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Classical rowmotion

Classical rowmotion is the rowmotion studied by Striker-Williams
(arXiv:1108.1172). It has appeared many times before, under different
guises:

Brouwer-Schrijver (1974) (as a permutation of the antichains),

Fon-der-Flaass (1993) (as a permutation of the antichains),

Cameron-Fon-der-Flaass (1995) (as a permutation of the monotone
Boolean functions),

Panyushev (2008), Armstrong-Stump-Thomas (2011) (as a
permutation of the antichains or “nonnesting partitions”, with relations
to Lie theory).

Several times before in this special session! (So I give it short shrift.)
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Classical rowmotion: properties

Motivations and Connections

Classical rowmotion is closely related to the Auslander-Reiten
translation in quivers arising in certain special posets (e.g.,
rectangles) [Yil17].

Birational rowmotion can be related to Y -systems of type Am × An

described in Zamolodchikov periodicity [Rob16, §4.4].

The orbits of these actions all have natural homomesic
statistics [PR13, EiPr13, EiPr14].

Periodicity of these systems is generally nontrivial to prove.
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Classical rowmotion: Periodicity

Classical rowmotion is a permutation of J(P), hence has finite order. This
order can be fairly large.
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Classical rowmotion: Periodicity

Classical rowmotion is a permutation of J(P), hence has finite order. This
order can be fairly large.
However, for some types of P, the order can be explicitly computed or
bounded from above. See Striker-Williams [StWi11] (and the very recent
Thomas-Williams [TW17]) for an exposition of known results.

If P is a [0, r ]× [0, s]-rectangle:

(1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

(shown here for r = 1 and s = 2), then ord (r) = r + s + 2 = 5.
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Classical rowmotion: Periodicity (Example)

S = (1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

, r(S) = (1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

, r2(S) = (1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

,

r3(S) = (1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

, r4(S) = (1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

, r5(S) = (1, 2)

(1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

,

which is precisely the S we started with. ord(r) = p + q = 2 + 3 = 5.
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Classical rowmotion: Antipodal and File Homomesies

◦
• •
•

, •
• •
•

, ◦

◦ ◦

◦

, ◦
◦ ◦
•

◦

• ◦

•

, ◦
◦ •
•

The average value along antipodal (N-S, E-W) pairs is 1 for both orbits,

and is also constant, as (1, 1)

1
2 (1, 0) 1 (0, 1) 1

2

(0, 0)

, on files (columns).
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Rowmotion: the toggling definitions

There is an alternative definition of rowmotion, which splits it into many
small operations, each an involution.

Define tv (S) as:

S 4 {v} (symmetric difference) if this is an order ideal;
S otherwise.

(“Try to add or remove v from S , as long as the result remains an
order ideal, i.e., within J(P); otherwise, leave S fixed.”)

Note that t2
v = id.

Let (v1, v2, ..., vn) be a linear extension of P; this means a list of all
elements of P (each only once) such that i < j whenever vi < vj .

Cameron and Fon-der-Flaass [CaFl95] showed that

r = tv1 ◦ tv2 ◦ ... ◦ tvn .
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Generalizing to the piecewise-linear setting

The decomposition of classical rowmotion into toggles allows us to define a
piecewise-linear (PL) version of rowmotion acting on functions on a poset.

Let P be a poset, with an extra minimal element 0̂ and an extra maximal
element 1̂ adjoined.

The order polytope O(P) (introduced by R. Stanley) is the set of functions
f : P → [0, 1] with f (0̂) = 0, f (1̂) = 1, and f (x) ≤ f (y) whenever x ≤P y .

For each x ∈ P, define the flip-map σx : O(P)→ O(P) sending f to the
unique f ′ satisfying

f ′(y) =

{
f (y) if y 6= x ,
minz ·>x f (z) + maxw<· x f (w)− f (x) if y = x ,

where z ·>x means z covers x and w< · x means x covers w .
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Example of flipping at a node

w1 w2

x

z1 z2

.1 .2

.4

.7 .8

−→

.1 .2

.5

.7 .8

1

min
z ·>x

f (z) + max
w<· x

f (w) = .7 + .2 = .9

f (x) + f ′(x) = .4 + .5 = .9
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Composing flips

Just as we can apply toggle-maps from top to bottom, we can apply
flip-maps from top to bottom, to get piecewise-linear rowmotion:

.8 .6 .6

.4 .3

σN

→ .4 .3

σW

→ .3 .3

.1 .1 .1

.6 .6
σE

→ .3 .4

σS

→ .3 .4

.1 .2

(We successively flip at N = (1, 1), W = (1, 0), E = (0, 1), and S = (0, 0)
in order.)

Musiker-Roby (UMN and UCONN) Paths to understanding birational rowmotion 13 January 2018 10 / 36



De-tropicalizing to birational maps

In the so-called tropical semiring, one replaces the standard binary ring
operations (+, ·) with the tropical operations (max,+). In the
piecewise-linear (PL) category of the order polytope studied above, our
flipping-map at x replaced the value of a function f : P → [0, 1] at a point
x ∈ P with f ′, where

f ′(x) := min
z ·>x

f (z) + max
w<· x

f (w)− f (x)

We can“detropicalize” this flip map and apply it to an assignment

f : P → R(x) of rational functions to the nodes of the poset, using that
min(zi ) = −max(−zi ), to get the birational toggle map

(Tx f )(x) = f ′(x) =

∑
w<· x f (w)

f (x)
∑

z ·>x
1

f (z)
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Birational rowmotion: definition

Let P be a finite poset. We define P̂ to be the poset obtained by
adjoining two new elements 0̂ and 1̂ to P and forcing

0̂ to be less than every other element, and
1̂ to be greater than every other element.

Let K be a field.

A K-labelling of P will mean a function f : P̂ → K.

We will represent labellings by drawing the labels on the vertices of the
Hasse diagram of P̂.

For any v ∈ P, define the birational v-toggle as the rational map

Tv : KP̂ 99K KP̂ by (Tv f ) (w) =
∑

P̂3u<· v f (u)

f (v)
∑

P̂3u ·>v
1

f (u)

for w = v .

(We leave (Tv f ) (w) = f (w) when w 6= v .)
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Birational rowmotion: definition

For any v ∈ P, define the birational v-toggle

Tv : KP̂ 99K KP̂ by (Tv f ) (w) =
∑

u<· v f (u)

f (v)
∑

u ·>v
1

f (u)

for w = v .

Notice that this is a local change only to the label at v .

We have T 2
v = id (on the range of Tv ), and Tv is a birational map.

We define birational rowmotion as the rational map

ρB := Tv1 ◦ Tv2 ◦ ... ◦ Tvn : KP̂ 99K KP̂ ,

where (v1, v2, ..., vn) is a linear extension of P.
This is indeed independent of the linear extension, because

Tv and Tw commute whenever v and w are incomparable (even
whenever they are not adjacent in the Hasse diagram of P);
we can get from any linear extension to any other by switching
incomparable adjacent elements.

This is originally due to Einstein and Propp [EiPr13, EiPr14]. Another
exposition of these ideas can be found in [Rob16], from the IMA
volume Recent Trends in Combinatorics.
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Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

poset labelling

1̂

(1, 1)

(1, 0) (0, 1)

(0, 0)

0̂

1

z

x y

w

1

We have ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1)

using the linear extension ((1, 1), (1, 0), (0, 1), (0, 0)).
That is, toggle in the order “top, left, right, bottom”.
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Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(1,1)f

1

z

x y

w

1

1

(x+y)
z

x y

w

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).
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1

z

x y
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1

1
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z
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w

1
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Birational rowmotion: example

Example:
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z
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w

1

1
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Birational rowmotion: example

Example:
Let us “rowmote” a (generic) K-labelling of the 2× 2-rectangle:

original labelling f labelling T(0,0)T(0,1)T(1,0)T(1,1)f = ρB f

1

z

x y

w

1

1

(x+y)
z

w(x+y)
xz

w(x+y)
yz

1
z

1

We are using ρB = T(0,0) ◦ T(0,1) ◦ T(1,0) ◦ T(1,1).
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Birational rowmotion orbit on a product of chains

Example: Iterating this procedure we get

(x+y)
z

ρB f = (x+y)w
xz

(x+y)w
yz

1
z ,

(x+y)w
xy

ρ2
B f = 1

y
1
x

z
x+y ,

1
w

ρ3
B f = yz

(x+y)w
xz

(x+y)w

xy
(x+y)w ,

z

ρ4
B f = x y

w .

Notice that ρ4
B f = f , which generalizes to ρr+s+2

B f = f for
P = [0, r ]× [0, s] [Grinberg-R 2015]. Notice also “antipodal reciprocity”.
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Birational homomesy on files, (aka columns)

The poset [0, 1]× [0, 1] has three files, {(1, 0)}, {(0, 0), (1, 1)}, and {(0, 1)}.
Multiplying over all iterates of birational rowmotion in a given file, we get

ρB(f )(1, 0)ρ2
B(f )(1, 0)ρ3

B(f )(1, 0)ρ4
B(f )(1, 0) =

(x + y)w

xz

1

y

yz

(x + y)w
(x) = 1,

ρB(f )(0, 0)ρB(f )(1, 1)ρ
2
B(f )(0, 0)ρ

2
B(f )(1, 1)ρ

3
B(f )(0, 0)ρ

3
B(f )(1, 1)ρ

4
B(f )(0, 0)ρ

4
B(f )(1, 1) =

1

z

x + y

z

z

x + y

(x + y)w

xy

xy

(x + y)w

1

w
(x) (z) = 1,

ρB(f )(0, 1)ρ2
B(f )(0, 1)ρ3

B(f )(0, 1)ρ4
B(f )(0, 1) =

(x + y)w

yz

1

x

xz

(x + y)w
(y) = 1.

Each of these products equalling one is the manifestation, for the poset of a
product of two chains, of homomesy along files at the birational level.
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Birational Rowmotion on the Rectangular Poset

We now give a rational function formula for the values of iterated birational
rowmotion ρk+1

B (i , j) for (i , j) ∈ [0, r ]× [0, s] and k ∈ [0, r + s + 1].

1) Let
∨

(m,n) := {(u, v) : (u, v) ≥ (m, n)} be the principal order filter at

(m, n), 7k
(m,n)be the rank-selected subposet, of elements in

∨
(m,n) whose

rank (within
∨

(m,n)) is at least k − 1 and whose corank is at most k − 1.

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Birational Rowmotion on the Rectangular Poset

2) Let s1, s2, . . . , sk be the k minimal elements and let t1, t2, . . . , tk be the
k maximal elements of 7k

(m,n).

Let Aij :=
∑

zl(i,j) xz

x(i,j)
=

xi,j−1+xi−1,j

xij
. We set xi ,j = 0 for (i , j) 6∈ P and

A00 = 1
x00

(working in P̂).

Given a triple (k,m, n) ∈ N3, we define a polynomial ϕk(m,n) in terms of
the Aij ’s as follows.
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Birational Rowmotion on the Rectangular Poset

We define a lattice path of length ` within P = [0, r ]× [0, s] to be a
sequence v1, v2, . . . , v` of elements of P such that each difference of
successive elements vi − vi−1 is either (1, 0) or (0, 1) for each i ∈ [`]. We
call a collection of lattice paths non-intersecting if no two of them share a
common vertex.
EG: The blue path and red path below are non-intersecting.

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)
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Birational Rowmotion on the Rectangular Poset

3) Let Sk(m, n) be the set of non-intersecting lattice paths in 7k
(m,n), from

{s1, s2, . . . , sk} to {t1, t2, . . . , tk}. Let L = (L1, L2, . . . Lk) ∈ Sk
k (m, n)

denote a k-tuple of such lattice paths.

4) Define ϕk(m, n) :=∑
L∈Sk

k (m,n)

∏
(i,j)∈7k

(m,n))

(i ,j) 6∈L1∪L2∪···∪Lk

Aij .

Theorem(*):

ρk+1
B (i , j) =

ϕk(i − k, j − k)

ϕk+1(i − k , j − k)

EG: ρ2
B(1, 1) =

ϕ1(0, 0)

ϕ2(0, 0)
.

=
sum of 6 quartic terms in Aij

A20 + A11 + A02

(2, 2)

(2, 1) (1, 2)

(2, 0) (1, 1) (0, 2)

(1, 0) (0, 1)

(0, 0)

(*) Caveats explained and general
statement given in the next few slides.
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Main Theorem (Musiker-R 2018)

Fix k ∈ [0, r + s + 1], and let ρk+1
B (i , j) denote the rational function

associated to the poset element (i , j) after (k + 1) applications of the
birational rowmotion map to the generic initial labeling of P = [0, r ]× [0, s].
Set [α]+ := max{α, 0} and M = [k − i ]+ + [k − j ]+.

(a1) When M = 0, i.e., (i − k, j − k) still lies in the poset [0, r ]× [0, s]:

ρk+1
B (i , j) =

ϕk(i − k , j − k)

ϕk+1(i − k , j − k)

where ϕt(v ,w) is defined in 4) above.
(a2) When 0 < M ≤ k:

ρk+1
B (i , j) = µ([k−j]+,[k−i ]+)

(
ϕk−M(i − k + M, j − k + M)

ϕk−M+1(i − k + M, j − k + M)

)
where µ(a,b) is the operator that takes a rational function in {A(u,v)} and
simply shifts each index in each factor of each term: A(u,v) 7→ A(u−a,v−b).
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Main Theorem (Musker-R 2018)

Fix k ∈ [0, r + s + 1] and set M = [k − i ]+ + [k − j ]+. After (k + 1) applications
of the birational rowmotion map to the generic initial labeling of P = [0, r ]× [0, s]
we get:

(a) When 0 ≤ M ≤ k:

ρk+1
B (i , j) = µ([k−j]+,[k−i ]+)

(
ϕk−M(i − k + M, j − k + M)

ϕk−M+1(i − k + M, j − k + M)

)
where ϕt(v ,w) and µ(a,b) are as defined above.

(b) When M ≥ k : ρk+1
B (i , j) = 1/ρk−i−jB (r − i , s − j), which is well-defined

by part (a).

Remark: We prove that our formulae in (a) and (b) agree when M = k ,
allowing us to give a new proof of periodicity: ρr+s+2+d

B = ρdB ; thus we get
a formula for all iterations of the birational rowmotion map.
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Corollaries of the Main Theorem

Corollary

For k ≤ min{i , j}, ρk+1
B (i , j) = ϕk (i−k,j−k)

ϕk+1(i−k,j−k) .

Corollary ([GrRo15, Thm. 30, 32])

The birational rowmotion map ρB on the product of two chains
P = [0, r ]× [0, s] is (1) periodic, with period r + s + 2, and
(2) satisfies antipodal reciprocity ρi+j+1

B = 1/ρ0
B(r − i , s − j) = 1

xr−i,s−j
.

Theorem

Given a file F in [0, r ]× [0, s],
r+s+1∏
k=0

∏
(i ,j)∈F

ρkB(i , j) = 1.
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Example of Path Formula

We use our main theorem to compute ρk+1
B (2, 1) for P = [0, 3]× [0, 2] for

Here r = 3, s = 2, i = 2, and j = 1 throughout.

When k = 1, we still have M = 0, and ρ2
B(2, 1) = ϕ1(1,0)

ϕ2(1,0) =

A11A12A21A22 + A11A12A22A30 + A11A12A30A31 + A12A20A22A30 + A12A20A30A31 + A20A21A30A31

A12 + A21 + A30
.
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32

31 22

30 21 12

20 11 02

10 01

00

32

31 22

30 21 12

20 11 02

10 01

00

32

31 22

30 21 12

20 11 02

10 01

00

32

31 22

30 21 12

20 11 02

10 01

00

32

31 22

30 21 12

20 11 02

10 01

00

32

31 22

30 21 12

20 11 02

10 01

00
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Sketch of Proof

By the definition of birational rowmotion,

ρk+1
B (i , j) =

(
ρkB(i , j − 1) + ρkB(i − 1, j)

)
·
(
ρk+1
B (i + 1, j) || ρk+1

B (i , j + 1)

)
ρkB(i , j)

where

A || B =
1

1
A + 1

B

.

By induction on k , and the fact that we apply birational rowmotion from
top to bottom, we can apply algebraic manipulations to reduce our result to
proving the following Plücker-like identity:

ϕk(i − k, j − k)ϕk−1(i − k + 1, j − k + 1) =
ϕk(i − k , j − k + 1)ϕk−1(i − k + 1, j − k)

+ϕk(i − k + 1, j − k)ϕk−1(i − k , j − k + 1).
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It is sufficient to verify the following Plücker-like identity

ϕk(i − k, j − k)ϕk−1(i − k + 1, j − k + 1) =
ϕk(i − k , j − k + 1)ϕk−1(i − k + 1, j − k)

+ϕk(i − k + 1, j − k)ϕk−1(i − k , j − k + 1).
Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦
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Sketch of Proof

We build bounce paths and twigs (paths of length one from ◦ to ×)
starting from the bottom row of ◦’s.

Example (k=5):

× × × ×

◦EE
��

◦DD ◦ ◦ ◦

•EE • • • •
��
ZZ •
��
YY

•EE • • •
��
ZZ •

��

•DD
��

• YY
• YY • •

��
ZZ •
��

• ZZ •
��
ZZ •
��

•EE
• YY •

��
• • • • •EE

• YY × ×DD ×DD ×DD •EE
◦ ◦ ◦ ◦ ◦
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Sketch of Proof

We then reverse the colors along the (k − 2) twigs and the one bounce
path from ◦ to × (rather than ◦ to ◦).

Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

• × × × × •

◦ ◦ ◦ ◦ ◦
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Sketch of Proof

Swap in the new colors and shift the ◦’s and ×’s in the bottom two rows.

Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

◦ ◦ ◦ ◦ ◦ •

• × × × ×
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Sketch of Proof

ϕk(i − k, j − k)ϕk−1(i − k + 1, j − k + 1) =
ϕk(i − k , j − k + 1)ϕk−1(i − k + 1, j − k)

+ϕk(i − k + 1, j − k)ϕk−1(i − k , j − k + 1).
Example (k=5):

× × × ×

◦ ◦ ◦ ◦ ◦

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • •

◦ ◦ ◦ ◦ ◦ •

• × × × ×
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Further Application: Birational File Homomesy

Theorem

Given a file (i.e. a column) F in [0, r ]× [0, s],
r+s+1∏
k=0

∏
(i ,j)∈F

ρkB(i , j) = 1.

Sketch of Proof: Double-counting argument, followed by color-coded
cancellations and several entries immediately equal to 1, as in ensuing table.

43

42 33

41 32 23

40 31 22 13

30 21 12 03

20 11 02

10 01

00

43

42 33

41 32 23

40 31 22 13

30 21 12 03

20 11 02

10 01

00
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43

42 33

41 32 23

40 31 22 13

30 21 12 03

20 11 02

10 01

00

43

42 33

41 32 23

40 31 22 13

30 21 12 03

20 11 02

10 01
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Further Application: Birational File Homomesy

Let (r , s) = (4, 3), d = 2, and consider the file F = {(4, 2), (3, 1), (2, 0)}.
The following table displays the values of ρkB(i , j) for 0 ≤ k ≤ 8, (i , j) ∈ F .

(4, 2) (3, 1) (2, 0)

k = 0
ϕ0(4, 2)

ϕ1(4, 2) = 1

ϕ0(3, 1)

ϕ1(3, 1)

ϕ0(2, 0)

ϕ1(2, 0)

k = 1
ϕ1(3, 1)

ϕ2(3, 1) = 1

ϕ1(2, 0)

ϕ2(2, 0)
µ(1,0)

[
ϕ0(2, 0)

ϕ1(2, 0)

]

k = 2
ϕ2(2, 0)

ϕ3(2, 0) = 1
µ(1,0)

[
ϕ1(2, 0)

ϕ2(2, 0)

]
µ(2,0)

[
ϕ0(2, 0)

ϕ1(2, 0)

]
= 1

x23

k = 3 µ(1,0)

[
ϕ2(2, 0)

ϕ3(2, 0) = 1

]
µ(2,0)

[
ϕ1(2, 0)

ϕ2(2, 0)

]
ϕ1(2, 3) = 1

ϕ0(2, 3)

k = 4 µ(2,0)

[
ϕ2(2, 0)

ϕ3(2, 0) = 1

]
µ(3,1)

[
ϕ0(3, 1)

ϕ1(3, 1)

]
= 1

x12

ϕ2(1, 2) = 1

ϕ1(1, 2)

k = 5 µ(3,1)

[
ϕ1(3, 1)

ϕ2(3, 1) = 1

]
ϕ1(1, 2)

ϕ0(1, 2)

ϕ3(0, 1) = 1

ϕ2(0, 1)

k = 6 µ(4,2)

[
ϕ0(4, 2)

ϕ1(4, 2) = 1

]
= 1

x01

ϕ2(0, 1)

ϕ1(0, 1)
µ(0,1)

[
ϕ3(0, 1) = 1

ϕ2(0, 1)

]

k = 7
ϕ1(0, 1)

ϕ0(0, 1)
µ(0,1)

[
ϕ2(0, 1)

ϕ1(0, 1)

]
µ(1,2)

[
ϕ2(1, 2) = 1

ϕ1(1, 2)

]

k = 8 µ(0,1)

[
ϕ1(0, 1)

ϕ0(0, 1)

]
= x42 µ(1,2)

[
ϕ1(1, 2)

ϕ0(1, 2)

]
= x31 µ(2,3)

[
ϕ1(2, 3) = 1

ϕ0(2, 3)

]
= x20
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