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Overview

◮ Berenstein-Kirillov group BKn

◮ generated by Bender Knuth involutions on SSYT
◮ includes many classical operators e.g. promotion, evacuation,

jdt, symmetric group action

◮ Cactus group Cn

◮ arises as fundamental group of certain moduli space
◮ relates to coboundary categories, Kazhdan-Lusztig thoery
◮ acts on Sn by “interval evacuation”
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Theorem (Chmutov–G.–Pylyavskyy)

There is a surjective homomorphism from Cn to BKn “compatible”

with the respective actions of the groups on Sn and SSYT.
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Bender Knuth involutions

◮ SSYT = {semistandard Young tableaux of all shapes}

◮ ti = Bender Knuth involution (ti : SSYT → SSYT )

Example

t3





1 1 1 2 2 2 3 3 4
2 2 3 3 4 4 4
3 3 4



 =
1 1 1 2 2 2 3 3 4
2 2 3 3 3 4 4
4 4 4



Berenstein-Kirillov group [BK 1995]

◮ Combinatorial definition:

BKn = Subgroup of {Bijections of SSYT}

generated by t1, t2, . . . , tn−1

◮ Abstract “definition”:

BKn = 〈t1, . . . , tn−1 | R1,R2,R3, (Possibly more)〉

where

(R1) t2i = 1, ti tj = tj ti if |i − j | ≥ 2
(R2) (t1t2)

6 = 1
(R3) (t1qj)

4 = 1 if j ≥ 3
where qj = (t1)(t2t1) · · · (tj · · · t1)



The cactus group [Henriques-Kamnitzer 2006]

Cn = 〈τi ,j , 1 ≤ i < j ≤ n | S1, S2, S3〉

where

(S1) τ2i ,j = 1

(S2) (τi ,jτk,l)
2 = 1, if i < j < k < l

(S3) τi ,jτk,lτi ,j = τi+j−l ,i+j−k , if i < k < l < j



Action of Cn on permutations

◮ Define τi ,j(π1 · · ·πn) = π1 · · ·π
′
i · · ·π

′
j · · ·πn where

π′
i · · ·π

′
j = RSK−1 ◦ (id × Evac) ◦ RSK(πi · · ·πj)

(Evac = evacuation = qj−i ).

Example

τ2,4(15243) = 12543 because

524 −→
2 4

5
,
1 3

2

↓

254 ←−
2 4

5
,
1 2

3



Action of Cn on permutations (cont.)

◮ Define τi ,j(π1 · · ·πn) = π1 · · ·π
′
i · · ·π

′
j · · ·πn where

π′
i · · ·π

′
j = RSK−1 ◦ (id × Evac) ◦ RSK(πi · · ·πj).

Theorem (Losev 2015, Henriques-Kamnitzer 2006)

The τi ,j satisfy the relations of the cactus group.



Cactus-like generators for BKn

◮ Define q[i ,j ] = qj−1qj−iqj−1 ∈ BKn.

◮ Examples
◮ q[1,j] = q3j−1 = qj−1

◮ q[j,j+1] = qjq1qj = sj
◮ q[2,4] = q3q2q3 = (t1t2t1t3t2t1)(t1t2t1)(t1t2t1t3t2t1)
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Theorem (CGP)

The element q[i ,j ] acts locally on SSYT: if T ′ = q[i ,j ](T ) then

1. T ′ = T except on the interval {i , i + 1, . . . , j} and

2. T ′|{i ,i+1,...,j} depends only on T |{i ,i+1,...,j}.



The homomorphism

Theorem (CGP)

1. There is a surjective homomorphism Cn → BKn taking τi ,j to

q[i ,j ] for each i < j .

2. For each π ∈ Sn

τi ,j(π) = (RSK−1 ◦ (id × q[i ,j ]) ◦ RSK)(π)



Fomin growth rule

λ

µ µ′

ν

If λ <c µ <c ν (cover relations in Young’s lattice) then

µ′ =

{

λ ∪ (ν \ µ), if it is a shape

µ, otherwise



Fomin’s growth rule (examples)



Growth diagram that calculates evacuation
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Growth diagrams

More generally, a growth diagram with diamonds at heights
i1, i2, . . . , im calculates the element

tim · · · ti2ti1 ∈ BKn



Proof by picture of weak locality

Let q[i ,j ](T ) = T ′.

A D

C C

D ′ A′

B B ′

Need to show

A = T |{1,...,i−1} = T ′|{1,...,i−1} = A′.


