Permutations Realized by Dynamical Systems

Kate Moore

January 13, 2018

Example: $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 4x(1-x), initial condition $x_0 = .10$.

The pattern of length 5 for f at $x_0 = .10$ is $\pi = 13524$.

The pattern of length 5 for f at $x_0 = .10$ is $\pi = 13524$.

Motivation: Understand time series in the context of dynamical systems.

What are the allowed patterns?

Example: Let $T(x) = \min\{2x, 2(1-x)\}$.

What are the allowed patterns?

Example: Let $T(x) = \min\{2x, 2(1-x)\}$. (x, $T(x), T^{2}(x)$) = (.42, .84, .32) ~ 231

What are the allowed patterns?

Example: Let $T(x) = \min\{2x, 2(1-x)\}$. (x, $T(x), T^{2}(x)$) = (.42, .84, .32) ~ 231

What are the allowed patterns?

Example: Let $T(x) = \min\{2x, 2(1-x)\}$. (x, $T(x), T^{2}(x)$) = (.42, .84, .32) ~ 231

Best-known Bounds: (Elizalde & M.)

Notice: 321 is forbidden $\sim 3214, 4213, 126534...$ are forbidden.

Example:
$$F_2(x) = 2x \mod 1$$
. The point $x_0 = \frac{11}{31}$ is 5-periodic.
 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty}$

Example:
$$F_2(x) = 2x \mod 1$$
. The point $x_0 = \frac{11}{31}$ is 5-periodic.
 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \longrightarrow \pi = 14253$

Example:
$$F_2(x) = 2x \mod 1$$
. The point $x_0 = \frac{11}{31}$ is 5-periodic.
 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \longrightarrow \pi = 14253$

Example:
$$F_2(x) = 2x \mod 1$$
. The point $x_0 = \frac{11}{31}$ is 5-periodic.
 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \longrightarrow \pi = 14253$

Example:
$$F_2(x) = 2x \mod 1$$
. The point $x_0 = \frac{11}{31}$ is 5-periodic.
 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \longrightarrow \pi = 14253$

Example:
$$F_2(x) = 2x \mod 1$$
. The point $x_0 = \frac{11}{31}$ is 5-periodic.
 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \longrightarrow \pi = 14253$

Example:
$$F_2(x) = 2x \mod 1$$
. The point $x_0 = \frac{11}{31}$ is 5-periodic.
 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \longrightarrow \pi = 14253$

Other representatives of the periodic orbit give cyclic rotations of π .

 $\hat{\pi} = (1, 4, 2, 5, 3) = 45123 \in \mathcal{C}_5$

Key Idea: Cycles $\hat{\pi}$ obtained in this way have at most one descent.

Let $F_2(x) = 2x \mod 1$ and $I_0 = [0, \frac{1}{2})$, $I_1 = [\frac{1}{2}, 1)$. The itinerary for the 5-periodic orbit of $\frac{11}{31}$ is:

 $\left(\tfrac{11}{31},\tfrac{22}{31},\tfrac{13}{31},\tfrac{26}{31},\tfrac{21}{31}\right)^{\infty} \to \left(\begin{array}{ccc} 0 \ 1 \ 0 \ 1 \ 1 \end{array} \right)^{\infty}$

Which is the binary expansion:

$$\frac{11}{31} = \frac{0}{2} + \frac{1}{2^2} + \frac{0}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \dots$$

•
<u>/</u> →

Let $F_2(x) = 2x \mod 1$ and $I_0 = [0, \frac{1}{2})$, $I_1 = [\frac{1}{2}, 1)$. The itinerary for the 5-periodic orbit of $\frac{11}{31}$ is:

 $\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \to \left(\begin{array}{ccc} 0 \ 1 \ 0 \ 1 \ 1 \end{array}\right)^{\infty}$

Which is the binary expansion:

$$\frac{11}{31} = \frac{\mathbf{0}}{2} + \frac{\mathbf{1}}{2^2} + \frac{\mathbf{0}}{2^3} + \frac{\mathbf{1}}{2^4} + \frac{\mathbf{1}}{2^5} + \dots$$

(Gessel & Reutenauer, '93)

Binary necklaces with distinct rotations of length n

Cycles of length *n* with (at most) one descent

$$\pi = 261453 \longrightarrow \hat{\pi}^* = (\star, 6, 1, 4, 5, 3) = 46 \star 531$$

Key Idea: If $\pi \in \text{Allow}_n(T)$, then $\hat{\pi}^*$ is unimodal.

We ignore the value covered by \star .

(Except in the case that it is the first or last digit of $\hat{\pi}^*$.) 6

The transformation:

$$\pi = \pi_1 \pi_2 \dots \pi_n \longrightarrow \hat{\pi}^* = (\star, \pi_2, \dots, \pi_n) = \hat{\pi}_1^* \hat{\pi}_2^* \dots \hat{\pi}_n^*$$

We ignore the value covered by \star .

(Except in the case that it is the first or last digit of $\hat{\pi}^*$.)

Theorem (Elizalde & M.): $\pi \in \text{Allow}(\Sigma_{\sigma})$ if and only if $\hat{\pi}^*$ has the same monotonicity as σ and π is not " σ -collapsed."

Topological Entropy and Patterns

Suppose that $f : \mathbb{R} \to \mathbb{R}$ has finitely many monotone segments.

The topological entropy of f is

$$h^{\mathrm{top}}(f) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log(c_n),$$

where c_n is the number of monotone segments of f^n .

Example: $T(x) = \min\{2x, 2(1-x)\}$

$$c_n = 2^n \quad \rightsquigarrow \quad h^{\operatorname{top}}(T) = \log(2)$$

Topological Entropy and Patterns

Suppose that $f : \mathbb{R} \to \mathbb{R}$ has finitely many monotone segments.

The topological entropy of f is

$$h^{\mathrm{top}}(f) \coloneqq \lim_{n \to \infty} \frac{1}{n} \log(c_n),$$

where c_n is the number of monotone segments of f^n .

Example: $T(x) = \min\{2x, 2(1-x)\}\$

$$c_n = 2^n \quad \rightsquigarrow \quad h^{\mathrm{top}}(T) = \log(2)$$

Theorem: (Bandt, Keller & Pompe '02)

$$h^{\operatorname{top}}(f) = \lim_{n \to \infty} \frac{1}{n-1} \log(|\operatorname{Allow}_n(f)|).$$

Important Idea: We do not require knowledge of f to estimate the topological entropy using patterns.

Enumerating Allowed Patterns

Theorem (Elizalde):

$$\sum_{k=2}^{n} b(n,k) x^{k} = (1-x)^{n} \sum_{k \ge 2} p(n,k) x^{k},$$

where

$$p(n,k) = \sum_{i=1}^{n-1} k^{n-i-1} \psi_k(i) + (k-2)k^{n-2},$$

and $\psi_k(i)$ is the number of k-ary primitive words of length *i*.

Enumerating Allowed Patterns

Theorem (Elizalde & M.):

$$\sum_{k=2}^{n} \overline{b}(n,k) x^{k} = (1-x)^{n} \sum_{k\geq 2} \overline{p}(n,k) x^{k}.$$

where $\overline{p}(n,k)$ is equal to

$$\sum_{i=1}^{n-1} k^{n-i-1} \psi_k(i) + (k^2 - 2) k^{n-3} - 2 \sum_{j=1}^{k-1} j^{n-3} - 2 \sum_{\substack{c=1 \\ odd}}^{\lfloor \frac{n-j}{2} \rfloor} \sum_{j=1}^{k-1} {\binom{c+k-j-2}{k-j}} j^{n-2c-1} \psi_j(c),$$

and $\psi_k(i)$ is the number of k-ary primitive words of length i.

$n \setminus k$	2	3	4	5	6	7		n ∖ k	2	3	4	5	6	7
3	6						1	3	6					
4	18	6					1	4	20	4				
5	48	66	6				1	5	54	62	4			
6	126	402	186	6			1	6	140	408	168	4		
7	306	2028	2232	468	6		1	7	336	2084	2208	408	4	
8	738	8790	19426	10212	1098	6	1	8	800	9152	19580	9820	964	4

Values of b(n, k) (left) and $\overline{b}(n, k)$ (right).

Corollary: The smallest forbidden patterns of $F_k(x) = kx \mod 1$ and $G_k(x) = -kx \mod 1$ are of length k + 2.

Proposed Goal: Use patterns to obtain lower bounds on entropy in certain settings (e.g. shifts, unimodal, continuous, ...).

Relations with: Lower bound on entropy for any continuous map containing a periodic point with the given cycle structure, $\hat{\pi}$.

(Sarkovskii, Baldwin, and many others in the 80s).

Lower Bounds on Entropy Using Patterns

For $\beta > 1$, consider $F_{\beta}(x) = \beta x \mod 1$ and $G_{\beta}(x) = -\beta x \mod 1$.

Example: If we suppose our time series is generated by G_β and we observe $\pi = 15237864$, then we must have had

 $\beta \ge 3.154$,

the largest real root of

$$P_{\pi}(x) = x^{4} - 4x^{3} + 3x^{2} - 2x + 3.$$
 12

<u>Thank You</u>

Dynamical interpretation of combinatorial problems.

Binary necklaces with distinct rotations of length n

Cycles of length n with (at most) one descent

Permutation-based techniques for estimating entropy of time series.

The permutation entropy (re-scaled) of a time series $\{X_t\}_{t=1}^N$ is

$$\mathsf{PE}_n(X) \coloneqq \frac{1}{n-1} \sum_{\pi \in \mathcal{S}_n} -p_\pi \log(p_\pi),$$

where p_{π} is the relative frequency of π in $\{X_t\}_{t=1}^N$.

Pattern analog of the metric entropy of iterated interval map [BKP].

Permutation Entropy

The permutation entropy (re-scaled) of a time series $\{X_t\}_{t=1}^N$ is

$$\mathsf{PE}_n(X) \coloneqq \frac{1}{n-1} \sum_{\pi \in \mathcal{S}_n} -p_\pi \log(p_\pi),$$

where p_{π} is the relative frequency of π in $\{X_t\}_{t=1}^N$.

Pattern analog of the metric entropy of iterated interval map [BKP].

Permutation Entropy

The permutation entropy (re-scaled) of a time series $\{X_t\}_{t=1}^N$ is

$$\mathsf{PE}_n(X) \coloneqq \frac{1}{n-1} \sum_{\pi \in \mathcal{S}_n} -p_\pi \log(p_\pi),$$

where p_{π} is the relative frequency of π in $\{X_t\}_{t=1}^N$.

Pattern analog of the metric entropy of iterated interval map [BKP].

Permutation Entropy

The permutation entropy (re-scaled) of a time series $\{X_t\}_{t=1}^N$ is

$$\mathsf{PE}_n(X) \coloneqq \frac{1}{n-1} \sum_{\pi \in \mathcal{S}_n} -p_\pi \log(p_\pi),$$

where p_{π} is the relative frequency of π in $\{X_t\}_{t=1}^N$.

Pattern analog of the metric entropy of iterated interval map [BKP]. In the case of an iterated map, $PE_n(X)$ converges to the metric entropy of f:

$$h^{\mathrm{met}}(f) \coloneqq \lim_{n \to \infty} \frac{1}{n} \sum_{I_{\mathcal{K}} \in \mathcal{P}_n} -\mathbb{P}(I_{\mathcal{K}}) \log(\mathbb{P}(I_{\mathcal{K}})),$$

where \mathcal{P}_n is the set of montone segments of f^n and probabilities are determined by an invariant measure, $\mu(f^{-1}(A)) = \mu(A)$ [BKP].

The smallest forbidden patterns of $F_4(x) = 4x \mod 1$ are

615243, 324156, 342516, 162534, 453621, 435261.

The smallest forbidden patterns of $G_4(x) = -4x \mod 1$ are

123456, 654321, 123465, 654312.

Signed Shifts

Theorem (Elizalde & M.): $\pi \in \text{Allow}(\Sigma_{\sigma})$ if and only if $\hat{\pi}^*$ has the same monotonicity as σ and π is not " σ -collapsed."

Example: (Collapsed) Consider $G_2(x) = -2x \mod 1$, i.e. Σ_{--} . $\pi = 15423 \longrightarrow \hat{\pi}^* = (\star, 5, 4, 2, 3) = 53 \star 24$.

Itinerary must begin 0100, but the ending must satisfy