Increasing Labelings, Generalized Promotion, and Rowmotion

Kevin Dilks, Jessica Striker, Corey Vorland

North Dakota State University

January 12, 2018

Outline

- Background
- Previous Results
- 3 Generalized Increasing Labelings

Outline

- Background
- Previous Results
- 3 Generalized Increasing Labelings

Increasing Tableaux

1	4	5	8
2	5	7	9
6	7	9	10
8	10		

Figure: An increasing tableau T of shape $\lambda = (4, 4, 4, 2)$.

Arise in equivariant *K*-theory of the Grassmanian.

K-Promotion

Order of *K*-promotion

- Order of K-promotion on rectangles a × b is always small multiple of largest possible label q.
- Hits it on the nose for special cases (a = 2, q = a + b, standard tableaux).

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Toggle Group

Definition

For each element $e \in P$ define its **toggle** $t_e : J(P) \to J(P)$ as follows.

$$t_e(X) = \begin{cases} X \cup \{e\} & \text{if } e \notin X \text{ and } X \cup \{e\} \in J(P) \\ X \setminus \{e\} & \text{if } e \in X \text{ and } X \setminus \{e\} \in J(P) \\ X & \text{otherwise} \end{cases}$$

Note: t_e , t_f commute whenever neither e nor f covers the other.

Order of Rowmotion

- Rowmotion on order ideals in $a \times b \times c$.
- When c = 1, 2(3?), order is exactly a + b + c 1.
- In general, orbit sizes appear to be small multiples of a + b + c − 1.

Outline

- Background
- Previous Results
- 3 Generalized Increasing Labelings

Bijection Between Increasing Tableaux and Order Ideals

Theorem (Dilks, Pechenik, Striker)

Bijection between order ideals in [a] \times [b] \times [c] and increasing labelings of a \times b with max entry a + b + c - 1.

Bijection Between Increasing Tableaux and Order Ideals

K-Bender-Knuth Involutions

Theorem (Dilks, Pechenik, Striker)

K-promotion is a series of local involutions.

K-Bender-Knuth Involutions

Theorem (Dilks, Pechenik, Striker)

K-promotion is a series of local involutions.

Equivariant Bijection

Hyperplane Promotion is Conjugate to Rowmotion

Theorem (Dilks, Pechenik, Striker)

Let *P* be a poset with an order and rank preserving map $\pi: P \to \mathbb{Z}^n$, and let $v = (v_1, v_2, v_3, \dots, v_n)$, where $v_i \in \{\pm 1\}$.

Let $T_{\pi,v}^i$ be the product of toggles t_x for all elements x of P that lie on the affine hyperplane $\langle \pi(x), v \rangle = i$.

Then $\operatorname{Pro}_{\pi,\nu} = \dots T_{\pi,\nu}^{-2} T_{\pi,\nu}^{-1} T_{\pi,\nu}^{0} T_{\pi,\nu}^{1} T_{\pi,\nu}^{2} \dots$ is conjugate to rowmotion.

Punchline

K-promotion on increasing labelings of $a \times b$ with max entry a + b + c - 1

has the same orbit structure as

rowmotion on order ideals in $a \times b \times c$.

Outline

- Background
- Previous Results
- 3 Generalized Increasing Labelings

Motivation

How much do these methods generalize.

- Non-square increasing tableaux?
- Non-ranked posets?

Increasing Labeling

Definition

An *increasing labeling* of P is a function $f : P \to \mathbb{Z}$ such that $p_1 <_P p_2$ implies $f(p_1) < f(p_2)$.

Definition

For labeling function $R: P \mapsto \mathcal{P}(\mathbb{Z})$, let $\operatorname{Inc}^R(P)$ be the set of increasing labelings of P such that for all $p \in P$, $f(p) \in R(p)$.

Example

Key Idea

- Inc^R(P) can be partially ordered by element-wise comparison.
- Inc^R(P) is a distributive lattice (meet and join are taking element-wise min/max)
- Birkhoff FTFDL (Fundamental Theorem of Finite Distributive Lattices)
- Find join irreducibles and their relative order $(\Gamma(P, R))$.

Special Case: Bounded max entry

Largest entry of 6

Generalized Promotion on Increasing Labelings

Generalized Bender-Knuth involutions for arbitrary *R*:

- If a label is currently i, and you can increment it to next allowable label (and stay in $Inc^R(P)$), then do it.
- If you can decrement a label to become i (and stay in $Inc^R(P)$), then do it.
- Otherwise, do nothing.

Increasing tableaux promotion:

IncPro =
$$\dots \circ \rho_2 \circ \rho_1$$
.

- Generalizes promotion on linear extensions.
- Generalizes *K*-promotion on increasing tableaux.
- In case with largest global entry, can equivalently be described in terms of box sliding.

Toggle Promotion

Definition

Toggle order a function $H: P \to \mathbb{Z}$ where $p_1 < p_2 \implies H(p_1) \neq H(p_2)$.

Definition

 T_H^i is the product of all t_p for $p \in P$ such that H(p) = i.

Toggle-promotion(wrt H), called TogPro $_H$, is the toggle group action given by

$$\dots T_H^2 T_H^1 T_H^0 T_H^{-1} T_H^{-2} \dots$$

Bijection is equivariant

For $\Gamma(P,R)$, a natural toggle order is given by H((p,k))=k.

Theorem (Dilks, Striker, Vorland)

The map between $\operatorname{Inc}^R(P)$ and $J(\Gamma(P,R))$ equivariantly takes $\operatorname{IncPro}\ to\ \operatorname{TogPro}_H$.

Column Toggle Order

Definition

We say that a function $H: P \to \mathbb{Z}$ is a *column toggle order* if whenever $p_1 \lessdot p_2$ in P, then $H(p_1) = H(p_2) \pm 1$.

Theorem (Dilks, Striker, Vorland)

When H is a column toggle order, then $TogPro_H$ is conjugate to rowmotion.

Toggle Promotion (sometimes) conjugate to rowmotion

Theorem (Dilks, Striker, Vorland)

If R is a restriction function for P that consists of intervals (including global max entry), then the map $H : \Gamma(P,R) \to \mathbb{Z}$ given by $(p,k) \mapsto k$ is a column toggle order.

Therefore, rowmotion on $\Gamma(P,R)$ is conjugate to the corresponding toggle promotion.

Theorem

If P_1 and P_2 are ranked posets, then $H:P_1\times P_2:\to \mathbb{Z}$ given by $H((p_1,p_2))=\mathrm{rk}_{P_1}(p_1)-\mathrm{rk}_{P_2}(p_2)$ is a column toggle order.

Big result

Theorem (Dilks, Striker, Vorland)

Increasing promotion on $\operatorname{Inc}^R(P)$ is conjugate to rowmotion on $\Gamma(P,R)$ when R consists of intervals.

Background Previous Results Generalized Increasing Labelings

Thanks!