A flag variety for the Delta Conjecture

Brendon Rhoades
(Joint with Brendan Pawlowski)

UCSD

Outline

1. Permutations

- algebra
- geometry

2. Ordered Set Partitions

- algebra
- geometry

3. Delta Conjecture

Symmetric polynomials

S_{n} acts on $\mathbb{Q}\left[\mathbf{x}_{n}\right]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables.
$\mathbb{Q}\left[\mathbf{x}_{n}\right]^{S_{n}}=\left\{\right.$ symmetric polynomials in $\left.x_{1}, \ldots, x_{n}\right\}$.

$$
e_{d}=\sum_{1 \leq i_{1}<\cdots<i_{d} \leq n} x_{i_{1}} \cdots x_{i_{d}} .
$$

Thm: [Newton] $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is an algebraically independent generating set of $\mathbb{Q}\left[x_{n}\right]^{S_{n}}$.

Coinvariant algebra

S_{n} acts on $\mathbb{Q}\left[\mathbf{x}_{n}\right]:=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables.

The invariant ideal $I_{n} \subseteq \mathbb{Q}\left[\mathbf{x}_{n}\right]$ is

$$
\begin{aligned}
I_{n} & :=\left\langle\mathbb{Q}\left[\mathbf{x}_{n}\right]_{+}^{S_{n}}\right\rangle \\
& =\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle
\end{aligned}
$$

The coinvariant algebra is $R_{n}:=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n}$.

Thm: [Chevalley] We have

$$
R_{n} \cong \mathbb{Q}\left[S_{n}\right]
$$

Graded Frobenius Image

Thm: [Chevalley] We have $R_{n} \cong \mathbb{Q}\left[S_{n}\right]$ as ungraded S_{n}-modules.

Q: What about the graded isomorphism type?

$T=$| 1 | 2 | 3 | 5 |
| :--- | :--- | :--- | :--- |
| 4 | 6 | 8 | |
| | | | |
| | | | |
| | | | |

$$
\begin{aligned}
\operatorname{maj}(T) & =3+5+6=14 \\
\operatorname{des}(T) & =3
\end{aligned}
$$

Graded Frobenius Image

Q: Recall $R_{n} \cong \mathbb{Q}\left[S_{n}\right]$. What about the graded isomorphism type?

Thm: (Lusztig-Stanley) We have

$$
\operatorname{grFrob}\left(R_{n} ; q\right)=\sum_{T \in \operatorname{SYT}(n)} q^{\operatorname{maj}(T)} \cdot s_{\operatorname{sh}(T)}(\mathbf{x})
$$

$$
\operatorname{grFrob}\left(R_{3} ; q\right)=q^{0} \cdot s_{(3)}(\mathbf{x})+q^{1} \cdot s_{(2,1)}(\mathbf{x})+q^{2} \cdot s_{(2,1)}(\mathbf{x})+q^{3} \cdot s_{(1,1,1)}(\mathbf{x})
$$

Flag Variety

$$
\begin{aligned}
\mathcal{F} \ell(n) & =\left\{0=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=\mathbb{C}^{n}: \operatorname{dim}\left(V_{i}\right)=i\right\} \\
& =G L_{n} / B
\end{aligned}
$$

Thm: [Ehresmann] The Schubert cells $\left\{X_{w}: w \in S_{n}\right\}$ where

$$
X(w)=B w B / B
$$

give a CW decomposition of $\mathcal{F} \ell(n)$.

Thm: [Borel] We have $H^{\bullet}(F \ell(n)) \cong R_{n}^{\mathbb{Z}}$ via $x_{i} \leftrightarrow-c_{1}\left(V_{i} / V_{i-1}\right)$. (Even as S_{n}-modules via Springer action.)

Ordered Set Partitions

Def: An ordered set partition is set partition of [n] with a total order on its blocks.

Ex:

$$
(135|6| 24)
$$

is an ordered set partition of [6] with 3 blocks.
$\mathcal{O} \mathcal{P}_{n, k}:=\{$ all ordered set partitions $\sigma \models[n]$ with k blocks $\}$.

$$
\left|\mathcal{O P}_{n, k}\right|=k!\cdot \operatorname{Stir}(n, k)
$$

(No nice product formula.)

Q: Is there a nice quotient of $\mathbb{Q}\left[\mathbf{x}_{n}\right]$ reflecting the combinatorics of $\mathcal{O} \mathcal{P}_{n, k}$?

New Generalized Coinvariant Algebra

Defn: [Haglund-R-Shimozono] For $k \leq n, I_{n, k} \subseteq \mathbb{Q}\left[\mathbf{x}_{n}\right]$ is the ideal

$$
I_{n, k}:=\left\langle e_{n}, e_{n-1}, \ldots, e_{n-k+1}, x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right\rangle
$$

The ring $R_{n, k}$ is the corresponding quotient.

$$
R_{n, k}=\mathbb{Q}\left[\mathbf{x}_{n}\right] / I_{n, k}
$$

- $R_{n, k}$ is a graded \mathfrak{S}_{n}-module.
- $R_{n, 1}=\frac{\mathbb{Q}\left[x_{n}\right]}{\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle} \cong \mathbb{Q}$.
- $I_{n, n}=I_{n}$ and $R_{n, n}=R_{n}$.

Thm: [Haglund-R-Shimozono] $R_{n, k} \cong \mathbb{Q}\left[\mathcal{O} \mathcal{P}_{n, k}\right]$ as ungraded S_{n}-modules. (Graded structure?)

Graded structure of $R_{n, k}$

Q: What about the graded S_{n}-module structure?

Thm: [Haglund-R-Shimozono]

$$
\operatorname{grFrob}\left(R_{n, k} ; q\right)=\sum_{T \in \operatorname{SYT}(n)} q^{\operatorname{maj}(T)}\left[\begin{array}{c}
n-\operatorname{des}(T)-1 \\
n-k
\end{array}\right]_{q} s_{\operatorname{sh}(T)}(\mathbf{x})
$$

Rmk: Proof uses an RSK argument due to Wilson.
Rmk: Meyer has an Adin-Brenti-Roichman style refinement of this result.

Rmk: Benkart-Colmenarejo-Harris-Orellana-Panova-Schilling-Yip have a crystal theoretic interpretation.

Geometric Wishful Thinking

Q: Is there a variety $X_{n, k}$ with $H^{\bullet}\left(X_{n, k}\right) \cong R_{n, k}^{\mathbb{Z}}$ as graded S_{n}-modules?

- When $k=n$, the flag manifold $\mathcal{F} \ell(n)$ works with Springer action.
- When $k=1$, can take $X_{n, 1}=\{*\}$.
$\operatorname{Hilb}\left(R_{n, k} ; q\right)$ is not always palindromic:

$$
\operatorname{Hilb}\left(R_{3,2}\right)=1+3 q+2 q^{2}
$$

$\Rightarrow X_{n, k}$ cannot be a compact complex manifold.

Wish Granted!

Def: For $k \leq n$, let $X_{n, k}$ be the space of line configurations

$$
X_{n, k}:=\left\{\left(\ell_{1}, \ldots, \ell_{n}\right): \ell_{i} \text { a line in } \mathbb{C}^{k} \text { and } \ell_{1}+\cdots+\ell_{n}=\mathbb{C}^{k}\right\}
$$

S_{n} acts by permuting lines.

Thm: [PR] $H^{\bullet}\left(X_{n, k}\right)=R_{n, k}^{\mathbb{Z}}$ via $x_{i} \leftrightarrow-c_{1}\left(\ell_{i}\right)$ as graded rings or S_{n}-modules.

Representation Stability

Def: For $k \leq n$, let $X_{n, k}$ be the space of line configurations

$$
X_{n, k}:=\left\{\left(\ell_{1}, \ldots, \ell_{n}\right): \ell_{i} \text { a line in } \mathbb{C}^{k} \text { and } \ell_{1}+\cdots+\ell_{n}=\mathbb{C}^{k}\right\}
$$

We have S_{n}-equivariant embeddings

$$
\begin{aligned}
& X_{n, k} \hookrightarrow X_{n+1, k} \\
& X_{n, k} \hookrightarrow X_{n+1, k+1}
\end{aligned}
$$

Fact: [PR] The towers

$$
\begin{aligned}
& H^{\bullet}\left(X_{n, k}\right) \hookrightarrow H^{\bullet}\left(X_{n+1, k}\right) \\
& H^{\bullet}\left(X_{n, k}\right) \hookrightarrow H^{\bullet}\left(X_{n+1, k+1}\right)
\end{aligned}
$$

exhibit representation stability. (Geometric proof?)

Structure of $X_{n, k}$

Def: [PR] For $k \leq n$, let $X_{n, k}$ be the space of 'line configurations'

$$
X_{n, k}=\left\{\left(\ell_{1}, \ldots, \ell_{n}\right): \ell_{i} \text { a line in } \mathbb{C}^{k} \text { and } \ell_{1}+\cdots+\ell_{n}=\mathbb{C}^{k}\right\}
$$

Thm: [PR] $X_{n, k}$ has a paving by affines with cells C_{w} indexed by Fubini words $w=w_{1} \ldots w_{n} \in[k]^{n}$ (i.e., all the letters $1,2, \ldots, k$ appear in w).

Ex: $(n, k)=(7,3)$ and $w=2331231$:

$$
C_{w}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\star & 1 & 0 \\
\star & \star & 1
\end{array}\right) \cdot\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & \star & \star & 0 & 1 & \star & \star \\
0 & 1 & 1 & 0 & 0 & 1 & \star
\end{array}\right) .
$$

Word Schubert Polynomials

Q: If $w=w_{1} \ldots w_{n} \in[k]^{n}$ is a Fubini word, what is the class $\left[\bar{C}_{w}\right] \in H^{\bullet}\left(X_{n, k}\right)=R_{n, k}^{\mathbb{Z}} ?$

$$
\begin{aligned}
w & =2331231 \in[3]^{7} \\
\operatorname{conv}(w) & =2233311 \\
\operatorname{st}(\operatorname{conv}(w)) & =2435617 \in S_{7} \\
\sigma(w) & =1523647 \in S_{7}
\end{aligned}
$$

Thm: $[P R]$ The class $\left[\bar{C}_{w}\right]$ is represented by

$$
\mathfrak{S}_{w}:=\sigma(w)^{-1} \cdot \mathfrak{S}_{\mathrm{st}(\operatorname{conv}(w))} \in \mathbb{Z}\left[\mathbf{x}_{n}\right] .
$$

Cor: $[\mathrm{PR}]\left\{\mathfrak{S}_{w}: w \in[k]^{n}\right.$ Fubini $\}$ descends to a basis for $R_{n, k}^{\mathbb{Z}}$.

The Diagonal Coinvariants

Let S_{n} act on $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ diagonally:

$$
\begin{aligned}
w \cdot x_{i} & :=x_{w_{i}} \\
w \cdot y_{i} & :=y_{w_{i}} .
\end{aligned}
$$

Def: The diagonal coinvariant module is the bigraded S_{n}-representation

$$
D R_{n}:=\mathbb{Q}\left[\mathbf{x}_{n}, \mathbf{y}_{n}\right] /\left\langle\mathbb{Q}\left[\mathbf{x}_{n}, \mathbf{y}_{n}\right]_{+}^{S_{n}}\right\rangle
$$

Thm: [Haiman] We have $\operatorname{dim}\left(D R_{n}\right)=(n+1)^{n-1}$. In fact (up to sign twist), $D R_{n}$ is isomorphic to the permutation action of S_{n} on size n parking functions.

Bigraded Characters

Q: What is the bigraded S_{n}-module structure of $D R_{n}$?

Thm: [Haiman] The bigraded Frobenius series of $D R_{n}$ is $\nabla\left(e_{n}\right)$, where ∇ is the Bergeron-Garsia nabla operator on symmetric functions (a Macdonald eigenoperator).

Problem: Expand $\nabla\left(e_{n}\right)$ in the Schur basis $\left\{s_{\lambda}: \lambda \vdash n\right\}$:

$$
\nabla\left(e_{n}\right)=\sum_{\lambda \vdash n} c_{\lambda}(q, t) s_{\lambda}
$$

When λ is a hook, Haglund's q, t-Schröder Theorem gives an answer. No conjecture in general.

The Shuffle Theorem

'If symmetric functions are too hard, work with quasisymmetric functions.'

Thm: [Carlsson-Mellit] ('Shuffle Theorem') We have that

$$
\nabla\left(e_{n}\right)=\sum_{P \in \operatorname{Park}_{n}} q^{\operatorname{area}(P)} t^{\operatorname{dinv}(P)} F_{\mathrm{iDes}(P)}
$$

The Delta Conjecture is a (conjectural) generalization of the Shuffle Theorem.

Delta Operators

- $\Lambda_{n}=$ symmetric functions in $\left(x_{1}, x_{2}, \ldots\right)$ of degree n.
- $\left\{\widetilde{H}_{\mu}: \mu \vdash n\right\}=$ modified Macdonald basis.
- $f=f\left(x_{1}, x_{2}, \ldots\right)$ a symmetric function.

Def: $\Delta_{f}^{\prime}: \Lambda_{n} \rightarrow \Lambda_{n}$ is the Macdonald eigenoperator defined by

$$
\Delta_{f}^{\prime}: \widetilde{H}_{\mu} \mapsto f\left(\ldots, q^{i} t^{j}, \ldots\right) \widetilde{H}_{\mu}
$$

where (i, j) range over all cells $\neq(0,0)$ of the Ferrers diagram of μ. Ex: $\mu=(4,2) \vdash 6$.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|}
\hline- & q & q^{2} & q^{3} \\
\hline t & q t & \\
\hline
\end{array} \\
& \Delta_{f}^{\prime}\left(\widetilde{H}_{\mu}\right)=f\left(q, q^{2}, q^{3}, t, q t\right) \widetilde{H}_{\mu}
\end{aligned}
$$

Fact: $\Delta_{e_{n-1}}^{\prime}\left(e_{n}\right)=\nabla\left(e_{n}\right)$.

Delta Conjecture

Conj: [Haglund-Remmel-Wilson] For any $k \leq n$ we have

$$
\begin{aligned}
\Delta_{e_{k-1}}^{\prime}\left(e_{n}\right) & =\left\{z^{n-k}\right\}\left[\sum_{P \in \mathcal{L D}_{n}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} \prod_{i: a_{i}(P)>a_{i-1}(P)}\left(1+z / t^{a_{i}(P)}\right) x^{P}\right] \\
& =\left\{z^{n-k}\right\}\left[\sum_{P \in \mathcal{L D _ { n }}} q^{\operatorname{dinv}(P)} t^{\operatorname{area}(P)} \prod_{i \in \operatorname{Val}(P)}\left(1+z / q^{d_{i}(P)+1}\right) x^{P}\right],
\end{aligned}
$$

where $\left\{z^{n-k}\right\}$ extracts the coefficient of z^{n-k}.

Rmk: When $k=n$, this is the Shuffle Theorem.

Def: Let $\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t), \operatorname{Val}_{n, k}(\mathbf{x} ; q, t)$ denote the two right-hand sides.

$R_{n, k}$ and the Delta Conjecture

Delta Conj: [Haglund-Remmel-Wilson] For all $k \leq n$,

$$
\begin{aligned}
\Delta_{e_{k-1}}^{\prime}\left(e_{n}\right) & =\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t) \\
& =\operatorname{Val}_{n, k}(\mathbf{x} ; q, t)
\end{aligned}
$$

Thm: [Wilson, R, Haglund-Garsia-Remmel-Yoo, HRS] We have
(*) $\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}=\left.\Delta_{e_{k-1}}^{\prime} e_{n}\right|_{q=0, t=q}=$

$$
\operatorname{Rise}_{n, k}(\mathbf{x} ; q, 0)=\operatorname{Rise}_{n, k}(\mathbf{x} ; 0, q)=\operatorname{Val}_{n, k}(\mathbf{x} ; q, 0)=\operatorname{Val}_{n, k}(\mathbf{x} ; 0, q)
$$

Thm: [HRS] Let $C_{n, k}(\mathbf{x} ; q)$ be the symmetric function (*). We have

$$
\operatorname{grFrob}\left(R_{n, k} ; q\right)=\left(\operatorname{rev}_{q} \circ \omega\right) C_{n, k}(\mathbf{x} ; q)
$$

$X_{n, k}$ and the Delta Conjecture

Thm: $[P R] \operatorname{grFrob}\left(H^{\bullet}\left(X_{n, k}\right) ; q\right)=\left.\left(\operatorname{rev}_{q} \circ \omega\right) \Delta_{e_{k-1}}^{\prime} e_{n}\right|_{t=0}$.
" $X_{n, k}$ is the flag variety attached to $\Delta_{e_{k-1}}^{\prime}$.

Rmk: We also have flag varieties attached to $\Delta_{s_{\nu}}$ when $\nu=\left(r, 1^{n-1}\right)$.

Q: Can we find flag varieties for $\Delta_{s_{\nu}}$ or $\Delta_{s_{\nu}}^{\prime}$ for all partitions ν ?

Thanks for listening!

arXiv reading list:

- G. Benkart, L. Colmenarejo, P. Harris, R. Orellana, G. Panova, A. Schilling, and M. Yip. A minimaj-preserving crystal on ordered multiset partitions. Accepted, Adv. Appl. Math., 2017.
- J. Haglund, B. Rhoades, and M. Shimozono. Ordered set partitions, generalized coinvariant algebras, and the Delta Conjecture. Accepted, Adv. Math., 2018.
- K. Meyer. Descent representations of generalized coinvariant algebras. Preprint, 2017.
- B. Pawlowski and B. Rhoades. A flag variety for the Delta Conjecture. Preprint, 2017.

