The Coxeter-biCatalan Kreweras Complement

Emily Barnard

Northeastern University
Special Session on Dynamical Algebraic Combinatorics

A Lattice-Theoretic Kreweras Complement

Emily Barnard

Northeastern University
Special Session on Dynamical Algebraic Combinatorics

Lattice-theoretic background

Definition

A lattice L is a poset such that for each pair of elements u and w

- the smallest upper bound or join $u \vee w$ exists and
- the greatest lower bound or meet $u \wedge w$ exists.

Convention

We consider only finite lattices. We write $\hat{1}$ for the top element and $\hat{0}$ for the bottom element.

Definition
An element $j \in L$ is join-irreducible if $j=\bigvee A$ implies $j \in A$.

The canonical join representation (CJR)

The canonical join representation of an element w in L is the unique lowest irredundant expression $\bigvee A=w$. More precisely:

- The expression $\bigvee A=w$ is a join-representation for w.
- The join $\bigvee A$ is irredundant if

$$
\bigvee A^{\prime}<\bigvee A \text { for each proper subset } A^{\prime} \subset A
$$

- Observe that if $\bigvee A$ is irredundant then A is an antichain.
- For $\bigvee A$ and $\bigvee B$ irredundant, we say A is "lower" than B if the order ideal generated by A is contained in the order ideal generated by B.

Examples

What is the canonical join representation for the top element?

Figure: A Tamari lattice, a Boolean lattice, and the lattice L_{6}.

Observation
Each irredundant join of atoms is a canonical join representation.

Labeling the edges of L

Proposition [Barnard]

Suppose that $\bigvee A$ is the CJR of w. Then, for each $y \lessdot w$ there is a corresponding element $j \in A$ such that $j \vee y=w$.
Moreover, j is the unique minimal element in L with this property. The map $y \mapsto j$ is a bijection.

Figure: Labeling the edges in our Tamari lattice

Labeling the edges of L

Proposition [Barnard]

Suppose that $\bigvee A$ is the CJR of w. Then, for each $y \lessdot w$ there is a corresponding element $j \in A$ such that $j \vee y=w$.
Moreover, j is the unique minimal element in L with this property. The map $y \mapsto j$ is a bijection.

Figure: Labeling the edges in our Tamari lattice

The κ operation on L

Definition/Theorem [Barnard]

Define a map $\kappa: L \rightarrow L$ as follows:

- Given $w \in L$, let A be the set of its down-edge labels.
- Let $\kappa(w)$ be the element whose up-edges are labeled by precisely the same set A.

$$
\begin{gathered}
\kappa(\hat{1})=\hat{0} \\
\kappa(a)=c \quad \kappa(c)=b \quad \kappa(b)=a
\end{gathered}
$$

The κ operation "in nature"

The κ operation "in nature"

The κ operation "in nature"

The κ operation "in nature"

The dual of the poset \mathcal{P} of join-irreducibles

The κ operation "in nature"

The dual of the poset \mathcal{P} of join-irreducibles
Apply κ to 1

The κ operation "in nature"

The dual of the poset \mathcal{P} of join-irreducibles

$$
\kappa(1)=4
$$

The κ operation "in nature"

$1 \varphi \underbrace{}_{4} \underbrace{2}_{0}$

The dual of the poset \mathcal{P} of join-irreducibles

$$
\begin{gathered}
\kappa(1)=4 \\
\kappa(4)=\bigvee\{2,3\}
\end{gathered}
$$

The κ operation "in nature"

The dual of the poset \mathcal{P} of join-irreducibles

$$
\begin{gathered}
\kappa(1)=4 \\
\kappa(4)=\bigvee\{2,3\} \\
\kappa(\bigvee\{2,3\})=1
\end{gathered}
$$

Applying $\kappa=$ Rowmotion on the dual of \mathcal{P}

The κ operation "in nature"

- Reading constructed an explicit bijection from c-sortable elements to noncrossing partitions.
- This bijection is essentially $w \mapsto \operatorname{CJR}(w)$.

$$
\begin{gathered}
\kappa(1 \mid 32)=2|31 \quad \kappa(2 \mid 31)=21| 3 \\
\kappa(21 \mid 3)=1 \mid 32
\end{gathered}
$$

The κ operation "in nature"

Coxeter biCatalan Combinatorics

W-Catalan	W-biCatalan
Vertices of the generalized associahedron	Vertices of the generalized bi-associahedron
c-sortable elements in (W, S)	c-bisortable elements in (W, S)
Elements in $N C(W, c)$	Certain pairs $(x, y):$ $x \in N C(W, c)$ and $y \in N C\left(W, c^{-1}\right)$
Elements in Camb (W, c)	Elements in the c-biCambrian lattice, denoted biCamb (W, c)
Antichains in the root poset	Antichains in the doubled root poset

$$
\bar{x}
$$

$$
\bar{X}
$$

$$
\bar{x}
$$

A biCambrian fan/lattice

The type A_{3} biCambrian fan/lattice

Figure: The bipartite biCambrian fan in type A_{3}

When you have a hammer...

Definition

- Let $f: \operatorname{biCamb}(W, c) \rightarrow \mathbb{R}$ be the statistic

$$
f(w)=\text { the cardinality of the } \operatorname{CJR}(w)
$$

Theorem
Let W be a finite irreducible Coxeter group of rank n and let biCamb (W, c) be the bipartite biCambrian lattice of type W. Then the triple (biCamb $(W, c), f, \kappa)$ is $n / 2$-homomesic.

When you have a hammer...

- Define $\operatorname{biNC}(W, c)$ to be the subposet of the shard intersection order induced to the set of c-bisortable elements.
- Let $\kappa: \operatorname{biNC}(W, c) \rightarrow \operatorname{biNC}(W, c)$ be induced from the lattice-theoretic κ operation acting on $\mathbf{b i C a m b}(W, c)$.

Theorem
Let c be a bipartite Coxeter element, and let W be a finite irreducible Coxeter group of rank n. Then $\operatorname{biNC}(W, c)$ satisfies:
(1) $\operatorname{biNC}(W, c)$ is self-dual.
(2) $\operatorname{biNC}(W, c)$ is ranked.
(3) $\mathrm{rk}(w)=n-\mathrm{rk}(\kappa(w))$
(4) κ is a lattice complement on $\operatorname{biNC}(W, c)$ meaning that

$$
\kappa(w) \wedge w=\hat{0} \text { and } \kappa(w) \vee w=\hat{1}
$$

Open Questions: The Doubled Root Poset

W-Catalan	W-biCatalan
Vertices of the generalized associahedron	Vertices of the generalized bi-associahedron
c-sortable elements in (W, S)	c-bisortable elements in (W, S)
Elements in $N C(W, c)$	Certain pairs $(x, y):$ $x \in N C(W, c)$ and $y \in N C\left(W, c^{-1}\right)$
Elements in Camb (W, c)	Elements in the c-biCambrian lattice, denoted biCamb (W, c)
Antichains in the root poset	Antichains in the doubled root poset

Open Question: The Doubled Root Poset

The doubled root poset in type A_{3} :

Open Question: The Doubled Root Poset

The doubled root poset in type A_{3} :

The root poset of type A_{3}

Open Question: The Doubled Root Poset

The doubled root poset in type A_{3} :

The dual of the root poset of type A_{3}

Open Question: Doubled Root Poset

The doubled root poset in type A_{3} :

Glue together at the simples

Open Question: Doubled Root Poset

Theorem [Armstrong, Stump, Thomas]
The Kreweras complement acting on $N C(W, c)$ has the same orbit structure as romotion acting the antichains in the root poset.

Question
How do rowmotion-orbits of the antichains in the doubled root poset compare with κ-orbits of c-bisortable elements?

Thank you!

