 0 18 0 0 0 20 0 17 0 18 0 16
10 0 21 0 0 0 22 0 20 20 17 0 0 0 17
11 0 0 0 21 0 0 0 23 0 20 0 21 0 17
12 0 24 0 0 0 25 0 23 23 20 0 0 0 20
13 0 0 0 24 0 0 0 26 0 23 0 24 0 20

bm0, bs0 〉, 〈 bm1, bs1 〉, ..., 〈 bm|E|−1, bs|E|−1 〉} such that

bmi/bsi =

{
1 mi/si > 0
0 mi/si = 0

The binary token state captures the distribution of data in the
elastic circuit without distinguishing the data units. Thus, two
elastic controller network states with the same binary token
states are essentially equivalent.

The reachable states of the elastic controller network are
computed by simulating the token-flow diagram until a binary
token state is reached that has already been visited before. Note
that since we consider only deterministic elastic controller
networks, the reachable states will be a finite sequence of
states that will converge and hence can be computed as an etfd.
The resulting token states correspond to the reachable states
of the controller network of the elastic circuit. Table II shows
the token-flow diagram for computing the reachable states of
the E-2 benchmark. As can be seen from the table, states 7, 9,
11, and 13 map to the same binary token states. Also, states
8, 10, and 12 map to the same binary token states. Therefore,
the reachable states of the elastic controller network of E-2
are states 0 through 8, after which the states start to repeat.

C. Token-Flow Diagrams for Synchronous Circuits

Token flow diagrams for the synchronous parent circuit
(stfd), which is the specification, are also computed. Given an
etfd, an stfd captures how the tokens in the etfd would progress
in the synchronous parent circuit. The token-flow diagram for
the synchronous circuit corresponding to the etfd of Table II
is shown in Table III. The refinement map is constructed by
examining the token states of the elastic and the synchronous
circuits.

As such, etfd and stfd are matrices, where rows correspond
to token states and columns correspond to design stages. In
the etfd matrix, each element corresponds to two token values
etfd[i, j]m and etfd[i, j]s, indicating master and slave tokens,
respectively.

The synchronous circuit is comprised of registers as op-
posed to EBs. Therefore, a stage in the design has only one

TABLE III
TOKEN FLOW DIAGRAM FOR SYNCHRONOUS CIRCUIT OF E-2

State pc fd de em mw
0 1 2 3 4 5
1 7 1 8 6 4
2 11 7 9 10 6
3 14 11 13 12 10
4 18 14 15 16 12
5 21 18 19 17 16
6 24 21 22 20 17

token value in contrast to two token values (master and slave)
for EBs. Second, the registers always hold valid data and there-
fore always have a non-zero token value. Note that the notion
of valid data is w.r.t. elastic control and is used to contrast the
progress of data in the elastic and synchronous circuits. For
example, bubbles in the design due to synchronous control
(for example, pipeline control) are still considered to be valid
data in both circuits. Invalid data are only the result of bubbles
introduced by elastic control.

The synchronous specification and the elastic implementa-
tion are flow equivalent [4]. Therefore, the flow of tokens in a
stage of the synchronous specification circuit can be obtained
by removing bubbles (tokens with value 0) and stale tokens
(token values duplicated in the sequence) from the flow of
tokens of the slave EHB of the corresponding stage in the
elastic circuit. The slave EHB is chosen because all the valid
data that flow through an EB is retained in the slave EHB for
at least one cycle. Therefore, we construct the stfd column by
column. Each column of the stfd is obtained by removing the
tokens with value zero and duplicate tokens from the column
in etfd corresponding to the slave EHB. An stfd satisfies the
following property.

Property 2. The sequence of unique non-zero token values in
any column of an stfd and the corresponding slave column of
etfd are identical.

D. Refinement Map Computation

The refinement map for the equivalence verification problem
at hand takes as input an elastic circuit state and returns the

corresponding synchronous circuit state. Due to the presence
of additional buffers, design stages in the elastic circuit
progress at different speeds when compared to corresponding
stages in the synchronous circuit. For example, in the E-2
benchmark and its corresponding synchronous specification,
for states with the same program counter value, the value in
the decode stage may not be the same. Thus to map elastic
states to synchronous states, we choose a design stage and use
it as a reference point to construct the mapping. An elastic
state w will be mapped to a synchronous state s such that the
values of the latches/registers in the stage corresponding to the
reference point in both w and s match.

Next, we want to define a projection function that given an
elastic state as input, constructs the corresponding synchronous
state. A systematic approach to computing the projection
function is possible by comparing the distribution of data
tokens in an elastic state and its synchronous counterpart. The
token-flow diagrams can be used to determine the distribution
of data tokens in the reachable states of both elastic and
synchronous circuits.

Procedure 3 Refinement Map
1: for elastic-state ← 0 to |etfd|-1 do
2: h← elastic-state
3: repeat
4: tp← etfd[h,reference-point]s
5: h← h−1
6: until tp 6= 0
7: sync-state← 0
8: while stfd[sync-state,reference-point] 6= tp do
9: sync-state← sync-state+1

10: end while
11: for j ← 0 to |Sy|-1 do
12: h← 0
13: while etfd[elastic-state − h, j]s 6= stfd[sync-state, j]

do
14: h← h−1
15: end while
16: refinement-map[elastic-state, j]← h
17: end for
18: end for

Since the distribution of valid data is different for differ-
ent reachable states of the elastic controller network, one
projection function is defined for each controller reachable
state by examining the token flow diagrams of the elastic and
synchronous circuits, etfd and stfd, respectively. Note that a
reachable state of the controller network corresponds to many
states of the elastic circuit. The objective of the projection
function is to construct the synchronous state from the elastic
state. To achieve this, history information may be used. For
example, to get the value of the fd latch, for the synchronous
state from the elastic state, the master and slave EHBs of fd
can be examined. However, it is also possible that fd is empty
or the fd value in the elastic state is not the required value to
construct the synchronous state. Note that this is because while

stages in the synchronous circuit progress together, stages in
the elastic circuit can progress at different rates. In such a
situation, the projection function can examine history values
of fd to obtain the required value.

As such, the refinement map is a matrix
refinement-map|etfd|×|Sy|, where each row corresponds to
a reachable state of the elastic controller network. Each row
has one entry for each stage in the synchronous circuit. Each
[i, j] entry in refinement-map indicates which history should
be projected for design stage j in controller state i. For
example, an entry of 0 indicates the current value should be
projected and an entry of -2 indicates that the value of the
stage 2 cycles before should be projected.

An algorithm for computing the refinement-map matrix is
given in Procedure 3. The algorithm enumerates over the
rows of etfd. We describe the algorithm using row 11 of
etfd shown in Table II. For this circuit, reference-point=0
(the program counter is chosen as the reference point). tp
is the token value corresponding to the reference-point in
etfd. For elastic-state=11, tp=21, which is the first valid token
(when searching upward) in the pc column of etfd. Next, we
find the synchronous token state (sync-state) corresponding
to elastic token state 11 by searching the reference-point
in stfd for tp. A match is found for sync-state=5. Then
we compute refinement-map[11] by searching backward from
row 11 of etfd for a match with tokens in each stage of
sync-state=5. refinement-map[11] = [-1, -2, -3, -3, -3]. Using
the refinement-map matrix, proof obligations are generated for
each elastic controller state as described next.

We choose a stage of the elastic design as a reference
point (reference-point) such that the procedure for finding a
refinement map will always complete successfully. Note that
reference-point should be a stage that has a counterpart in
the synchronous circuit. Therefore, reference-point has to be a
non-additional EB. For example, fd can be an reference-point,
whereas l1 cannot. To find a suitable reference-point, we define
the following graph.

Definition 8. Gelastic(V,E) of an elastic circuit is a directed
graph, such that vertices (V) are the EBs of the circuit and
the edges (E) correspond to data channels directed opposite
to the direction of data flow.

For example, if there is a data channel from EBi to EB j
then there is an edge from Vj to Vi in the graph.

Property 3. Every cycle in graph Gelastic(V,E) includes at
least one EB node, which is a non-additional buffer.

The above property is a result of the elastic design process
that incorporates additional EBs only to break paths between
two non-additional EBs. The elastic design/synthesis process
does not create cycles of additional EBs [4].

Definition 9. Telastic is the set of directed graphs obtained by
removing edges from Gelastic(V,E) that are incoming to all
non-additional elastic buffers.

Lemma 1. Every directed graph in set Telastic is a tree with

a non-additional EB as the root.

Lemma 2. |Telastic| = |Sy|.

The above lemmas derive from Property 3. The lemmas
indicate that Telastic contains one tree each for every non-
additional EB.

Definition 10. Latency of EB i of an elastic circuit is the depth
of the tree ∈ Telastic with root i.

Definition 11. reference-point of an elastic circuit is the non-
additional EB with the greatest latency in the circuit.

Note that the reference-point need not be unique. Any EB
with the greatest latency can be chosen as the reference-point.

Theorem 1. If S is a closed synchronous circuit and E
is the elastic implementation of S obtained using the SEN
approach [4][9], then Procedure 3 will complete for any such
S and E.

Proof: Procedure 3 can be analyzed in 3 parts. In the
first part (lines 2-6), the procedure searches backward starting
from row elastic-state of etfd for a non-zero token value in
the column corresponding to the slave of the reference-point.
For every row of etfd, this search will complete successfully
because in the reset state (row 0 of etfd) of the elastic circuit,
slave EHBs of every non-additional EB is initialized with a
non-zero token value. tp is the token-value found as the result
of this search.

In the second part (lines 8-10), the procedure searches for
tp in column reference-point of stfd starting from row 0. The
search will complete due to Property 2, which states that the
sequence of tokens in the slave column (stage) of etfd and the
corresponding column of stfd are identical modulo bubbles
and duplicated values.

In the third part (lines 11-17), the procedure searches
backward in etfd starting from row elastic-state for every
token in row sync-state of stfd. Note that the searches are
done in corresponding columns of etfd and stfd. The search
in each column will complete because the reference point was
chosen as the point of synchronization. From Definition 11,
the reference point has the greatest latency, so its progress is
the slowest. Therefore, other columns (corresponding to other
stages in the design) would have progressed faster and hence
would have generated the tokens in row sync-state. Therefore,
searching backward, each of the searches will complete.

IV. TOOL FLOW

The overall tool flow is shown in Figure 2. The equivalence
checker takes as input the elastic and synchronous circuits in
RTL VHDL and generates the verification proof obligations
in SMT-LIB [14] format. The SMT logic used is QF ABV,
which is the logic of closed quantifier-free formulas over the
theory of bitvectors and bitvector arrays. The proof obligations
are then discharged using an SMT solver. The front end of the
tool uses Verific Design Automation’s parser platform [15] to
parse the VHDL input circuits to an internal representation.

Synchronous

RTL VHDL

SEC

RTL VHDL

Generate token

flow diagrams

Translate to SMT

Parsing

Reachability

analysis

Refinement map

computation

Proof obligations generator

SMT

solver

SMT

solver

counter example?
Redisign the

SEC

meta data

Fig. 2. Tool Flow

Also as input as meta data, the list of EBs/registers and their
interconnection information is required for both input circuits.
This information is used to generate the connectivity matrix
MC for both circuits, which are then used to construct the token
flow diagrams for both circuits as described in Sections III-A
and III-C. Also, the tool translates the VHDL input circuits
into SMT-LIB functions that implement the transition relation
corresponding to the circuits.

From the token flow diagram of the elastic circuit, the
reachable states of its elastic controller network are computed
(as described in Section III-B). The reachability analysis
provides the reachable states and the transitions of the elastic
controller network. Based on the reachability analysis, the tool
generates invariant proof obligations to check that the elastic
circuit satisfies these transitions. For example, if the E-2 circuit
is in state 10, then it should transition to state 11 and if in
state 11, it should transition to state 10. Note that states 10
and 12 are the same controller states, as they have the same
distribution of tokens. The invariant proof obligation for the
transition from state 10 to 11 is shown below.{

half (pc10)∧ empty(fd10)∧half (de10)∧half (em10)∧

full(mw10)∧ empty(l110)∧half (l210)
}
−→{

empty(pc11)∧half (fd11)∧ empty(de11)∧half (em11)∧

half (mw11)∧half (l111)∧half (l211)
}

In the above, half(x), empty(x), and full(x), indicate that the
EB x is in a half state, empty state, and full state. fd10 is the
value of EB fd in state 10, and similarly for others.

Next, the tool computes the refinement map by examining
the token flow diagrams as described in Section III-D. One
refinement map function for each of the elastic controller

TABLE IV
RESULTS

Benchmark No. of No. of Equivalence SMT statistics
gates latches Checker Time Memory

Runtime (sec) (sec) (kB)
E-32-0 36,875 620 0.804 9.39 16.54
E-32-1 37,225 688 0.952 16.51 13.75
E-32-2 37,635 768 0.932 20.43 15.22
E-32-3 38,045 848 1.020 13.99 18.86
E-32-4 38,455 928 0.988 18.33 20.51
E-32-5 38,865 1,008 0.964 17.63 20.99
EB1-32-2 37,624 768 0.972 4.97 14.59
EB2-32-2 37,635 768 0.984 1.64 13.99
E-64-0 130,939 1,132 1.548 84.03 53.32
E-64-1 131,609 1,264 2.004 134.14 47.5
E-64-2 132,339 1,408 2.144 113.58 46.48
E-64-3 133,069 1,552 2.152 84.65 65.25
E-64-4 133,799 1,696 2.160 139.35 63.81
E-64-5 134,529 1,840 2.184 89.2 64.28
EB1-64-2 132,328 1,408 2.108 31.2 45.25
EB2-64-2 132,339 1,408 2.128 6.04 44.44
E-128-0 494,171 2,156 3.972 560.88 588.13
E-128-1 495,481 2,416 5.388 764.72 157.77
E-128-2 496,851 2,688 5.568 947.30 313.51
E-128-3 498,221 2,960 5.488 445.12 341.87
E-128-4 499,591 3,232 5.680 792.69 240.52
E-128-5 500,961 3,504 5.788 606.68 237.73
EB1-128-2 496,840 2,688 5.420 273.84 158.45
EB2-128-2 496,851 2,688 5.516 14.46 156.73

network states is then generated in SMT. Using the refinement
map and the transition relation functions in SMT, the proof
obligations required for equivalence verification based on
WEB refinement are generated (see Section II). One proof
obligation is generated for each transition based on the reach-
ability analysis. Each of the proof obligations are generated in
separate SMT files. Hence these obligations can be checked
in parallel. If one or more of the proof obligations do not
succeed, then the SMT solver will generate a counter example
indicating one or more bugs.

A. Liveness

WEB refinement takes into consideration liveness. Estab-
lishing that an implementation refines its specification guaran-
tees that the implementation will always progress and never
deadlock w.r.t. the specification. Liveness is ensured using
the mechanism of rank functions, functions that map the
implementation (SEN) states to natural numbers. The goal is
to devise a witness rank function such that for the stuttering
steps of the implementation, the rank always decreases. There
are no requirements of the rank of the implementation in
non-stuttering steps, as the liveness of the implementation
is witnessed in the fact that the implementation matches
specification’s progress in a non-stuttering step.

For the equivalence problem at hand, it is enough check
that the implementation satisfies the invariants generated by
the reachability analysis to guarantee liveness. To see why
consider the following. The SEN framework is correct by
construction and is guaranteed to be live. Therefore, every
cycle in the reachability graph generated form the token flow
diagrams should include at least one non-stuttering transition.

Note that if all transitions in a cycle are stuttering, then this
indicates deadlock. As long as the implementation satisfies
the reachability invariants, it is guaranteed to never be in a
stuttering cycle, guaranteeing liveness w.r.t. its specification.
Also, if there are no stuttering cycles, its not hard to see that
a rank function can be devised such that the rank decreases
for every stuttering step.

V. RESULTS

The capacity of the equivalence checker is demonstrated
using 24 elastic circuits. The circuits are based on the elastic 5-
stage processor shown in Figure I. The circuits were obtained
by varying the size of the datapath and the number and
location of additional buffers/relay stations in the data path.
A maximum of 5 additional buffers were used. Verification
statistics are shown in Table IV. The benchmark names are of
the form ”E-m-n” or ”EB-m-n”. ”E” indicates that the circuit
was proved correct and ”EB” indicates a buggy circuit. ”m”
indicates the size of the data path and ”n” is the number of
additional buffers in the elastic circuit. We are not aware of
any other equivalence checker that can verify the equivalence
of elastic circuits and their synchronous parents. Therefore,
we do not have another tool to quantitatively compare the
efficiency of our results.

To demonstrate the results when checking buggy versions
of elastic circuits, we developed two buggy versions of the
elastic processor. B1 has a data path bug in its forwarding
logic. The address of source register 1 in the execute stage is
compared with the destination register address of the memory
stage, when instead the address of source register 2 should
be compared. B2 has a bug in the elastic controller, where the

controller for the de elastic buffer receives its valid input from
the fetch stage instead of the decode stage.

Verification was performed on a 2.1GHz AMD (R) Athlon
(TM) 2700+ CPU with a 256 KB L1 cache. The SMT
solver used was Z3 [16]. The equivalence checker run time
is the time taken to parse the input circuits and generate
the proof obligations in SMT. The SMT time is the total
time required to check all the proof obligations corresponding
to the verification of the benchmark. The SMT memory is
the maximum memory required for checking all the proof
obligations of that benchmark.

VI. RELATED WORK

Carloni et al. [2] developed a theory for Latency-Insensitive
design. In this work, they introduced latency equivalence,
a notion of correctness that can be used to design latency
insensitive systems in a correct-by-construction compositional
manner. Li et al. [17] have used property-based verification
to check latency equivalence, liveness, and storage capacity
for three latency-insensitive designs. Suhaib et al. [18] have
developed a general property-based and simulation-based val-
idation framework that can be used with a large number of
LI design methods. Their approach is also based on latency
equivalence. Another approach to property-based verification
of elastic systems is based on static data flow structures
(SDFS) [19]. SDFS can be used to model synchronous
and asynchronous elastic systems. The SDFS models are
translated to petri-net models that are amenable to analysis
and by model checking tools. In contrast, our contributions
are in equivalence checking for elastic circuits. In general,
simulation-based validation, property-based verification, and
equivalence verification compliment each other very well as
can be witnessed in commercial design cycles. Also, our
equivalence framework does not require additional properties
as the synchronous circuit is the specification.

Cortadella et al. [4] have verified the elastic controller
implementations against a high-level specification that de-
scribes how these controllers should behave. Kristic et al. [9]
have shown that additional buffers (empty buffers) can be
inserted in the datapath without altering the functionality of the
design. Synthesis approaches based on correct-by-construction
transformations ensure that the synthesis methods are reliable.
However as noted earlier, the synthesis process and any further
modifications to the circuit can introduces bugs. The target of
our equivalence verification framework is to catch these bugs.

Srinivasan et al. [20] have developed a refinement-based
verification method for elastic circuits. They provide methods
and rules to construct equivalence proofs between pipelined
elastic circuits and their synchronous parents. Their proofs
are constructed manually. Our equivalence checker builds on
this work. Following are the novelty of our work, over and
above what was presented in [20]. (1) We have formally
defined token-flow diagrams and developed procedures to
automatically derive token-flow diagrams for elastic circuits.
(2) We have generalized the algorithms to be applicable to any
circuit structure. In [20], the approach was applicable only to

linear pipelines. (3) Generalization required formalizing the
concept of reference-points and incorporation of the use of
reference-points in the algorithm to compute refinement maps.
(4) The computation of token-flow diagrams and refinement
maps is fully automated and implemented in a tool, whereas
previously all of this was done manually. (5) Completeness
result for the algorithm that computes refinement maps is
derived. (6) The tool has been successfully applied to elastic
circuits with as many as 0.5M gates.

VII. CONCLUSIONS

We have presented an automated equivalence checker that
can verify elastic circuits against their synchronous parent
circuits. The efficiency of the tool was demonstrated using 24
elastic VHDL benchmarks. The most complex elastic circuit
verified has over 0.5M gates and over 3,500 latches. We
believe that this equivalence checking technology can have
a positive impact on the use of latency insensitive design in
commercial design cycles, especially in the context of IP reuse
to deal with timing issues.

There are several areas for future progress. Current al-
gorithms are limited to dealing with deterministic elastic
controller networks. We plan to extend the methods to deal
with non-deterministic behavior of the elastic controllers as
seen in open circuits, and circuits with variable latency units.
Currently our applications are limited to closed circuits. An-
other area of future work is to explore the use of automated
abstraction techniques to improve the scalability and capacity
of the tool.

REFERENCES

[1] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Latency insensitive protocols. In CAV, pages 123–133, 1999.

[2] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Trans. on CAD of Integrated
Circuits and Systems, 20(9):1059–1076, 2001.

[3] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency
in soc design. IEEE Micro, 22(5):24–35, 2002.

[4] M. R. Casu and L. Macchiarulo. Adaptive latency-insensitive protocols.
IEEE Design and Test of Computers, 24:442–452, 2007.

[5] J. Cortadella, M. Kishinevsky, and B. Grundmann. Synthesis of
synchronous elastic architectures. In DAC, pages 657–662, 2006.

[6] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and J. Rehof, editors, TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[7] M. Galceran-Oms, A. Gotmanov, J. Cortadella, and M. Kishinevsky.
Microarchitectural transformations using elasticity. ACM Journal on
Emerging Technologies in Computing Systems, 7:18:1–18:24, Dec. 2011.

[8] G. Hoover and F. Brewer. Synthesizing synchronous elastic flow
networks. In DATE, pages 306–311. IEEE, 2008.

[9] S. Krstic, J. Cortadella, M. Kishinevsky, and J. O’Leary. Synchronous
elastic networks. In FMCAD, pages 19–30. IEEE Computer Society,
2006.

[10] C.-H. Li and L. P. Carloni. Leveraging local intracore information to
increase global performance in block-based design of systems-on-chip.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 28(2):165–178, 2009.

[11] C.-H. Li, R. L. Collins, S. Sonalkar, and L. P. Carloni. Design,
implementation, and validation of a new class of interface circuits for
latency-insensitive design. In IEEE International Conference on Formal
Methods and Models for Co-Design (MEMOCODE 2007), pages 13–22.
IEEE, 2007.

[12] P. Manolios. Correctness of pipelined machines. In W. A. Hunt, Jr. and
S. D. Johnson, editors, Formal Methods in Computer-Aided Design–
FMCAD 2000, volume 1954 of LNCS, pages 161–178. Springer-Verlag,
2000.

[13] P. Manolios. Mechanical Verification of Reactive Systems. PhD thesis,
University of Texas at Austin, August 2001. See URL http://-
www.cc.gatech.edu/∼manolios/publications.html.

[14] P. Manolios. A compositional theory of refinement for branching time. In
D. Geist and E. Tronci, editors, 12th IFIP WG 10.5 Advanced Research
Working Conference, CHARME 2003, volume 2860 of LNCS, pages
304–318. Springer-Verlag, 2003.

[15] SMT-LIB, 2012. See URL http://www.smtlib.org/.
[16] D. Sokolov, I. Poliakov, and A. Yakovlev. Analysis of static data flow

structures. Fundam. Inform., 88(4):581–610, 2008.
[17] S. K. Srinivasan, Y. Cai, and K. Sarker. Refinement-based verification

of elastic pipelined systems. IET Computers & Digital Techniques,
6(2):136–152, 2012.

[18] S. Suhaib, D. Mathaikutty, D. Berner, and S. Shukla. Validating families
of latency insensitive protocols. IEEE Transations on Computers,
55(11):1391–1401, 2006.

[19] Verific Design Automation, Inc., 2012. See URL http://-
www.verific.com/.

