Refined Cyclic Sieving on Words and Tableaux

 San Diego JMM, January 13th, 2018Josh Swanson
University of Washington

based on joint work with
Connor Ahlbach and Brendon Rhoades
arXiv:1706.08631

Outline

- The cyclic sieving phenomenon (CSP) and refinements

Outline

- The cyclic sieving phenomenon (CSP) and refinements
- Refined CSP on words

Outline

- The cyclic sieving phenomenon (CSP) and refinements
- Refined CSP on words
- Refined CSP on tableaux

The Cyclic Sieving Phenomenon (CSP)

Definition (Reiner-Stanton-White, 2004)
Take $(X, C, f(q))$ where X is a finite set, C is a finite cyclic group acting on X, and $f(q) \in \mathbb{Z}_{\geq 0}[q]$.

The Cyclic Sieving Phenomenon (CSP)

Definition (Reiner-Stanton-White, 2004)
Take $(X, C, f(q))$ where X is a finite set, C is a finite cyclic group acting on X, and $f(q) \in \mathbb{Z}_{\geq 0}[q]$.

We say $(X, C, f(q))$ exhibits the cyclic sieving phenomenon (CSP) if for all $c \in C$ and roots of unity $\omega \in \mathbb{C}$ of the same order as c,

$$
\#\{x \in X: c \cdot x=x\}=f(\omega)
$$

The Cyclic Sieving Phenomenon (CSP)

Definition (Reiner-Stanton-White, 2004)
Take $(X, C, f(q))$ where X is a finite set, C is a finite cyclic group acting on X, and $f(q) \in \mathbb{Z}_{\geq 0}[q]$.

We say $(X, C, f(q))$ exhibits the cyclic sieving phenomenon (CSP) if for all $c \in C$ and roots of unity $\omega \in \mathbb{C}$ of the same order as c,

$$
\#\{x \in X: c \cdot x=x\}=f(\omega)
$$

(Equivalently, $f(\omega)$ is $\operatorname{Tr}_{\mathbb{C}\{X\}}(c)$. Note $f(1)=\# X$.)

The Cyclic Sieving Phenomenon (CSP)

Example
Let $X=\binom{[n]}{k}$ and let $C=\mathbb{Z} / n$ act on X by addition $\bmod n$: if $n=6, k=3$, then

$$
\overline{2} \cdot\{2,3,5\}=\{4,5,1\} .
$$

The Cyclic Sieving Phenomenon (CSP)

Example
Let $X=\binom{[n]}{k}$ and let $C=\mathbb{Z} / n$ act on X by addition $\bmod n$: if $n=6, k=3$, then

$$
\overline{2} \cdot\{2,3,5\}=\{4,5,1\} .
$$

Theorem (RSW)
The triple $\left(\binom{[n]}{k}, \mathbb{Z} / n,\binom{n}{k}_{q}\right)$ exhibits the CSP.

The Cyclic Sieving Phenomenon (CSP)

Example
Let $X=\binom{[n]}{k}$ and let $C=\mathbb{Z} / n$ act on X by addition $\bmod n$: if $n=6, k=3$, then

$$
\overline{2} \cdot\{2,3,5\}=\{4,5,1\} .
$$

Theorem (RSW)
The triple $\left(\binom{[n]}{k}, \mathbb{Z} / n,\binom{n}{k}_{q}\right)$ exhibits the CSP.
Recall:

- $\binom{n}{k}_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$
- $[n]_{q}!:=[n]_{q}[n-1]_{q} \cdots[1]_{q}$
- $[c]_{q}:=1+q+\cdots+q^{c-1}$

CSP Refinements

Notation
Given stat: $X \rightarrow \mathbb{Z}_{\geq 0}$, write

$$
X^{\text {stat }}(q):=\sum_{x \in X} q^{\text {stat }(x)} \in \mathbb{Z}_{\geq 0}[q] .
$$

CSP Refinements

Notation
Given stat: $X \rightarrow \mathbb{Z}_{\geq 0}$, write

$$
X^{\text {stat }}(q):=\sum_{x \in X} q^{\text {stat }(x)} \in \mathbb{Z}_{\geq 0}[q] .
$$

Note $X^{\text {stat }}(1)=\# X$.

CSP Refinements

Notation
Given stat: $X \rightarrow \mathbb{Z}_{\geq 0}$, write

$$
X^{\text {stat }}(q):=\sum_{x \in X} q^{\operatorname{stat}(x)} \in \mathbb{Z}_{\geq 0}[q]
$$

Note $X^{\text {stat }}(1)=\# X$.
In many CSP triples, $f(q)=X^{\text {stat }}(q)$ for some stat.
Example
$\binom{n}{k}_{q}=\binom{[n]}{k}$ Sum $^{\prime}(q)$ where $\operatorname{Sum}^{\prime}(A)=\left(\sum_{a \in A} a\right)-(1+2+\cdots+k)$.

CSP Refinements

Definition (Ahlbach-S.)
Given a CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$ and $Y \subset X$ closed under the C-action

CSP Refinements

Definition (Ahlbach-S.)
Given a CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$ and $Y \subset X$ closed under the C-action, if $\left(Y, C, Y^{\text {stat }}(q)\right)$ also exhibits the CSP, we say $\left(Y, C, Y^{\text {stat }}(q)\right)$ refines the CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$.

CSP Refinements

Definition (Ahlbach-S.)

Given a CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$ and $Y \subset X$ closed under the C-action, if $\left(Y, C, Y^{\text {stat }}(q)\right)$ also exhibits the CSP, we say $\left(Y, C, Y^{\text {stat }}(q)\right)$ refines the CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$.
(In this case, $\left(X-Y, C,(X-Y)^{\text {stat }}(q)\right)$ also exhibits the CSP.)

CSP Refinements

Definition (Ahlbach-S.)

Given a CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$ and $Y \subset X$ closed under the C-action, if $\left(Y, C, Y^{\text {stat }}(q)\right)$ also exhibits the CSP, we say $\left(Y, C, Y^{\text {stat }}(q)\right)$ refines the CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$.
(In this case, $\left(X-Y, C,(X-Y)^{\text {stat }}(q)\right)$ also exhibits the CSP.)
Example
Take $X=\binom{[6]}{3}, Y=\mathbb{Z} / 6 \cdot\{2,3,4\}$

CSP Refinements

Definition (Ahlbach-S.)

Given a CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$ and $Y \subset X$ closed under the C-action, if $\left(Y, C, Y^{\text {stat }}(q)\right)$ also exhibits the CSP, we say $\left(Y, C, Y^{\text {stat }}(q)\right)$ refines the CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$.
(In this case, $\left(X-Y, C,(X-Y)^{\text {stat }}(q)\right)$ also exhibits the CSP.)
Example
Take $X=\binom{[6]}{3}, Y=\mathbb{Z} / 6 \cdot\{2,3,4\}$. Then
$Y^{\text {Sum }^{\prime}}(q)=1+2 q^{3}+2 q^{6}+q^{9}$, and

$$
\begin{array}{cc}
Y^{\text {Sum }^{\prime}}(1)=6, & Y^{\text {Sum }^{\prime}}(-1)=0 \\
Y^{\text {Sum }^{\prime}}\left(\omega_{3}\right)=6, & Y^{\text {Sum }^{\prime}}\left(\omega_{6}\right)=0
\end{array}
$$

CSP Refinements

Definition (Ahlbach-S.)

Given a CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$ and $Y \subset X$ closed under the C-action, if $\left(Y, C, Y^{\text {stat }}(q)\right)$ also exhibits the CSP, we say $\left(Y, C, Y^{\text {stat }}(q)\right)$ refines the CSP triple $\left(X, C, X^{\text {stat }}(q)\right)$.
(In this case, $\left(X-Y, C,(X-Y)^{\text {stat }}(q)\right)$ also exhibits the CSP.)
Example
Take $X=\binom{[6]}{3}, Y=\mathbb{Z} / 6 \cdot\{2,3,4\}$. Then
$Y^{\text {Sum }^{\prime}}(q)=1+2 q^{3}+2 q^{6}+q^{9}$, and

$$
\begin{array}{cc}
Y^{\text {Sum }^{\prime}}(1)=6, & Y^{\text {Sum }^{\prime}}(-1)=0 \\
Y^{\text {Sum }^{\prime}}\left(\omega_{3}\right)=6, & Y^{\text {Sum }^{\prime}}\left(\omega_{6}\right)=0 .
\end{array}
$$

We would need $Y^{\text {Sum }^{\prime}}\left(\omega_{3}\right)=0$, not 6 . So, $\left(Y, \mathbb{Z} / n, Y^{\text {Sum }^{\prime}}(q)\right)$ does NOT quite refine the $\operatorname{RSW} \operatorname{CSP}\left(X, \mathbb{Z} / n, X^{\operatorname{Sum}^{\prime}}(q)\right)$.

A First Refinement Result

The cyclic blocks of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to
n. (Ex: $\{1,2,4,6\} \subset[6]$ has two cyclic blocks, 612 and 4.)

A First Refinement Result

The cyclic blocks of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to
n. (Ex: $\{1,2,4,6\} \subset[6]$ has two cyclic blocks, 612 and 4.) Let
$S_{k}:=$ the k-element subsets of [n]
$S_{k, b}:=$ the k-element subsets of [n] with b cyclic blocks.

A First Refinement Result

The cyclic blocks of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1,2,4,6\} \subset[6]$ has two cyclic blocks, 612 and 4.) Let

$$
S_{k}:=\text { the } k \text {-element subsets of }[n]
$$

$S_{k, b}:=$ the k-element subsets of $[n]$ with b cyclic blocks.
Let mbs be the sum of the ends of the cyclic blocks of a subset of $[n]$. $(\operatorname{Ex}: \operatorname{mbs}(\{1,2,4,6\} \subset[6])=2+4=6$. $)$

A First Refinement Result

The cyclic blocks of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1,2,4,6\} \subset[6]$ has two cyclic blocks, 612 and 4.) Let

$$
S_{k}:=\text { the } k \text {-element subsets of }[n]
$$

$S_{k, b}:=$ the k-element subsets of $[n]$ with b cyclic blocks.
Let mbs be the sum of the ends of the cyclic blocks of a subset of $[n] .(\operatorname{Ex}: \operatorname{mbs}(\{1,2,4,6\} \subset[6])=2+4=6$. $)$
Theorem (Ahlbach-S.)
$\left(S_{k, b}, \mathbb{Z} / n, S_{k, b}^{\mathrm{mbs}}(q)\right)$ refines the CSP triple $\left(S_{k}, \mathbb{Z} / n, S_{k}^{\mathrm{mbs}}(q)\right)$.

A First Refinement Result

The cyclic blocks of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1,2,4,6\} \subset[6]$ has two cyclic blocks, 612 and 4.) Let

$$
S_{k}:=\text { the } k \text {-element subsets of }[n]
$$

$S_{k, b}:=$ the k-element subsets of $[n]$ with b cyclic blocks.
Let mbs be the sum of the ends of the cyclic blocks of a subset of [n]. (Ex: $\operatorname{mbs}(\{1,2,4,6\} \subset[6])=2+4=6$. $)$
Theorem (Ahlbach-S.)
$\left(S_{k, b}, \mathbb{Z} / n, S_{k, b}^{\mathrm{mbs}}(q)\right)$ refines the CSP triple $\left(S_{k}, \mathbb{Z} / n, S_{k}^{\mathrm{mbs}}(q)\right)$.
Here $X^{\text {Sum }^{\prime}}(q)$ is "equivalent" to $\binom{n}{k}_{q}$, so the unrefined triple is essentially RSW's.

Word Combinatorics

Definition
Given a word $w=w_{1} \cdots w_{n}$ with letters $w_{i} \in \mathbb{Z}_{\geq 1}$, the descent set of w is

$$
\operatorname{Des}(w):=\left\{i \in[n-1]: w_{i}>w_{i+1}\right\} .
$$

Word Combinatorics

Definition
Given a word $w=w_{1} \cdots w_{n}$ with letters $w_{i} \in \mathbb{Z}_{\geq 1}$, the descent set of w is

$$
\operatorname{Des}(w):=\left\{i \in[n-1]: w_{i}>w_{i+1}\right\} .
$$

The major index of w is

$$
\operatorname{maj}(w):=\sum_{i \in \operatorname{Des}(w)} i
$$

Word Combinatorics

Definition

Given a word $w=w_{1} \cdots w_{n}$ with letters $w_{i} \in \mathbb{Z}_{\geq 1}$, the descent set of w is

$$
\operatorname{Des}(w):=\left\{i \in[n-1]: w_{i}>w_{i+1}\right\}
$$

The major index of w is

$$
\operatorname{maj}(w):=\sum_{i \in \operatorname{Des}(w)} i
$$

The content of w is the weak composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \vDash n$ where

$$
\alpha_{i}:=\# i \prime s \text { in } \alpha
$$

Word Combinatorics

Definition

Given a word $w=w_{1} \cdots w_{n}$ with letters $w_{i} \in \mathbb{Z}_{\geq 1}$, the descent set of w is

$$
\operatorname{Des}(w):=\left\{i \in[n-1]: w_{i}>w_{i+1}\right\}
$$

The major index of w is

$$
\operatorname{maj}(w):=\sum_{i \in \operatorname{Des}(w)} i
$$

The content of w is the weak composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \vDash n$ where

$$
\alpha_{i}:=\# i^{\prime} \mathrm{s} \text { in } \alpha .
$$

(Ex: If $w=323314$, then $\operatorname{Des}(w)=\{1,4\}$, $\operatorname{maj}(w)=1+4=5$, and $\alpha=(1,1,3,1)$.)

A CSP on Words

Notation
Let

$$
W_{\alpha}:=\text { words of content } \alpha .
$$

A CSP on Words

Notation
Let

$$
W_{\alpha}:=\text { words of content } \alpha .
$$

\mathbb{Z} / n acts on W_{α} by rotation:

$$
\overline{2} \cdot 011010=100110
$$

A CSP on Words

Notation
Let

$$
W_{\alpha}:=\text { words of content } \alpha .
$$

\mathbb{Z} / n acts on W_{α} by rotation:

$$
\overline{2} \cdot 011010=100110
$$

Theorem (RSW)
The triple $\left(W_{\alpha}, \mathbb{Z} / n, W_{\alpha}^{\text {maj }}(q)\right)$ exhibits the CSP.

A CSP on Words

Notation
Let

$$
W_{\alpha}:=\text { words of content } \alpha .
$$

\mathbb{Z} / n acts on W_{α} by rotation:

$$
\overline{2} \cdot 011010=100110
$$

Theorem (RSW)
The triple $\left(W_{\alpha}, \mathbb{Z} / n, W_{\alpha}^{\text {maj }}(q)\right)$ exhibits the CSP.
Remark
They actually proved a generalization valid for all finite Coxeter groups using Springer's regular elements, representation theory, coinvariant algebras, and len instead of maj.

Refined CSP on Words

Definition
Cyclic descent type (CDT) of a word:

Refined CSP on Words

Definition

Cyclic descent type (CDT) of a word: if $w=143124114223$, then

$$
\begin{array}{ll}
w^{(1)}=1111 & \operatorname{cdes}\left(w^{(1)}\right)=0, \\
w^{(2)}=112.1122 . & \operatorname{cdes}\left(w^{(2)}\right)=2, \\
w^{(3)}=13.12 .11223 . & \operatorname{cdes}\left(w^{(3)}\right)=3, \\
w^{(4)}=14.3 .124 .114 .223 . & \operatorname{cdes}\left(w^{(4)}\right)=5 .
\end{array}
$$

Refined CSP on Words

Definition

Cyclic descent type (CDT) of a word: if $w=143124114223$, then

$$
\begin{array}{ll}
w^{(1)}=1111 & \operatorname{cdes}\left(w^{(1)}\right)=0, \\
w^{(2)}=112.1122 . & \operatorname{cdes}\left(w^{(2)}\right)=2, \\
w^{(3)}=13.12 .11223 . & \operatorname{cdes}\left(w^{(3)}\right)=3, \\
w^{(4)}=14.3 .124 .114 .223 . & \operatorname{cdes}\left(w^{(4)}\right)=5 .
\end{array}
$$

We set $\operatorname{CDT}(143124114223)=(0,2-0,3-2,5-3)=(0,2,1,2)$.

Refined CSP on Words

Definition

Cyclic descent type (CDT) of a word: if $w=143124114223$, then

$$
\begin{array}{ll}
w^{(1)}=1111 & \operatorname{cdes}\left(w^{(1)}\right)=0, \\
w^{(2)}=112.1122 . & \operatorname{cdes}\left(w^{(2)}\right)=2, \\
w^{(3)}=13.12 .11223 . & \operatorname{cdes}\left(w^{(3)}\right)=3, \\
w^{(4)}=14.3 .124 .114 .223 . & \operatorname{cdes}\left(w^{(4)}\right)=5 .
\end{array}
$$

We set CDT $(143124114223)=(0,2-0,3-2,5-3)=(0,2,1,2)$.
Notation
Let
$W_{\alpha, \delta}:=$ words w with content α and $\operatorname{CDT}(w)=\delta$.

Refined CSP on Words

Theorem (Ahlbach-S.)
$\left(W_{\alpha, \delta}, \mathbb{Z} / n, W_{\alpha, \delta}^{\text {maj }}(q)\right)$ refines the CSP triple $\left(W_{\alpha}, \mathbb{Z} / n, W_{\alpha}^{\text {maj }}(q)\right)$.

Refined CSP on Words

Theorem (Ahlbach-S.)
$\left(W_{\alpha, \delta}, \mathbb{Z} / n, W_{\alpha, \delta}^{\text {maj }}(q)\right)$ refines the CSP triple $\left(W_{\alpha}, \mathbb{Z} / n, W_{\alpha}^{\text {maj }}(q)\right)$.
Remark
Completely different proof than RSW. Combinatorial and largely recursive. Involves Carlitz-style decomposition, (more or less new) notion of "modular periodicity," a CSP extension lemma, a non-equivariant-but-fixed-point-preserving bijection, products of CSP's on sets and multisets.

Refined CSP on Words

One key step:

Refined CSP on Words

One key step:
Theorem (Ahlbach-S.)
Let $\alpha \vDash n$ be a strong composition with m parts, $\delta \vDash k$, $n_{i}:=\left|w^{(i)}\right|, k_{i}:=\operatorname{cdes}\left(w^{(i)}\right), d:=\operatorname{gcd}(n, k)$. Then, modulo $q^{n}-1$,

$$
\begin{aligned}
W_{\alpha, \delta}^{\text {maj }}(q) & \equiv \frac{d}{\alpha_{1}}[n / d]_{q^{d}} \prod_{\ell=2}^{m} q^{k_{\ell} \alpha_{\ell}}\binom{n_{\ell-1}-k_{\ell-1}}{\delta_{\ell}}_{q}\left(\binom{k_{\ell}}{\alpha_{\ell}-\delta_{\ell}}\right)_{q^{-1}} \\
& \equiv \frac{d}{\alpha_{1}}[n / d]_{q^{d}} q^{\eta} \prod_{\ell=2}^{m}\binom{n_{\ell-1}-k_{\ell-1}}{\delta_{\ell}}_{q}\left(\binom{k_{\ell}}{\alpha_{\ell}-\delta_{\ell}}\right)_{q}
\end{aligned}
$$

where $\eta:=\binom{k}{2}+\sum_{\ell=2}^{m}\binom{\delta_{\ell}}{2}-\alpha_{1}$.

Tableaux combinatorics

Definition
Given $T \in \operatorname{SYT}(\lambda)$,
$\operatorname{Des}(T):=\{i: i+1$ is in a lower row than $i\}$.

Tableaux combinatorics

Definition
Given $T \in \operatorname{SYT}(\lambda)$,

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Ex:

$$
\left.T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 4 \\
\hline 5 & 6
\end{array}\right] \operatorname{Des}(T)=\{2,4,6\} .
$$

Tableaux combinatorics

Definition
Given $T \in \operatorname{SYT}(\lambda)$,

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Ex:

$$
\left.T=\begin{array}{|l|ll}
1 & 2 & 4 \\
\hline & 6 & \\
\hline 5 & 7
\end{array}\right] \operatorname{Des}(T)=\{2,4,6\} .
$$

As before, $\operatorname{maj}(T):=\sum_{i \in \operatorname{Des}(T)}{ }^{i}$.

Tableaux combinatorics

Definition
Given $T \in \operatorname{SYT}(\lambda)$,

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Ex:

$$
T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 4 \\
\hline & 6 \\
\hline 5 & 7
\end{array} \Rightarrow \operatorname{Des}(T)=\{2,4,6\} .
$$

As before, $\operatorname{maj}(T):=\sum_{i \in \operatorname{Des}(T)} i$.
Definition
Given $\lambda \vdash n-1$, let $\lambda^{\square} \vdash n$ be the following "slightly skew partition":

$$
\left.\lambda=\begin{array}{|c|}
\square \\
\square \\
\square
\end{array}\right]
$$

Refined Sieving on Tableaux

Remark
Elizalde-Roichman (2017) defined a bijection
$\sigma: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ whose orbits are size n.

Refined Sieving on Tableaux

Remark

Elizalde-Roichman (2017) defined a bijection
$\sigma: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ whose orbits are size n. They also defined cDes: $\operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow 2^{[n]}$ such that
(i) $\mathrm{cDes}(T) \cap[n-1]=\operatorname{Des}(T)$
(ii) $\mathrm{cDes}\left(\sigma^{k} \cdot T\right)=\bar{k} \cdot \mathrm{cDes}(T)$.

Refined Sieving on Tableaux

Remark

Elizalde-Roichman (2017) defined a bijection
$\sigma: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ whose orbits are size n. They also defined cDes: $\operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow 2^{[n]}$ such that
(i) $c \operatorname{Des}(T) \cap[n-1]=\operatorname{Des}(T)$
(ii) $\mathrm{cDes}\left(\sigma^{k} \cdot T\right)=\bar{k} \cdot \mathrm{cDes}(T)$.

Theorem (Ahlbach-Rhoades-S.)
The triple $\left(\operatorname{SYT}\left(\lambda^{\square}\right),\langle\sigma\rangle, \operatorname{SYT}\left(\lambda^{\square}\right)^{\mathrm{maj}}(q)\right)$ exhibits the CSP.

Refined Sieving on Tableaux

Remark

Elizalde-Roichman (2017) defined a bijection
$\sigma: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ whose orbits are size n. They also defined cDes: $\operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow 2^{[n]}$ such that
(i) $c \operatorname{Des}(T) \cap[n-1]=\operatorname{Des}(T)$
(ii) $\mathrm{cDes}\left(\sigma^{k} \cdot T\right)=\bar{k} \cdot \mathrm{cDes}(T)$.

Theorem (Ahlbach-Rhoades-S.)
The triple $\left(\operatorname{SYT}\left(\lambda^{\square}\right),\langle\sigma\rangle, \operatorname{SYT}\left(\lambda^{\square}\right)^{\text {maj }}(q)\right)$ exhibits the CSP.
Remark
Proof reduces to showing $[n]_{q}$ divides $\operatorname{SYT}\left(\lambda^{\square}\right)^{\text {maj }}(q)$.

Refined Sieving on Tableaux

Remark

Elizalde-Roichman (2017) defined a bijection
$\sigma: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ whose orbits are size n. They also defined cDes: $\operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow 2^{[n]}$ such that
(i) $\operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T)$
(ii) $\mathrm{cDes}\left(\sigma^{k} \cdot T\right)=\bar{k} \cdot \mathrm{cDes}(T)$.

Theorem (Ahlbach-Rhoades-S.)
The triple (SYT $\left.\left(\lambda^{\square}\right),\langle\sigma\rangle, \operatorname{SYT}\left(\lambda^{\square}\right)^{\operatorname{maj}}(q)\right)$ exhibits the CSP.
Remark
Proof reduces to showing $[n]_{q}$ divides $\operatorname{SYT}\left(\lambda^{\square}\right)^{\text {maj }}(q)$. Follows from

$$
\begin{aligned}
\operatorname{SYT}\left(\lambda^{\square}\right)^{\mathrm{maj}}(q) & =\binom{n}{n-1,1}_{q} \operatorname{SYT}(\lambda)^{\mathrm{maj}}(q) \operatorname{SYT}(\square)^{\mathrm{maj}}(q) \\
& =[n]_{q} \operatorname{SYT}(\lambda)^{\mathrm{maj}}(q) .
\end{aligned}
$$

Refined Sieving on Tableaux

Notation
Write

$$
\operatorname{SYT}\left(\lambda^{\square} ; k\right):=\left\{T \in \operatorname{SYT}\left(\lambda^{\square}\right): \operatorname{cdes}(T)=k\right\} .
$$

Refined Sieving on Tableaux

Notation
Write

$$
\operatorname{SYT}\left(\lambda^{\square} ; k\right):=\left\{T \in \operatorname{SYT}\left(\lambda^{\square}\right): \operatorname{cdes}(T)=k\right\} .
$$

Theorem (Ahlbach-Rhoades-S.)
$\left(\operatorname{SYT}\left(\lambda^{\square} ; k\right),\langle\sigma\rangle, \operatorname{SYT}\left(\lambda^{\square} ; k\right)^{\text {maj }}(q)\right)$ refines the CSP triple $\left(\operatorname{SYT}\left(\lambda^{\square}\right),\langle\sigma\rangle, \operatorname{SYT}\left(\lambda^{\square}\right)^{\mathrm{maj}}(q)\right)$.

Refined Sieving on Tableaux

Notation
Write

$$
\operatorname{SYT}\left(\lambda^{\square} ; k\right):=\left\{T \in \operatorname{SYT}\left(\lambda^{\square}\right): \operatorname{cdes}(T)=k\right\} .
$$

Theorem (Ahlbach-Rhoades-S.)
$\left(\operatorname{SYT}\left(\lambda^{\square} ; k\right),\langle\sigma\rangle, \operatorname{SYT}\left(\lambda^{\square} ; k\right)^{\operatorname{maj}}(q)\right)$ refines the CSP triple $\left(\operatorname{SYT}\left(\lambda^{\square}\right),\langle\sigma\rangle, \operatorname{SYT}\left(\lambda^{\square}\right)^{\mathrm{maj}}(q)\right)$.

Remark
Showing $[n]_{q} \mid \operatorname{SYT}\left(\lambda^{\square} ; k\right)^{\text {maj }}(q)$ is significantly more involved. Uses an inner product formula of Adin-Reiner-Roichman (2017) for Elizalde-Roichman's cyclic descent extensions, a "change of basis," and the $W_{\alpha, \delta}^{\text {maj }}(q)$ product formula above.

Further work

- In progress: refine Rhoades' sieving result on rectangular tableaux.

Further work

- In progress: refine Rhoades' sieving result on rectangular tableaux. (Catalan case done.)

Further work

- In progress: refine Rhoades' sieving result on rectangular tableaux. (Catalan case done.)
- In progress: further explore the CSP and Roichman et al's other cyclic descent extensions

Further work

- In progress: refine Rhoades' sieving result on rectangular tableaux. (Catalan case done.)
- In progress: further explore the CSP and Roichman et al's other cyclic descent extensions
- Give a representation-theoretic proof of $W_{\alpha, \delta}$ result

Thanks!

$\mathfrak{T H A N K S}$

