Permutations Realized by Dynamical Systems

Kate Moore
January 13, 2018

Overview

Example: $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=4 x(1-x)$, initial condition $x_{0}=.10$.

Overview

Example: $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=4 x(1-x)$, initial condition $x_{0}=.10$. $x_{0}=.10$
$f\left(x_{0}\right)=.36$
$f\left(f\left(x_{0}\right)\right)=.92$
$f^{3}\left(x_{0}\right)=.29$
$f^{4}\left(x_{0}\right)=.82$

Overview

Example: $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=4 x(1-x)$, initial condition $x_{0}=.10$.

The pattern of length 5 for f at $x_{0}=.10$ is $\pi=13524$.

Overview

Example: $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=4 x(1-x)$, initial condition $x_{0}=.10$.

The pattern of length 5 for f at $x_{0}=.10$ is $\pi=13524$.

Motivation: Understand time series in the context of dynamical systems.

Allowed Patterns

What are the allowed patterns?
Example: Let $T(x)=\min \{2 x, 2(1-x)\}$.

Allowed Patterns

What are the allowed patterns?
Example: Let $T(x)=\min \{2 x, 2(1-x)\}$. $\left(x, \mathbf{T}(x), \mathbf{T}^{2}(\mathbf{x})\right)=(.42, .84, .32) \leadsto 231$

Allowed Patterns

What are the allowed patterns?
Example: Let $T(x)=\min \{2 x, 2(1-x)\}$. $\left(x, \mathbf{T}(x), \mathbf{T}^{2}(\mathbf{x})\right)=(.42, .84, .32) \leadsto 231$

Allowed Patterns

What are the allowed patterns?
Example: Let $T(x)=\min \{2 x, 2(1-x)\}$. $\left(\mathrm{x}, \mathbf{T}(\mathrm{x}), \mathbf{T}^{2}(\mathbf{x})\right)=(.42, .84, .32) \leadsto 231$

Allowed Patterns

What are the allowed patterns?
Example: Let $T(x)=\min \{2 x, 2(1-x)\}$. $\left(\mathrm{x}, \mathbf{T}(\mathrm{x}), \mathbf{T}^{2}(\mathbf{x})\right)=(.42, .84, .32) \leadsto 231$

n	3	4	5	6	7	8	10	12
\mid Allow $_{n}(T) \mid$	5	12	31	75	178	414	2137	10,525

Best-known Bounds: (Elizalde \& M.)
Notice: 321 is forbidden $\leadsto \underline{3214}, \underline{421} 3,12 \underline{653} 4 \ldots$ are forbidden.

Permutation Structure of Periodic Points

Example: $F_{2}(x)=2 x \bmod 1$. The point $x_{0}=\frac{11}{31}$ is 5 -periodic.

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty}
$$

Permutation Structure of Periodic Points

Example: $F_{2}(x)=2 x \bmod 1$. The point $x_{0}=\frac{11}{31}$ is 5 -periodic.

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \quad \longrightarrow \quad \pi=14253
$$

Other representatives of the periodic orbit give cyclic rotations of π.

Permutation Structure of Periodic Points

Example: $F_{2}(x)=2 x \bmod 1$. The point $x_{0}=\frac{11}{31}$ is 5 -periodic.

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \quad \longrightarrow \quad \pi=14253
$$

Other representatives of the periodic orbit give cyclic rotations of π.

Permutation Structure of Periodic Points

Example: $F_{2}(x)=2 x \bmod 1$. The point $x_{0}=\frac{11}{31}$ is 5 -periodic.

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \quad \longrightarrow \quad \pi=14253
$$

Other representatives of the periodic orbit give cyclic rotations of π.

Permutation Structure of Periodic Points

Example: $F_{2}(x)=2 x \bmod 1$. The point $x_{0}=\frac{11}{31}$ is 5 -periodic.

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \quad \longrightarrow \quad \pi=14253
$$

Other representatives of the periodic orbit give cyclic rotations of π.

Permutation Structure of Periodic Points

Example: $F_{2}(x)=2 x \bmod 1$. The point $x_{0}=\frac{11}{31}$ is 5 -periodic.

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \quad \longrightarrow \quad \pi=14253
$$

Other representatives of the periodic orbit give cyclic rotations of π.

Permutation Structure of Periodic Points

Example: $F_{2}(x)=2 x \bmod 1$. The point $x_{0}=\frac{11}{31}$ is 5 -periodic.

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \quad \longrightarrow \quad \pi=14253
$$

Other representatives of the periodic orbit give cyclic rotations of π.

$$
\hat{\pi}=(1,4,2,5,3)=45123 \in \mathcal{C}_{5}
$$

Key Idea: Cycles $\hat{\pi}$ obtained in this way have at most one descent.

Permutation Structure of Periodic Points

Let $F_{2}(x)=2 x \bmod 1$ and $I_{0}=\left[0, \frac{1}{2}\right), \mathrm{I}_{1}=\left[\frac{1}{2}, 1\right)$.
The itinerary for the 5 -periodic orbit of $\frac{11}{31}$ is:

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \rightarrow\left(\begin{array}{l}
0 \\
1
\end{array} 011\right)^{\infty}
$$

Which is the binary expansion:

$$
\frac{11}{31}=\frac{0}{2}+\frac{1}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\ldots
$$

Permutation Structure of Periodic Points

Let $F_{2}(x)=2 x \bmod 1$ and $\mathrm{I}_{0}=\left[0, \frac{1}{2}\right), \mathrm{I}_{1}=\left[\frac{1}{2}, 1\right)$.
The itinerary for the 5 -periodic orbit of $\frac{11}{31}$ is:

$$
\left(\frac{11}{31}, \frac{22}{31}, \frac{13}{31}, \frac{26}{31}, \frac{21}{31}\right)^{\infty} \rightarrow(01011)^{\infty}
$$

Which is the binary expansion:

$$
\frac{11}{31}=\frac{0}{2}+\frac{1}{2^{2}}+\frac{0}{2^{3}}+\frac{1}{2^{4}}+\frac{1}{2^{5}}+\ldots .
$$

(Gessel \& Reutenauer, '93)

Binary necklaces with distinct rotations of length n

Cycles of length n with (at most) one descent

The Shape of Patterns

Example: $T(x)=\min \{2 x, 2(1-x)\}$ and initial condition $x_{0}=.42$.

$$
\pi=261453
$$

The Shape of Patterns

Example: $T(x)=\min \{2 x, 2(1-x)\}$ and initial condition $x_{0}=.42$.

$$
\pi=261453
$$

The Shape of Patterns

Example: $T(x)=\min \{2 x, 2(1-x)\}$ and initial condition $x_{0}=.42$.

$$
\pi=261453
$$

The Shape of Patterns

Example: $T(x)=\min \{2 x, 2(1-x)\}$ and initial condition $x_{0}=.42$.

$$
\pi=261453
$$

The Shape of Patterns

Example: $T(x)=\min \{2 x, 2(1-x)\}$ and initial condition $x_{0}=.42$.

$$
\pi=261453
$$

The Shape of Patterns

Example: $T(x)=\min \{2 x, 2(1-x)\}$ and initial condition $x_{0}=.42$.

Key Idea: If $\pi \in \operatorname{Allow}_{n}(T)$, then $\hat{\pi}^{\star}$ is unimodal.
We ignore the value covered by $*$.
(Except in the case that it is the first or last digit of $\hat{\pi}^{\star}$.)

Signed Shifts

The transformation:

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \longrightarrow \hat{\pi}^{\star}=\left(\star, \pi_{2}, \ldots, \pi_{n}\right)=\hat{\pi}_{1}^{\star} \hat{\pi}_{2}^{\star} \ldots \hat{\pi}_{n}^{\star}
$$

We ignore the value covered by $*$.
(Except in the case that it is the first or last digit of $\hat{\pi}^{\star}$.)

Theorem (Elizalde \& M.): $\pi \in \operatorname{Allow}\left(\Sigma_{\sigma}\right)$ if and only if $\hat{\pi}^{\star}$ has the same monotonicity as σ and π is not " σ-collapsed."

$\sigma=+++$
$F_{3}(x)=3 x \bmod 1$

$\sigma=--$
$G_{2}(x)=-2 x \bmod 1$

$\sigma=+-$

$\sigma=-+++$

Tent Map

Topological Entropy and Patterns

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ has finitely many monotone segments.
The topological entropy of f is

$$
h^{\text {top }}(f):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(c_{n}\right)
$$

where c_{n} is the number of monotone segments of f^{n}.
Example: $T(x)=\min \{2 x, 2(1-x)\}$

$$
c_{n}=2^{n} \leadsto h^{\mathrm{top}}(T)=\log (2)
$$

Topological Entropy and Patterns

Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ has finitely many monotone segments.
The topological entropy of f is

$$
h^{\mathrm{top}}(f):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(c_{n}\right)
$$

where c_{n} is the number of monotone segments of f^{n}.
Example: $T(x)=\min \{2 x, 2(1-x)\}$

$$
c_{n}=2^{n} \leadsto h^{\operatorname{top}}(T)=\log (2)
$$

Theorem: (Bandt, Keller \& Pompe '02)

$$
h^{\text {top }}(f)=\lim _{n \rightarrow \infty} \frac{1}{n-1} \log \left(\left|\operatorname{Allow}_{n}(f)\right|\right)
$$

Important Idea: We do not require knowledge of f to estimate the topological entropy using patterns.

Enumerating Allowed Patterns

Theorem (Elizalde):

$$
\sum_{k=2}^{n} b(n, k) x^{k}=(1-x)^{n} \sum_{k \geq 2} p(n, k) x^{k}
$$

where

$$
p(n, k)=\sum_{i=1}^{n-1} k^{n-i-1} \psi_{k}(i)+(k-2) k^{n-2}
$$

and $\psi_{k}(i)$ is the number of k-are primitive words of length i.

Enumerating Allowed Patterns

Theorem (Elizalde \& M.):

$$
\sum_{k=2}^{n} \bar{b}(n, k) x^{k}=(1-x)^{n} \sum_{k \geq 2} \bar{p}(n, k) x^{k}
$$

where $\bar{p}(n, k)$ is equal to
$\sum_{i=1}^{n-1} k^{n-i-1} \psi_{k}(i)+\left(k^{2}-2\right) k^{n-3}-2 \sum_{j=1}^{k-1} j^{n-3}-2 \sum_{\substack{c=1 \\ \text { odd }}}^{\left\lfloor\frac{n-1}{2}\right\rfloor} \sum_{j=1}^{k-1}\binom{c+k-j-2}{k-j} j^{n-2 c-1} \psi_{j}(c)$,
and $\psi_{k}(i)$ is the number of k-ary primitive words of length i.

Enumerating Allowed Patterns (cont.)

$n \backslash k$	2	3	4	5	6	7
3	6					
4	18	6				
5	48	66	6			
6	$\mathbf{1 2 6}$	$\mathbf{4 0 2}$	$\mathbf{1 8 6}$	6		
7	306	2028	2232	468	6	
8	738	8790	19426	10212	1098	6

$n \backslash k$	2	3	4	5	6	7
3	6					
4	20	4				
5	54	62	4			
6	$\mathbf{1 4 0}$	$\mathbf{4 0 8}$	$\mathbf{1 6 8}$	4		
7	336	2084	2208	408	4	
8	800	9152	19580	9820	964	4

Values of $b(n, k)$ (left) and $\bar{b}(n, k)$ (right).

Corollary: The smallest forbidden patterns of $F_{k}(x)=k x \bmod 1$ and $G_{k}(x)=-k x \bmod 1$ are of length $k+2$.
\because

Lower Bounds on Entropy Using Patterns

Proposed Goal: Use patterns to obtain lower bounds on entropy in certain settings (e.g. shifts, unimodal, continuous, ...).

Relations with: Lower bound on entropy for any continuous map containing a periodic point with the given cycle structure, $\hat{\pi}$.
(Sarkovskii, Baldwin, and many others in the 80s).

Lower Bounds on Entropy Using Patterns

For $\beta>1$, consider $F_{\beta}(x)=\beta x \bmod 1$ and $G_{\beta}(x)=-\beta x \bmod 1$.

Example: If we suppose our time series is generated by G_{β} and we observe $\pi=15237864$, then we must have had

$$
\beta \geq 3.154
$$

the largest real root of

$$
P_{\pi}(x)=x^{4}-4 x^{3}+3 x^{2}-2 x+3
$$

Thank You

Dynamical interpretation of combinatorial problems.

Binary necklaces with distinct rotations of length n

Cycles of length n with (at most) one descent

Permutation-based techniques for estimating entropy of time series.

Permutation Entropy

The permutation entropy (re-scaled) of a time series $\left\{X_{t}\right\}_{t=1}^{N}$ is

$$
\mathrm{PE}_{n}(X):=\frac{1}{n-1} \sum_{\pi \in \mathcal{S}_{n}}-p_{\pi} \log \left(p_{\pi}\right)
$$

where p_{π} is the relative frequency of π in $\left\{X_{t}\right\}_{t=1}^{N}$.
Pattern analog of the metric entropy of iterated interval map [BKP].

Permutation Entropy

The permutation entropy (re-scaled) of a time series $\left\{X_{t}\right\}_{t=1}^{N}$ is

$$
\mathrm{PE}_{n}(X):=\frac{1}{n-1} \sum_{\pi \in \mathcal{S}_{n}}-p_{\pi} \log \left(p_{\pi}\right)
$$

where p_{π} is the relative frequency of π in $\left\{X_{t}\right\}_{t=1}^{N}$.
Pattern analog of the metric entropy of iterated interval map [BKP].

Permutation Entropy

The permutation entropy (re-scaled) of a time series $\left\{X_{t}\right\}_{t=1}^{N}$ is

$$
\mathrm{PE}_{n}(X):=\frac{1}{n-1} \sum_{\pi \in \mathcal{S}_{n}}-p_{\pi} \log \left(p_{\pi}\right)
$$

where p_{π} is the relative frequency of π in $\left\{X_{t}\right\}_{t=1}^{N}$.
Pattern analog of the metric entropy of iterated interval map [BKP].

Permutation Entropy

The permutation entropy (re-scaled) of a time series $\left\{X_{t}\right\}_{t=1}^{N}$ is

$$
\mathrm{PE}_{n}(X):=\frac{1}{n-1} \sum_{\pi \in \mathcal{S}_{n}}-p_{\pi} \log \left(p_{\pi}\right)
$$

where p_{π} is the relative frequency of π in $\left\{X_{t}\right\}_{t=1}^{N}$.
Pattern analog of the metric entropy of iterated interval map [BKP].
In the case of an iterated map, $\mathrm{PE}_{n}(X)$ converges to the metric entropy of f :

$$
h^{\mathrm{met}}(f):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{I_{K} \in \mathcal{P}_{n}}-\mathbb{P}\left(I_{K}\right) \log \left(\mathbb{P}\left(I_{K}\right)\right)
$$

where \mathcal{P}_{n} is the set of montone segments of f^{n} and probabilities are determined by an invariant measure, $\mu\left(f^{-1}(A)\right)=\mu(A)$ [BKP].

Minimal Forbidden

The smallest forbidden patterns of $F_{4}(x)=4 x \bmod 1$ are

$$
615243,324156,342516,162534,453621,435261 .
$$

The smallest forbidden patterns of $G_{4}(x)=-4 x \bmod 1$ are 123456, 654321, 123465, 654312.

Signed Shifts

Theorem (Elizalde \& M.): $\pi \in \operatorname{Allow}\left(\Sigma_{\sigma}\right)$ if and only if $\hat{\pi}^{\star}$ has the same monotonicity as σ and π is not " σ-collapsed."

$\sigma=+++$

$\sigma=--$

$$
G_{2}(x)=-2 x \bmod 1
$$

$F_{3}(x)=3 x \bmod 1 \quad G_{2}(x)=-2 x \bmod 1$

$\sigma=+-$ Tent Map

$\sigma=-+++$

Example: (Collapsed) Consider $G_{2}(x)=-2 x \bmod 1$, i.e. Σ_{--}.

$$
\pi=15423 \longrightarrow \hat{\pi}^{\star}=(\star, 5,4,2,3)=53 \star 24
$$

Itinerary must begin 0100, but the ending must satisfy

$$
0 w_{[5, \infty)}<\text { alt } w_{[5, \infty)}<\text { alt } 00 w_{[5, \infty)} \leadsto w_{[5, \infty)}=0^{\infty} .
$$

Pattern of length 5 for $01000^{\infty} \leftrightarrow \frac{7}{12}$ not defined:

$$
\left(x, G_{2}(x), \ldots G_{2}^{4}(x)\right)=\left(\frac{7}{12}, \frac{5}{6}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) .
$$

