Rowmotion on trim lattices

Hugh Thomas (UQAM) and Nathan Williams (UT Dallas)

JMM 2018

arXiv:1712.10123

Hugh Thomas (UQAM) and Nathan Williams

Rowmotion

JMM 2018 1 / 12

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Let *P* be a poset.
- Let $\mathcal{L}(P)$ be the set of order ideals of P.
- For $I \in \mathcal{L}(P)$, define rowmotion by

$$\rho(I) = P \setminus \{a \mid \exists b \in \max I, a \ge b\}$$

This defines a permutation of the set of order ideals of *P*.

Defining rowmotion via distributive lattices

 $\mathcal{L}(P)$ is a distributive lattice and every distributive lattice is of the form $\mathcal{L}(P)$ for some *P*.

For $I \leq J$ in $\mathcal{L}(P)$, define $\gamma(J > I) = J \setminus I$. This defines an edge-labelling of the Hasse diagram of $\mathcal{L}(P)$.

For $J \in \mathcal{L}(P)$, write $D(J) = \{\gamma(J > I)\}$, the labels on the edges going down from *J*.

 $D(J) = \max J.$

Write $U(J) = \{\gamma(I \ge J)\}$, the labels on the edges going up from *J*.

 $U(J) = \min P \setminus J$

Then ρ can be defined by $D(J) = U(\rho(J))$.

For $a \in P$, and $I \in \mathcal{L}(P)$, define flip_{*a*}(*I*) to be the element of $\mathcal{L}(P)$ obtained by walking along the edge of the Hasse diagram of *P* starting at *I* and labelled by *a*, if there is one.

Theorem (Cameron and Fon-der-Flaass)

Choose a linear extension of $P = a_1, ..., a_n$. Then $\rho(I) = flip_{a_n} ... flip_{a_1}(I)$.

This will be familiar to many of us at the *toggle definition* of rowmotion.

< ロ > < 同 > < 回 > < 回 >

Descriptive labellings

We want to replace $\mathcal{L}(P)$ by some more general lattice \mathcal{L} . Let $\gamma : \operatorname{cov}(\mathcal{L}) \to P$ be some labelling of the edges of \mathcal{L} .

We say that γ is *descriptive* if

- For $x \in \mathcal{L}$, all edges incident to x have different labels.
- x in \mathcal{L} can be determined from knowing D(x).
- x in \mathcal{L} can be determined from knowing U(x).

•
$$\{D(x) \mid x \in \mathcal{L}\} = \{U(x) \mid x \in \mathcal{L}\}.$$

The labelling we have already defined of distributive lattices is descriptive.

If γ is a descriptive labelling, we can define a rowmotion as before by $D(x) = U(\rho(x))$. This is again a permutation of \mathcal{L} .

A more general example of a descriptive labelling

- A lattice \mathcal{L} is called semidistributive if $x \lor y = x \lor z$ implies both are equal to $x \lor (y \land z)$ and the dual assertion also holds.
- Semidistributive lattices have a natural labelling of their Hasse diagram by join-irreducibles.
- Emily Barnard showed that if \mathcal{L} is semidistributive, then the labelling described above is descriptive (and thus defines a rowmotion).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a lattice and a descriptive labelling $\gamma : cov(\mathcal{L}) \to P$, we can define flip_{*a*}(*I*) for $I \in \mathcal{L}$ as before.

We say that *rowmotion can be computed in slow motion* if for $x \in \mathcal{L}$, and any linear extension $P = \{a_1, \ldots, a_n\}$, we have

$$\rho(\mathbf{x}) = \operatorname{flip}_{a_n} \dots \operatorname{flip}_{a_1}(\mathbf{x}).$$

For \mathcal{L} a semidistributive lattice, the set of labels do not necessarily have an order with respect to which rowmotion can be computed in slow motion.

A lattice is called *trim* if it is *extremal* and *left modular*. Trim lattices include distributive lattices, finite Cambrian lattices, and intervals in them (so also Bergeron's *m*-Tamari lattices).

Left modular lattices have a natural edge-labelling.

Theorem

For \mathcal{L} a trim lattice, this labelling is descriptive, and thus defines a rowmotion, which can be computed in slow motion.

Not all semidistributive lattices are trim, and not all trim lattices are semidistributive. This result is thus complementary to Barnard's.

The *length* of a lattice \mathcal{L} is the length of the longest chain in \mathcal{L} .

A lattice of length ℓ has at least ℓ join-irreducible elements, and at least ℓ meet-irreducible elements.

Markowsky calls a lattice *extremal* if equality holds in both these bounds.

 $\mathcal{L}(P)$ is extremal, since the length of all maximal chains is |P| and there are bijections from P to both the join-irreducible and meet-irreducible elements.

Extremal lattices have a representation theorem due to Markowsky which generalizes Birkhoff's FTFDL.

Let \mathcal{L} be a lattice. For any $x \in \mathcal{L}$, and any $y \leq z$, the *modular inequality* holds:

$$(y \lor x) \land z \ge y \lor (x \land z)$$

If the modular inequality holds with equality for x and for all $y \le z$, then x is said to be *left modular*.

A lattice is said to be *left modular* if it has a maximal chain of left modular elements. Such lattices were studied by Blass and Sagan.

Left modularity of a lattice is a weakened form of supersolvability which does not imply gradedness.

Left modular labellings

A lattice equipped with a maximal left modular chain

$$\hat{0} = x_0 \lessdot x_1 \lessdot \cdots \lessdot x_n = \hat{1}$$

has a natural edge-labelling which can be defined by

$$\gamma(\mathbf{y} \lessdot \mathbf{z}) = \min\{i \mid \mathbf{z} \land (\mathbf{x}_i \lor \mathbf{y}) = \mathbf{z}\}$$

This definition also admits other equivalent formulations. See work of Larry Liu; McNamara-T.

This labelling is not descriptive in general, but it is descriptive for extremal left modular (=trim) lattices, so defines a rowmotion.

Our main result, stated earlier, is that this rowmotion, like the classic rowmotion of order ideals of a poset, can be computed in slow motion.

Thank you!