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The Cyclic Sieving Phenomenon (CSP)

Definition (Reiner–Stanton–White, 2004)

Take (X ,C , f (q)) where X is a finite set, C is a finite cyclic group
acting on X , and f (q) ∈ Z≥0[q].

We say (X ,C , f (q)) exhibits the cyclic sieving phenomenon (CSP)
if for all c ∈ C and roots of unity ω ∈ C of the same order as c ,

#{x ∈ X : c · x = x} = f (ω).

(Equivalently, f (ω) is TrC{X}(c). Note f (1) = #X .)
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The Cyclic Sieving Phenomenon (CSP)

Example

Let X =
([n]
k

)
and let C = Z/n act on X by addition mod n: if

n = 6, k = 3, then

2 · {2, 3, 5} = {4, 5, 1}.

Theorem (RSW)

The triple (
([n]
k

)
,Z/n,

(n
k

)
q
) exhibits the CSP.

Recall:

I
(n
k

)
q

:=
[n]q!

[k]q![n−k]q!
I [n]q! := [n]q[n − 1]q · · · [1]q
I [c]q := 1 + q + · · ·+ qc−1
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CSP Refinements

Notation
Given stat : X → Z≥0, write

X stat(q) :=
∑
x∈X

qstat(x) ∈ Z≥0[q].

Note X stat(1) = #X .
In many CSP triples, f (q) = X stat(q) for some stat.

Example(n
k

)
q

=
([n]
k

)Sum′
(q) where Sum′(A) = (

∑
a∈A a)− (1 + 2 + · · ·+ k).
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CSP Refinements

Definition (Ahlbach–S.)

Given a CSP triple (X ,C ,X stat(q)) and Y ⊂ X closed under the
C -action

, if (Y ,C ,Y stat(q)) also exhibits the CSP, we say
(Y ,C ,Y stat(q)) refines the CSP triple (X ,C ,X stat(q)).

(In this case, (X − Y ,C , (X − Y )stat(q)) also exhibits the CSP.)

Example

Take X =
([6]
3

)
, Y = Z/6 · {2, 3, 4}. Then

Y Sum′(q) = 1 + 2q3 + 2q6 + q9, and

Y Sum′(1) = 6, Y Sum′(−1) = 0,

Y Sum′(ω3) = 6, Y Sum′(ω6) = 0.

We would need Y Sum′(ω3) = 0, not 6. So, (Y ,Z/n,Y Sum′(q))
does NOT quite refine the RSW CSP (X ,Z/n,X Sum′(q)).
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A First Refinement Result

The cyclic blocks of a subset of [n] are maximal sequences of
adjacent elements in the subset, where 1 is considered adjacent to
n. (Ex: {1, 2, 4, 6} ⊂ [6] has two cyclic blocks, 612 and 4.)

Let

Sk := the k-element subsets of [n]

Sk,b := the k-element subsets of [n] with b cyclic blocks.

Let mbs be the sum of the ends of the cyclic blocks of a subset of
[n]. (Ex: mbs({1, 2, 4, 6} ⊂ [6]) = 2 + 4 = 6.)

Theorem (Ahlbach–S.)

(Sk,b,Z/n,Smbs
k,b (q)) refines the CSP triple (Sk ,Z/n, Smbs

k (q)).

Here X Sum′(q) is “equivalent” to
(n
k

)
q
, so the unrefined triple is

essentially RSW’s.
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Word Combinatorics

Definition
Given a word w = w1 · · ·wn with letters wi ∈ Z≥1, the descent set
of w is

Des(w) := {i ∈ [n − 1] : wi > wi+1}.

The major index of w is

maj(w) :=
∑

i∈Des(w)

i .

The content of w is the weak composition α = (α1, α2, . . .) � n
where

αi := #i ’s in α.

(Ex: If w = 323314, then Des(w) = {1, 4}, maj(w) = 1 + 4 = 5,
and α = (1, 1, 3, 1).)
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A CSP on Words

Notation
Let

Wα := words of content α.

Z/n acts on Wα by rotation:

2 · 011010 = 100110.

Theorem (RSW)

The triple (Wα,Z/n,Wmaj
α (q)) exhibits the CSP.

Remark
They actually proved a generalization valid for all finite Coxeter
groups using Springer’s regular elements, representation theory,
coinvariant algebras, and len instead of maj.
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Refined CSP on Words

Definition
Cyclic descent type (CDT) of a word:

if w = 143124114223, then

w (1) = 1111 cdes(w (1)) = 0,

w (2) = 112.1122. cdes(w (2)) = 2,

w (3) = 13.12.11223. cdes(w (3)) = 3,

w (4) = 14.3.124.114.223. cdes(w (4)) = 5.

We set CDT(143124114223) = (0, 2− 0, 3− 2, 5− 3) = (0, 2, 1, 2).

Notation
Let

Wα,δ := words w with content α and CDT(w) = δ.
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Refined CSP on Words

Theorem (Ahlbach-S.)

(Wα,δ,Z/n,Wmaj
α,δ (q)) refines the CSP triple (Wα,Z/n,Wmaj

α (q)).

Remark
Completely different proof than RSW. Combinatorial and largely
recursive. Involves Carlitz-style decomposition, (more or less new)
notion of “modular periodicity,” a CSP extension lemma, a
non-equivariant-but-fixed-point-preserving bijection, products of
CSP’s on sets and multisets.
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Refined CSP on Words

One key step:

Theorem (Ahlbach-S.)

Let α � n be a strong composition with m parts, δ � k,
ni := |w (i)|, ki := cdes(w (i)), d := gcd(n, k). Then, modulo
qn − 1,

Wmaj
α,δ (q) ≡ d

α1
[n/d ]qd

m∏
`=2

qk`α`

(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q−1

≡ d

α1
[n/d ]qdq

η
m∏
`=2

(
n`−1 − k`−1

δ`

)
q

((
k`

α` − δ`

))
q

where η :=
(k
2

)
+
∑m

`=2

(
δ`
2

)
− α1.
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Tableaux combinatorics

Definition
Given T ∈ SYT(λ),

Des(T ) := {i : i + 1 is in a lower row than i}.

Ex:
T = 1 2 4

3 6
5 7

⇒ Des(T ) = {2, 4, 6}.

As before, maj(T ) :=
∑

i∈Des(T ) i .

Definition
Given λ ` n − 1, let λ� ` n be the following “slightly skew
partition”:

λ = ⇒ λ� =
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Refined Sieving on Tableaux

Remark
Elizalde–Roichman (2017) defined a bijection
σ : SYT(λ�)→ SYT(λ�) whose orbits are size n.

They also
defined cDes : SYT(λ�)→ 2[n] such that

(i) cDes(T ) ∩ [n − 1] = Des(T )
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SYT(λ�; k) := {T ∈ SYT(λ�) : cdes(T ) = k}.
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Uses an inner product formula of Adin–Reiner–Roichman (2017)
for Elizalde–Roichman’s cyclic descent extensions, a “change of
basis,” and the Wmaj

α,δ (q) product formula above.



Refined Sieving on Tableaux

Notation
Write

SYT(λ�; k) := {T ∈ SYT(λ�) : cdes(T ) = k}.

Theorem (Ahlbach–Rhoades–S.)

(SYT(λ�; k), 〈σ〉,SYT(λ�; k)maj(q)) refines the CSP triple
(SYT(λ�), 〈σ〉, SYT(λ�)maj(q)).

Remark
Showing [n]q | SYT(λ�; k)maj(q) is significantly more involved.
Uses an inner product formula of Adin–Reiner–Roichman (2017)
for Elizalde–Roichman’s cyclic descent extensions, a “change of
basis,” and the Wmaj

α,δ (q) product formula above.



Refined Sieving on Tableaux

Notation
Write

SYT(λ�; k) := {T ∈ SYT(λ�) : cdes(T ) = k}.

Theorem (Ahlbach–Rhoades–S.)

(SYT(λ�; k), 〈σ〉,SYT(λ�; k)maj(q)) refines the CSP triple
(SYT(λ�), 〈σ〉, SYT(λ�)maj(q)).

Remark
Showing [n]q | SYT(λ�; k)maj(q) is significantly more involved.
Uses an inner product formula of Adin–Reiner–Roichman (2017)
for Elizalde–Roichman’s cyclic descent extensions, a “change of
basis,” and the Wmaj

α,δ (q) product formula above.



Further work

I In progress: refine Rhoades’ sieving result on rectangular
tableaux.

(Catalan case done.)

I In progress: further explore the CSP and Roichman et al’s
other cyclic descent extensions

I Give a representation-theoretic proof of Wα,δ result



Further work

I In progress: refine Rhoades’ sieving result on rectangular
tableaux. (Catalan case done.)

I In progress: further explore the CSP and Roichman et al’s
other cyclic descent extensions

I Give a representation-theoretic proof of Wα,δ result



Further work

I In progress: refine Rhoades’ sieving result on rectangular
tableaux. (Catalan case done.)

I In progress: further explore the CSP and Roichman et al’s
other cyclic descent extensions

I Give a representation-theoretic proof of Wα,δ result



Further work

I In progress: refine Rhoades’ sieving result on rectangular
tableaux. (Catalan case done.)

I In progress: further explore the CSP and Roichman et al’s
other cyclic descent extensions

I Give a representation-theoretic proof of Wα,δ result



Thanks!

THANKS!


