The Coxeter-biCatalan Kreweras Complement

Emily Barnard

Northeastern University

Special Session on Dynamical Algebraic Combinatorics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Lattice-Theoretic Kreweras Complement

Emily Barnard

Northeastern University

Special Session on Dynamical Algebraic Combinatorics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lattice-theoretic background

Definition

A lattice L is a poset such that for each pair of elements u and w

- the smallest upper bound or **join** $u \lor w$ exists and
- the greatest lower bound or **meet** $u \wedge w$ exists.

Convention

We consider only finite lattices. We write $\hat{1}$ for the top element and $\hat{0}$ for the bottom element.

Definition

An element $j \in L$ is **join-irreducible** if $j = \bigvee A$ implies $j \in A$.

The canonical join representation (CJR)

The **canonical join representation** of an element w in L is the unique lowest irredundant expression $\bigvee A = w$. More precisely:

- The expression $\bigvee A = w$ is a **join-representation** for *w*.
- The join $\bigvee A$ is **irredundant** if

$$\bigvee A' < \bigvee A$$
 for each proper subset $A' \subset A$.

- Observe that if $\bigvee A$ is irredundant then A is an antichain.
- For ∨ A and ∨ B irredundant, we say A is "lower" than B if the order ideal generated by A is contained in the order ideal generated by B.

Examples

- 日本 - 4 日本 - 4 日本 - 日本

What is the canonical join representation for the top element?

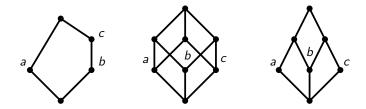


Figure: A Tamari lattice, a Boolean lattice, and the lattice L_6 .

Observation Each irredundant join of atoms is a canonical join representation.

Labeling the edges of L

Proposition [Barnard]

Suppose that $\bigvee A$ is the CJR of w. Then, for each $y \ll w$ there is a corresponding element $j \in A$ such that $j \lor y = w$. Moreover, j is the unique minimal element in L with this property. The map $y \mapsto j$ is a bijection.

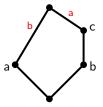


Figure: Labeling the edges in our Tamari lattice

Labeling the edges of L

Proposition [Barnard]

Suppose that $\bigvee A$ is the CJR of w. Then, for each $y \ll w$ there is a corresponding element $j \in A$ such that $j \lor y = w$. Moreover, j is the unique minimal element in L with this property. The map $y \mapsto j$ is a bijection.

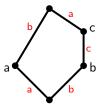


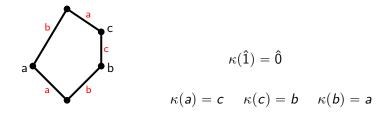
Figure: Labeling the edges in our Tamari lattice

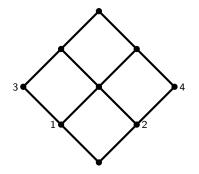
The κ operation on L

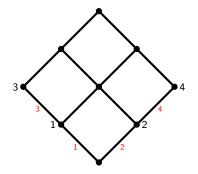
Definition/Theorem [Barnard]

Define a map $\kappa : L \rightarrow L$ as follows:

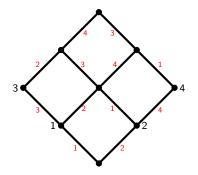
- Given $w \in L$, let A be the set of its down-edge labels.
- Let κ(w) be the element whose up-edges are labeled by precisely the same set A.

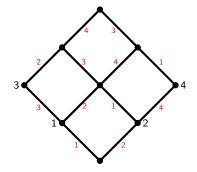


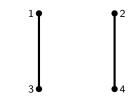




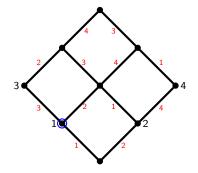
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

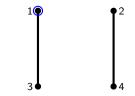




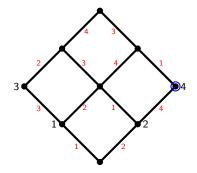


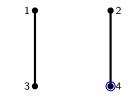
The dual of the poset $\ensuremath{\mathcal{P}}$ of join-irreducibles





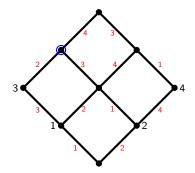
The dual of the poset ${\mathcal P}$ of join-irreducibles ${\rm Apply}\;\kappa\;{\rm to}\;1$

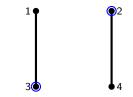




The dual of the poset $\ensuremath{\mathcal{P}}$ of join-irreducibles

 $\kappa(1) = 4$

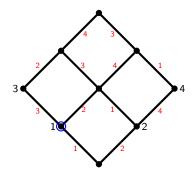


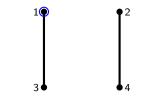


The dual of the poset \mathcal{P} of join-irreducibles

 $\kappa(1) = 4$ $\kappa(4) = \bigvee \{2, 3\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



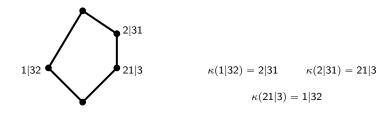


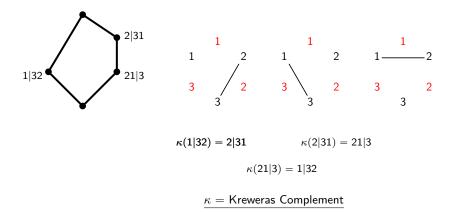
The dual of the poset $\ensuremath{\mathcal{P}}$ of join-irreducibles

 $\kappa(1) = 4$ $\kappa(4) = \bigvee \{2, 3\}$ $\kappa(\bigvee \{2, 3\}) = 1$

Applying $\kappa =$ Rowmotion on the dual of ${\cal P}$

- Reading constructed an explicit bijection from *c*-sortable elements to noncrossing partitions.
- This bijection is essentially $w \mapsto CJR(w)$.

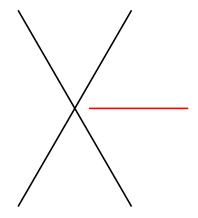


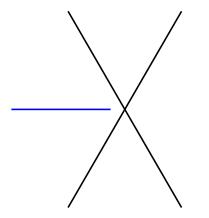


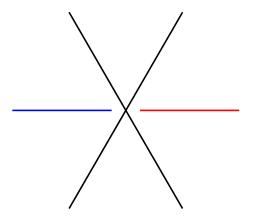
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 のへで

Coxeter biCatalan Combinatorics

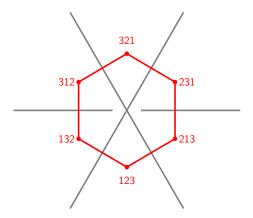
W-Catalan	W-biCatalan
Vertices of the	Vertices of the
generalized associahedron	generalized bi -associahedron
<i>c</i> -sortable elements in (W, S)	<i>c</i> - bi sortable elements in (W, S)
Elements in $NC(W, c)$	Certain pairs (x, y) :
	$x \in NC(W, c)$ and $y \in NC(W, c^{-1})$
Elements in $Camb(W, c)$	Elements in the <i>c</i> -biCambrian lattice,
	denoted biCamb (W, c)
Antichains in the root poset	Antichains in the doubled root poset







◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



The type A_3 biCambrian fan/lattice

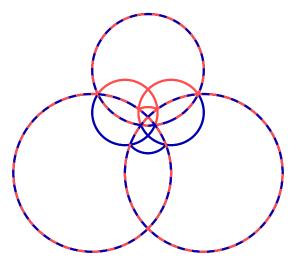


Figure: The bipartite biCambrian fan in type A_3

(ロ)、(型)、(E)、(E)、(E)、(O)()

When you have a hammer...

Definition

• Let $f : \mathbf{biCamb}(W, c) \to \mathbb{R}$ be the statistic

f(w) = the cardinality of the CJR(w)

Theorem

Let W be a finite irreducible Coxeter group of rank n and let **biCamb**(W, c) be the bipartite biCambrian lattice of type W. Then the triple (**biCamb** $(W, c), f, \kappa)$ is n/2-homomesic.

4日 + 4日 + 4日 + 4日 + 10 - 900

When you have a hammer...

- Define biNC(W, c) to be the subposet of the shard intersection order induced to the set of c-bisortable elements.
- Let κ : biNC(W, c) \rightarrow biNC(W, c) be induced from the lattice-theoretic κ operation acting on **biCamb**(W, c).

Theorem

Let c be a bipartite Coxeter element, and let W be a finite irreducible Coxeter group of rank n. Then biNC(W, c) satisfies:

- 1 biNC(W, c) is self-dual.
- **2** biNC(W, c) is ranked.
- 3 $\mathsf{rk}(w) = n \mathsf{rk}(\kappa(w))$
- **4** κ is a **lattice complement** on biNC(W, c) meaning that

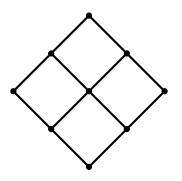
$$\kappa(w) \wedge w = \hat{0} \text{ and } \kappa(w) \lor w = \hat{1}.$$

Open Questions: The Doubled Root Poset

W-Catalan	W-biCatalan
Vertices of the	Vertices of the
generalized associahedron	generalized bi -associahedron
<i>c</i> -sortable elements in (W, S)	<i>c</i> - bi sortable elements in (W, S)
Elements in $NC(W, c)$	Certain pairs (x, y) :
	$x \in NC(W, c)$ and $y \in NC(W, c^{-1})$
Elements in $Camb(W, c)$	Elements in the <i>c</i> -biCambrian lattice,
	denoted $\mathbf{biCamb}(W, c)$
Antichains in the root poset	Antichains in the doubled root poset

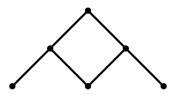
Open Question: The Doubled Root Poset

The doubled root poset in type A_3 :



Open Question: The Doubled Root Poset

The doubled root poset in type A_3 :

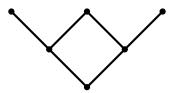


The root poset of type A_3

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Open Question: The Doubled Root Poset

The doubled root poset in type A_3 :

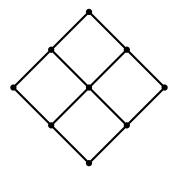


The dual of the root poset of type A_3

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Open Question: Doubled Root Poset

The doubled root poset in type A_3 :



Glue together at the simples

Open Question: Doubled Root Poset

Theorem [Armstrong, Stump, Thomas]

The Kreweras complement acting on NC(W, c) has the same orbit structure as romotion acting the antichains in the root poset.

Question

How do rowmotion-orbits of the antichains in the doubled root poset compare with κ -orbits of *c*-bisortable elements?

Thank you!