A flag variety for the Delta Conjecture

Brendon Rhoades (Joint with Brendan Pawlowski)

UCSD

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

- 1. Permutations
 - algebra
 - geometry
- 2. Ordered Set Partitions
 - algebra
 - geometry
- 3. Delta Conjecture

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Symmetric polynomials

 S_n acts on $\mathbb{Q}[\mathbf{x}_n] := \mathbb{Q}[x_1, \dots, x_n]$ by permuting variables.

 $\mathbb{Q}[\mathbf{x}_n]^{S_n} = \{ \text{symmetric polynomials in } x_1, \dots, x_n \}.$

$$e_d = \sum_{1 \leq i_1 < \cdots < i_d \leq n} x_{i_1} \cdots x_{i_d}.$$

Thm: [Newton] $\{e_1, e_2, \ldots, e_n\}$ is an algebraically independent generating set of $\mathbb{Q}[\mathbf{x}_n]^{S_n}$.

Coinvariant algebra

 S_n acts on $\mathbb{Q}[\mathbf{x}_n] := \mathbb{Q}[x_1, \dots, x_n]$ by permuting variables.

The invariant ideal $I_n \subseteq \mathbb{Q}[\mathbf{x}_n]$ is

$$egin{aligned} & I_n := \langle \mathbb{Q}[\mathbf{x}_n]^{S_n}_+
angle \ &= \langle e_1, e_2, \dots, e_n
angle \end{aligned}$$

The coinvariant algebra is $R_n := \mathbb{Q}[\mathbf{x}_n]/I_n$.

Thm: [Chevalley] We have

$$R_n \cong \mathbb{Q}[S_n].$$

Graded Frobenius Image

Thm: [Chevalley] We have $R_n \cong \mathbb{Q}[S_n]$ as ungraded S_n -modules.

Q: What about the *graded* isomorphism type?

$$maj(T) = 3 + 5 + 6 = 14$$

 $des(T) = 3.$

Graded Frobenius Image

Q: Recall $R_n \cong \mathbb{Q}[S_n]$. What about the *graded* isomorphism type?

Thm: (Lusztig-Stanley) We have

$$grFrob(R_n; q) = \sum_{T \in SYT(n)} q^{maj(T)} \cdot s_{sh(T)}(\mathbf{x}).$$

$$\boxed{1 \ 2 \ 3} \quad \boxed{\frac{1 \ 3}{2}} \quad \boxed{\frac{1}{3}} \quad \boxed{\frac{1}{2}}$$

$$grFrob(R_3; q) = q^0 \cdot s_{(3)}(\mathbf{x}) + q^1 \cdot s_{(2,1)}(\mathbf{x}) + q^2 \cdot s_{(2,1)}(\mathbf{x}) + q^3 \cdot s_{(1,1,1)}(\mathbf{x}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Flag Variety

$$\mathcal{F}\ell(n) = \{0 = V_0 \subset V_1 \subset \cdots \subset V_n = \mathbb{C}^n : \dim(V_i) = i\}$$
$$= GL_n/B$$

Thm: [Ehresmann] The Schubert cells $\{X_w : w \in S_n\}$ where X(w) = BwB/B

give a CW decomposition of $\mathcal{F}\ell(n)$.

Thm: [Borel] We have $H^{\bullet}(F\ell(n)) \cong R_n^{\mathbb{Z}}$ via $x_i \leftrightarrow -c_1(V_i/V_{i-1})$. (Even as S_n -modules via Springer action.)

Ordered Set Partitions

Def: An *ordered set partition* is set partition of [n] with a total order on its blocks.

Ex:

(135 | 6 | 24)

is an ordered set partition of [6] with 3 blocks.

 $\mathcal{OP}_{n,k} := \{ \text{all ordered set partitions } \sigma \models [n] \text{ with } k \text{ blocks} \}.$

 $|\mathcal{OP}_{n,k}| = k! \cdot \text{Stir}(n,k).$ (No nice product formula.)

Q: Is there a nice quotient of $\mathbb{Q}[\mathbf{x}_n]$ reflecting the combinatorics of $\mathcal{OP}_{n,k}$?

New Generalized Coinvariant Algebra

Defn: [Haglund-R-Shimozono] For $k \leq n$, $I_{n,k} \subseteq \mathbb{Q}[\mathbf{x}_n]$ is the ideal

$$I_{n,k} := \langle e_n, e_{n-1}, \ldots, e_{n-k+1}, x_1^k, x_2^k, \ldots, x_n^k \rangle.$$

The ring $R_{n,k}$ is the corresponding quotient.

$$R_{n,k} = \mathbb{Q}[\mathbf{x}_n]/I_{n,k}$$

R_{n,k} is a graded 𝔅_n-module
R_{n,1} =
$$\frac{\mathbb{Q}[\mathbf{x}_n]}{\langle x_1, x_2, ..., x_n \rangle} \cong \mathbb{Q}.$$
I_{n,n} = *I_n* and *R_{n,n}* = *R_n*.

Thm: [Haglund-R-Shimozono] $R_{n,k} \cong \mathbb{Q}[\mathcal{OP}_{n,k}]$ as ungraded S_n -modules. (Graded structure?)

Graded structure of $R_{n,k}$

Q: What about the graded S_n -module structure?

Thm: [Haglund-R-Shimozono]

$$\operatorname{grFrob}(R_{n,k};q) = \sum_{T \in \operatorname{SYT}(n)} q^{\operatorname{maj}(T)} {n - \operatorname{des}(T) - 1 \brack n - k} q^{\operatorname{s}_{\operatorname{sh}(T)}}(\mathbf{x}).$$

Rmk: Proof uses an RSK argument due to Wilson.

Rmk: Meyer has an Adin-Brenti-Roichman style refinement of this result.

Rmk: Benkart-Colmenarejo-Harris-Orellana-Panova-Schilling-Yip have a crystal theoretic interpretation.

Geometric Wishful Thinking

Q: Is there a variety $X_{n,k}$ with $H^{\bullet}(X_{n,k}) \cong R_{n,k}^{\mathbb{Z}}$ as graded S_n -modules?

- When k = n, the flag manifold *Fℓ(n)* works with Springer action.
- When k = 1, can take $X_{n,1} = \{*\}$.

Hilb $(R_{n,k}; q)$ is not always palindromic:

$$Hilb(R_{3,2}) = 1 + 3q + 2q^2$$

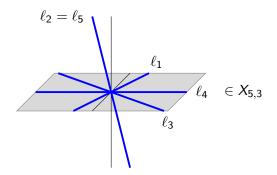
 $\Rightarrow X_{n,k}$ cannot be a compact complex manifold.

Wish Granted!

Def: For $k \leq n$, let $X_{n,k}$ be the space of *line configurations*

 $X_{n,k} := \{ (\ell_1, \dots, \ell_n) : \ell_i \text{ a line in } \mathbb{C}^k \text{ and } \ell_1 + \dots + \ell_n = \mathbb{C}^k \}.$

 S_n acts by permuting lines.



Thm: [PR] $H^{\bullet}(X_{n,k}) = R_{n,k}^{\mathbb{Z}}$ via $x_i \leftrightarrow -c_1(\ell_i)$ as graded rings or S_n -modules.

Representation Stability

Def: For $k \leq n$, let $X_{n,k}$ be the space of *line configurations*

 $X_{n,k} := \{ (\ell_1, \ldots, \ell_n) : \ell_i \text{ a line in } \mathbb{C}^k \text{ and } \ell_1 + \cdots + \ell_n = \mathbb{C}^k \}.$

We have S_n -equivariant embeddings

$$X_{n,k} \hookrightarrow X_{n+1,k}$$

 $X_{n,k} \hookrightarrow X_{n+1,k+1}$

Fact: [PR] The towers

$$H^{ullet}(X_{n,k}) \hookrightarrow H^{ullet}(X_{n+1,k})$$

 $H^{ullet}(X_{n,k}) \hookrightarrow H^{ullet}(X_{n+1,k+1})$

exhibit representation stability. (Geometric proof?)

Structure of $X_{n,k}$

Def: [PR] For $k \leq n$, let $X_{n,k}$ be the space of 'line configurations' $X_{n,k} = \{(\ell_1, \dots, \ell_n) : \ell_i \text{ a line in } \mathbb{C}^k \text{ and } \ell_1 + \dots + \ell_n = \mathbb{C}^k\}.$

Thm: [PR] $X_{n,k}$ has a *paving by affines* with cells C_w indexed by *Fubini words* $w = w_1 \dots w_n \in [k]^n$ (i.e., all the letters $1, 2, \dots, k$ appear in w).

Ex: (n, k) = (7, 3) and w = 2331231: $C_w = \begin{pmatrix} 1 & 0 & 0 \\ \star & 1 & 0 \\ \star & \star & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & \star & \star & 0 & 1 & \star & \star \\ 0 & 1 & 1 & 0 & 0 & 1 & \star \end{pmatrix}.$

Word Schubert Polynomials

Q: If $w = w_1 \dots w_n \in [k]^n$ is a Fubini word, what is the class $[\overline{C}_w] \in H^{\bullet}(X_{n,k}) = \mathbb{R}_{n,k}^{\mathbb{Z}}$?

$$w = 2331231 \in [3]^7$$

 $\operatorname{conv}(w) = 2233311$
 $\operatorname{st}(\operatorname{conv}(w)) = 2435617 \in S_7$
 $\sigma(w) = 1523647 \in S_7$

Thm: [PR] The class $[\overline{C}_w]$ is represented by

$$\mathfrak{S}_{w} := \sigma(w)^{-1} \cdot \mathfrak{S}_{\mathrm{st(conv}(w))} \in \mathbb{Z}[\mathbf{x}_{n}].$$

Cor: [PR] { $\mathfrak{S}_w : w \in [k]^n$ Fubini} descends to a basis for $R_{n,k}^{\mathbb{Z}}$.

The Diagonal Coinvariants

Let
$$S_n$$
 act on $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ diagonally:
 $w.x_i := x_{w_i}$
 $w.y_i := y_{w_i}$.

Def: The *diagonal coinvariant module* is the bigraded S_n -representation

$$DR_n := \mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n] / \langle \mathbb{Q}[\mathbf{x}_n, \mathbf{y}_n]^{S_n}_+ \rangle.$$

Thm: [Haiman] We have dim $(DR_n) = (n+1)^{n-1}$. In fact (up to sign twist), DR_n is isomorphic to the permutation action of S_n on size *n* parking functions.

Bigraded Characters

Q: What is the bigraded S_n -module structure of DR_n ?

Thm: [Haiman] The bigraded Frobenius series of DR_n is $\nabla(e_n)$, where ∇ is the Bergeron-Garsia nabla operator on symmetric functions (a *Macdonald eigenoperator*).

Problem: Expand $\nabla(e_n)$ in the Schur basis $\{s_{\lambda} : \lambda \vdash n\}$:

$$abla(e_n) = \sum_{\lambda \vdash n} c_\lambda(q, t) s_\lambda.$$

When λ is a *hook*, Haglund's *q*, *t*-Schröder Theorem gives an answer. No *conjecture* in general.

The Shuffle Theorem

'If symmetric functions are too hard, work with quasisymmetric functions.'

Thm: [Carlsson-Mellit] ('Shuffle Theorem') We have that

$$abla(e_n) = \sum_{P \in \operatorname{Park}_n} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)} F_{\operatorname{iDes}(P)}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The *Delta Conjecture* is a (conjectural) generalization of the Shuffle Theorem.

Delta Operators

- Λ_n = symmetric functions in $(x_1, x_2, ...)$ of degree n.
- $\{\widetilde{H}_{\mu} : \mu \vdash n\} = \text{modified Macdonald basis.}$
- $f = f(x_1, x_2, ...)$ a symmetric function.

Def: $\Delta'_f : \Lambda_n \to \Lambda_n$ is the Macdonald eigenoperator defined by

$$\Delta'_f: \widetilde{H}_\mu \mapsto f(\ldots, q^i t^j, \ldots) \widetilde{H}_\mu,$$

where (i, j) range over all cells $\neq (0, 0)$ of the Ferrers diagram of μ . Ex: $\mu = (4, 2) \vdash 6$.

•	q	q^2	q^3
t	qt		

$$\Delta_f'(\widetilde{H}_\mu) = f(q,q^2,q^3,t,qt)\widetilde{H}_\mu$$

Fact: $\Delta'_{e_{n-1}}(e_n) = \nabla(e_n).$

Delta Conjecture

Conj: [Haglund-Remmel-Wilson] For any $k \leq n$ we have

$$egin{aligned} \Delta_{e_{k-1}}'(e_n) &= \{z^{n-k}\} \left[\sum_{P \in \mathcal{LD}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} \prod_{i:a_i(P) > a_{i-1}(P)} \left(1 + z/t^{a_i(P)}
ight) x^P
ight] \ &= \{z^{n-k}\} \left[\sum_{P \in \mathcal{LD}_n} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} \prod_{i \in \operatorname{Val}(P)} \left(1 + z/q^{d_i(P)+1}
ight) x^P
ight], \end{aligned}$$

where $\{z^{n-k}\}$ extracts the coefficient of z^{n-k} .

Rmk: When k = n, this is the Shuffle Theorem.

Def: Let $\operatorname{Rise}_{n,k}(\mathbf{x}; q, t), \operatorname{Val}_{n,k}(\mathbf{x}; q, t)$ denote the two right-hand sides.

$R_{n,k}$ and the Delta Conjecture

Delta Conj: [Haglund-Remmel-Wilson] For all $k \leq n$,

$$\begin{aligned} \Delta'_{e_{k-1}}(e_n) &= \operatorname{Rise}_{n,k}(\mathbf{x}; q, t) \\ &= \operatorname{Val}_{n,k}(\mathbf{x}; q, t). \end{aligned}$$

Thm: [Wilson, R, Haglund-Garsia-Remmel-Yoo, HRS] We have

$$\begin{array}{l} (*) \ \Delta_{e_{k-1}}' e_n|_{t=0} = \Delta_{e_{k-1}}' e_n|_{q=0,t=q} = \\ & \operatorname{Rise}_{n,k}(\mathbf{x};q,0) = \operatorname{Rise}_{n,k}(\mathbf{x};0,q) = \operatorname{Val}_{n,k}(\mathbf{x};q,0) = \operatorname{Val}_{n,k}(\mathbf{x};0,q). \end{array}$$

Thm: [HRS] Let $C_{n,k}(\mathbf{x}; q)$ be the symmetric function (*). We have

$$\operatorname{grFrob}(R_{n,k};q) = (\operatorname{rev}_q \circ \omega) C_{n,k}(\mathbf{x};q).$$

$X_{n,k}$ and the Delta Conjecture

Thm: [PR] grFrob
$$(H^{\bullet}(X_{n,k}); q) = (\operatorname{rev}_q \circ \omega)\Delta'_{e_{k-1}}e_n|_{t=0}.$$

" $X_{n,k}$ is the flag variety attached to $\Delta'_{e_{k-1}}$."

Rmk: We also have flag varieties attached to $\Delta_{s_{\nu}}$ when $\nu = (r, 1^{n-1})$.

Q: Can we find flag varieties for $\Delta_{s_{\nu}}$ or $\Delta'_{s_{\nu}}$ for all partitions ν ?

Thanks for listening!

arXiv reading list:

- G. Benkart, L. Colmenarejo, P. Harris, R. Orellana, G. Panova, A. Schilling, and M. Yip. A minimaj-preserving crystal on ordered multiset partitions. Accepted, *Adv. Appl. Math.*, 2017.
- J. Haglund, B. Rhoades, and M. Shimozono. Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. Accepted, Adv. Math., 2018.
- K. Meyer. Descent representations of generalized coinvariant algebras. Preprint, 2017.
- B. Pawlowski and B. Rhoades. A flag variety for the Delta Conjecture. Preprint, 2017.