The Berenstein-Kirillov group and cactus groups

Max Glick Ohio State University

January 12, 2018

joint with Michael Chmutov and Pavlo Pylyavskyy

arxiv:1609.02046

Overview

Berenstein-Kirillov group BK_n

- generated by Bender Knuth involutions on SSYT
- includes many classical operators e.g. promotion, evacuation, jdt, symmetric group action
- Cactus group C_n
 - arises as fundamental group of certain moduli space
 - relates to coboundary categories, Kazhdan-Lusztig thoery

• acts on S_n by "interval evacuation"

Overview

Berenstein-Kirillov group BK_n

- generated by Bender Knuth involutions on SSYT
- includes many classical operators e.g. promotion, evacuation, jdt, symmetric group action
- Cactus group C_n
 - arises as fundamental group of certain moduli space
 - relates to coboundary categories, Kazhdan-Lusztig thoery
 - acts on S_n by "interval evacuation"

Theorem (Chmutov–G.–Pylyavskyy)

There is a surjective homomorphism from C_n to BK_n "compatible" with the respective actions of the groups on S_n and SSYT.

Outline

- 1. Definition of the groups
- 2. Main results
- 3. Proofs with growth diagrams

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Bender Knuth involutions

- $\blacktriangleright SSYT = \{\text{semistandard Young tableaux of all shapes}\}\$
- ▶ t_i = Bender Knuth involution (t_i : $SSYT \rightarrow SSYT$)

Example

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Berenstein-Kirillov group [BK 1995]

Combinatorial definition:

$$\begin{split} BK_n &= \text{Subgroup of } \{ \text{Bijections of } SSYT \} \\ & \text{generated by } t_1, t_2, \dots, t_{n-1} \end{split}$$

Abstract "definition":

$$BK_n = \langle t_1, \ldots, t_{n-1} \mid R_1, R_2, R_3, (\text{Possibly more}) \rangle$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where
(R1)
$$t_i^2 = 1$$
, $t_i t_j = t_j t_i$ if $|i - j| \ge 2$
(R2) $(t_1 t_2)^6 = 1$
(R3) $(t_1 q_j)^4 = 1$ if $j \ge 3$
where $q_j = (t_1)(t_2 t_1) \cdots (t_j \cdots t_1)$

The cactus group [Henriques-Kamnitzer 2006]

$$C_n = \langle \tau_{i,j}, 1 \leq i < j \leq n \mid S_1, S_2, S_3 \rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where

(S1)
$$\tau_{i,j}^2 = 1$$

(S2) $(\tau_{i,j}\tau_{k,l})^2 = 1$, if $i < j < k < l$
(S3) $\tau_{i,j}\tau_{k,l}\tau_{i,j} = \tau_{i+j-l,i+j-k}$, if $i < k < l < j$

Action of C_n on permutations

• Define
$$\tau_{i,j}(\pi_1 \cdots \pi_n) = \pi_1 \cdots \pi'_i \cdots \pi'_j \cdots \pi_n$$
 where
 $\pi'_i \cdots \pi'_j = \operatorname{RSK}^{-1} \circ (id \times \operatorname{Evac}) \circ \operatorname{RSK}(\pi_i \cdots \pi_j)$
(Evac = evacuation = q_{j-i}).

Example $\tau_{2,4}(15243) = 12543$ because

Action of C_n on permutations (cont.)

• Define
$$\tau_{i,j}(\pi_1 \cdots \pi_n) = \pi_1 \cdots \pi'_i \cdots \pi'_j \cdots \pi_n$$
 where
 $\pi'_i \cdots \pi'_j = \operatorname{RSK}^{-1} \circ (id \times \operatorname{Evac}) \circ \operatorname{RSK}(\pi_i \cdots \pi_j).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (Losev 2015, Henriques-Kamnitzer 2006) The $\tau_{i,j}$ satisfy the relations of the cactus group.

Cactus-like generators for BK_n

- Define $q_{[i,j]} = q_{j-1}q_{j-i}q_{j-1} \in BK_n$.
- Examples

•
$$q_{[1,j]} = q_{j-1}^3 = q_{j-1}$$

- $\bullet q_{[j,j+1]} = q_j q_1 q_j = s_j$
- $q_{[2,4]} = q_3 q_2 q_3 = (t_1 t_2 t_1 t_3 t_2 t_1)(t_1 t_2 t_1)(t_1 t_2 t_1 t_3 t_2 t_1)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cactus-like generators for BK_n

• Define
$$q_{[i,j]} = q_{j-1}q_{j-i}q_{j-1} \in BK_n$$
.

Examples

•
$$q_{[1,j]} = q_{j-1}^3 = q_{j-1}$$

•
$$q_{[j,j+1]} = q_j q_1 q_j = s_j$$

• $q_{[2,4]} = q_3 q_2 q_3 = (t_1 t_2 t_1 t_3 t_2 t_1)(t_1 t_2 t_1)(t_1 t_2 t_1 t_3 t_2 t_1)$

Theorem (CGP)

The element $q_{[i,j]}$ acts locally on SSYT: if $T' = q_{[i,j]}(T)$ then

- 1. T' = T except on the interval $\{i, i + 1, \dots, j\}$ and
- 2. $T'|_{\{i,i+1,...,j\}}$ depends only on $T|_{\{i,i+1,...,j\}}$.

Theorem (CGP)

- 1. There is a surjective homomorphism $C_n \to BK_n$ taking $\tau_{i,j}$ to $q_{[i,j]}$ for each i < j.
- 2. For each $\pi \in S_n$

$$au_{i,j}(\pi) = (RSK^{-1} \circ (\mathit{id} \times q_{[i,j]}) \circ RSK)(\pi)$$

Fomin growth rule

If $\lambda <_{c} \mu <_{c} \nu$ (cover relations in Young's lattice) then

$$\mu' = \begin{cases} \lambda \cup (\nu \setminus \mu), & \text{if it is a shape} \\ \mu, & \textit{otherwise} \end{cases}$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Fomin's growth rule (examples)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Growth diagram that calculates evacuation

Growth diagram that calculates evacuation

Growth diagram that calculates evacuation

More generally, a growth diagram with diamonds at heights i_1, i_2, \ldots, i_m calculates the element

$$t_{i_m}\cdots t_{i_2}t_{i_1}\in BK_n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof by picture of weak locality

Let
$$q_{[i,j]}(T) = T'$$
.

Need to show

$$A = T|_{\{1,\dots,i-1\}} = T'|_{\{1,\dots,i-1\}} = A'.$$

・ロト ・個ト ・モト ・モト

- 2