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Rowmotion

Let P be a poset.

Let L(P) be the set of order ideals of P.

For I ∈ L(P), define rowmotion by

ρ(I) = P \ {a | ∃b ∈ max I,a ≥ b}

This defines a permutation of the set of order ideals of P.
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Defining rowmotion via distributive lattices

L(P) is a distributive lattice and every distributive lattice is of the form
L(P) for some P.

For I l J in L(P), define γ(J m I) = J \ I. This defines an
edge-labelling of the Hasse diagram of L(P).

For J ∈ L(P), write D(J) = {γ(J m I)}, the labels on the edges going
down from J.

D(J) = max J.

Write U(J) = {γ(I m J)}, the labels on the edges going up from J.

U(J) = min P \ J

Then ρ can be defined by D(J) = U(ρ(J)).
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Another way to define rowmotion

For a ∈ P, and I ∈ L(P), define flipa(I) to be the element of L(P)
obtained by walking along the edge of the Hasse diagram of P starting
at I and labelled by a, if there is one.

Theorem (Cameron and Fon-der-Flaass)
Choose a linear extension of P = a1, . . . ,an. Then
ρ(I) = flipan

. . . flipa1
(I).

This will be familiar to many of us at the toggle definition of rowmotion.
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Descriptive labellings

We want to replace L(P) by some more general lattice L.
Let γ : cov(L)→ P be some labelling of the edges of L.

We say that γ is descriptive if
For x ∈ L, all edges incident to x have different labels.
x in L can be determined from knowing D(x).
x in L can be determined from knowing U(x).
{D(x) | x ∈ L} = {U(x) | x ∈ L}.

The labelling we have already defined of distributive lattices is
descriptive.

If γ is a descriptive labelling, we can define a rowmotion as before by
D(x) = U(ρ(x)). This is again a permutation of L.
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A more general example of a descriptive labelling

A lattice L is called semidistributive if x ∨ y = x ∨ z implies both are
equal to x ∨ (y ∧ z) and the dual assertion also holds.

Semidistributive lattices have a natural labelling of their Hasse diagram
by join-irreducibles.

Emily Barnard showed that if L is semidistributive, then the labelling
described above is descriptive (and thus defines a rowmotion).
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Rowmotion in slow motion

Given a lattice and a descriptive labelling γ : cov(L)→ P, we can
define flipa(I) for I ∈ L as before.

We say that rowmotion can be computed in slow motion if for x ∈ L,
and any linear extension P = {a1, . . . ,an}, we have

ρ(x) = flipan
. . . flipa1

(x).

For L a semidistributive lattice, the set of labels do not necessarily
have an order with respect to which rowmotion can be computed in
slow motion.
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Main theorem

A lattice is called trim if it is extremal and left modular. Trim lattices
include distributive lattices, finite Cambrian lattices, and intervals in
them (so also Bergeron’s m-Tamari lattices).

Left modular lattices have a natural edge-labelling.

Theorem
For L a trim lattice, this labelling is descriptive, and thus defines a
rowmotion, which can be computed in slow motion.

Not all semidistributive lattices are trim, and not all trim lattices are
semidistributive. This result is thus complementary to Barnard’s.
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Extremal lattices

The length of a lattice L is the length of the longest chain in L.

A lattice of length ` has at least ` join-irreducible elements, and at least
` meet-irreducible elements.

Markowsky calls a lattice extremal if equality holds in both these
bounds.

L(P) is extremal, since the length of all maximal chains is |P| and
there are bijections from P to both the join-irreducible and
meet-irreducible elements.

Extremal lattices have a representation theorem due to Markowsky
which generalizes Birkhoff’s FTFDL.
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Left modular lattices

Let L be a lattice. For any x ∈ L, and any y ≤ z, the modular
inequality holds:

(y ∨ x) ∧ z ≥ y ∨ (x ∧ z)

If the modular inequality holds with equality for x and for all y ≤ z, then
x is said to be left modular.

A lattice is said to be left modular if it has a maximal chain of left
modular elements. Such lattices were studied by Blass and Sagan.

Left modularity of a lattice is a weakened form of supersolvability which
does not imply gradedness.
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Left modular labellings

A lattice equipped with a maximal left modular chain

0̂ = x0 l x1 l · · ·l xn = 1̂

has a natural edge-labelling which can be defined by

γ(y l z) = min{i | z ∧ (xi ∨ y) = z}

This definition also admits other equivalent formulations. See work of
Larry Liu; McNamara-T.

This labelling is not descriptive in general, but it is descriptive for
extremal left modular (=trim) lattices, so defines a rowmotion.

Our main result, stated earlier, is that this rowmotion, like the classic
rowmotion of order ideals of a poset, can be computed in slow motion.
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Thank you!
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