A minimaj-preserving crystal on ordered multiset partitions

Anne Schilling

Department of Mathematics, UC Davis
based on joint work with Georgia Benkart, Laura Colmenarejo, Pamela Harris, Rosa Orellana, Greta Panova, Martha Yip

Advances in Applied Math. 95 (2018) 96-115 (arXiv:1707.08709)

Joint Mathematics Meetings, San Diego, January 13, 2018

Project idea from talk by Brendon Rhoades in summer 2016 in Seoul

Project idea from talk by Brendon Rhoades in summer 2016 in Seoul Working group in Banff in May 2017

Outline

(1) Motivation

(2) Crystal structure

Motivation

- Shuffle Conjecture/Theorem:
- combinatorial description of bigraded Frobenius characteristic of S_{n}-module of diagonal harmonic polynomials

Motivation

- Shuffle Conjecture/Theorem:
- combinatorial description of bigraded Frobenius characteristic of S_{n}-module of diagonal harmonic polynomials
- conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson

Motivation

- Shuffle Conjecture/Theorem:
- combinatorial description of bigraded Frobenius characteristic of S_{n}-module of diagonal harmonic polynomials
- conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
- generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson

Motivation

- Shuffle Conjecture/Theorem:
- combinatorial description of bigraded Frobenius characteristic of S_{n}-module of diagonal harmonic polynomials
- conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
- generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
- involves quasisymmetric functions $\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t)$ and $\operatorname{Val}_{n, k}(\mathbf{x} ; q, t)$

Motivation

- Shuffle Conjecture/Theorem:
- combinatorial description of bigraded Frobenius characteristic of S_{n}-module of diagonal harmonic polynomials
- conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
- generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
- involves quasisymmetric functions $\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t)$ and $\operatorname{Val}_{n, k}(\mathbf{x} ; q, t)$
$-\operatorname{Rise}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Rise}_{n, k}(\mathbf{x} ; t, 0)=\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; t, 0)$

Motivation

- Shuffle Conjecture/Theorem:
- combinatorial description of bigraded Frobenius characteristic of S_{n}-module of diagonal harmonic polynomials
- conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
- generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
- involves quasisymmetric functions $\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t)$ and $\operatorname{Val}_{n, k}(\mathbf{x} ; q, t)$
- $\operatorname{Rise}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Rise}_{n, k}(\mathbf{x} ; t, 0)=\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; t, 0)$
- $\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)$ Schur positive symmetric function [Rhoades] [Wilson]

Motivation

- Shuffle Conjecture/Theorem:
- combinatorial description of bigraded Frobenius characteristic of S_{n}-module of diagonal harmonic polynomials
- conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
- generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
- involves quasisymmetric functions $\operatorname{Rise}_{n, k}(\mathbf{x} ; q, t)$ and $\operatorname{Val}_{n, k}(\mathbf{x} ; q, t)$
- $\operatorname{Rise}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Rise}_{n, k}(\mathbf{x} ; t, 0)=\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)=\operatorname{Val}_{n, k}(\mathbf{x} ; t, 0)$
- $\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)$ Schur positive symmetric function [Rhoades] [Wilson]
- combinatorial formua

$$
\operatorname{Val}_{n, k}(\mathbf{x} ; 0, t)=\sum_{\pi \in \mathcal{O} \mathcal{P}_{n, k+1}} t^{\operatorname{minimaj}(\pi)} \mathbf{x}^{\operatorname{wt}(\pi)}
$$

Goal

- Crystal structure on ordered multiset partitions

Goal

- Crystal structure on ordered multiset partitions
- representation theoretic proof/interpretation of positive Schur expansion

Goal

- Crystal structure on ordered multiset partitions
- representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj

Goal

- Crystal structure on ordered multiset partitions
- representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj
- [Wilson] analyzed inv, dinv, maj, and minimaj on $\mathcal{O} \mathcal{P}_{n, k}$ proved equidistributivity of inv, dinv, maj

Goal

- Crystal structure on ordered multiset partitions
- representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj
- [Wilson] analyzed inv, dinv, maj, and minimaj on $\mathcal{O} \mathcal{P}_{n, k}$ proved equidistributivity of inv, dinv, maj
- [Rhoades] non-bijective proof of equidistributivity of all these statistics with minimaj

Goal

- Crystal structure on ordered multiset partitions
- representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj
- [Wilson] analyzed inv, dinv, maj, and minimaj on $\mathcal{O} \mathcal{P}_{n, k}$ proved equidistributivity of inv, dinv, maj
- [Rhoades] non-bijective proof of equidistributivity of all these statistics with minimaj
- crystal structure gives bijective proof

Outline

(1) Motivation
(2) Crystal structure

Ordered multiset partitions

- $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right) \models n$ weak composition of n

Ordered multiset partitions

- $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right) \models n$ weak composition of n
- $\mathcal{O} \mathcal{P}_{\nu, k}=$ set of partitions of the multiset $\left\{i^{\nu_{i}} \mid i \geqslant 1\right\}$ into k nonempty sets

Ordered multiset partitions

- $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right) \models n$ weak composition of n
- $\mathcal{O} \mathcal{P}_{\nu, k}=$ set of partitions of the multiset $\left\{\nu^{\nu_{i}} \mid i \geqslant 1\right\}$ into k nonempty sets
- $\operatorname{wt}(\pi):=\nu$ is weight of $\pi \in \mathcal{O} \mathcal{P}_{\nu, k}$

Ordered multiset partitions

- $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right) \models n$ weak composition of n
- $\mathcal{O} \mathcal{P}_{\nu, k}=$ set of partitions of the multiset $\left\{\nu^{\nu_{i}} \mid i \geqslant 1\right\}$ into k nonempty sets
- $\mathrm{wt}(\pi):=\nu$ is weight of $\pi \in \mathcal{O} \mathcal{P}_{\nu, k}$

$$
\mathcal{O} \mathcal{P}_{n, k}=\bigcup_{\nu \models n} \mathcal{O} \mathcal{P}_{\nu, k}
$$

Ordered multiset partitions

- $\nu=\left(\nu_{1}, \nu_{2}, \ldots\right) \models n$ weak composition of n
- $\mathcal{O} \mathcal{P}_{\nu, k}=$ set of partitions of the multiset $\left\{\nu^{\nu_{i}} \mid i \geqslant 1\right\}$ into k nonempty sets
- $\operatorname{wt}(\pi):=\nu$ is weight of $\pi \in \mathcal{O} \mathcal{P}_{\nu, k}$

$$
\mathcal{O} \mathcal{P}_{n, k}=\bigcup_{\nu \models n} \mathcal{O} \mathcal{P}_{\nu, k}
$$

Example

$$
\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}
$$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $b_{i}<\alpha_{i}>\beta_{i} \leqslant b_{i+1}$.

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $b_{i}<\alpha_{i}>\beta_{i} \leqslant b_{i+1}$.

Example

$$
\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}
$$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $\left.b_{i}<\alpha_{i}\right\rangle \beta_{i} \leqslant b_{i+1}$.

Example

$$
\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}
$$

$$
i=6:(157|24| 56|468| 13 \mid 123)
$$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $\left.b_{i}<\alpha_{i}\right\rangle \beta_{i} \leqslant b_{i+1}$.

Example

$$
\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}
$$

$$
i=5:(157|24| 56|468| 31 \mid 123)
$$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $\left.b_{i}<\alpha_{i}\right\rangle \beta_{i} \leqslant b_{i+1}$.

Example

$$
\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}
$$

$$
i=4:(157|24| 56|468| 31 \mid 123)
$$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $\left.b_{i}<\alpha_{i}\right\rangle \beta_{i} \leqslant b_{i+1}$.

Example

$$
\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}
$$

$i=3:(157|24| 56|468| 31 \mid 123)$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $\left.b_{i}<\alpha_{i}\right\rangle \beta_{i} \leqslant b_{i+1}$.

Example

$$
\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}
$$

$$
i=2:(157|24| 56|468| 31 \mid 123)
$$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $b_{i}<\alpha_{i}>\beta_{i} \leqslant b_{i+1}$.

Example

$$
\begin{aligned}
& \pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6} \\
& i=1:(571|24| 56|468| 31 \mid 123) \quad \text { minimaj order! }
\end{aligned}
$$

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $b_{i}<\alpha_{i}>\beta_{i} \leqslant b_{i+1}$.

Example

$\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}$
$i=1:(571|24| 56|468| 31 \mid 123) \quad$ minimaj order!
Minimaj: $\operatorname{minimaj}(\pi)=\operatorname{maj}(\pi)$ for π in minimaj order

Minimaj

Minimaj order: $\pi=\left(\pi_{1}\left|\pi_{2}\right| \ldots \mid \pi_{k}\right) \in \mathcal{O} \mathcal{P}_{n, k}$

- Start with last block π_{k}. Put π_{k} in increasing order.
- Assume π_{i+1} is ordered.
- Let b_{i+1} be first letter of π_{i+1}.
- Write $\pi_{i}=b_{i} \alpha_{i} \beta_{i}$ with $b_{i}<\alpha_{i}>\beta_{i} \leqslant b_{i+1}$.

Example

$\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}$
$i=1:(571|24| 56|468| 31 \mid 123) \quad$ minimaj order!
Minimaj: $\operatorname{minimaj}(\pi)=\operatorname{maj}(\pi)$ for π in minimaj order

Example

 $\operatorname{minimaj}(57.1|24| 56 .|468 .|3.1| 123)=2+7+10+11=30$
Bijection with tuple of tableaux

Bijection:
$\varphi: \mathcal{O} \mathcal{P}_{n, k}$ with fixed $\ell \rightarrow \operatorname{SSYT}\left(1^{c_{1}}\right) \times \cdots \times \operatorname{SSYT}\left(1^{c_{\ell}}\right) \times \operatorname{SSYT}(\gamma)$ descents in blocks

$$
\pi \mapsto T_{1} \times \cdots \times T_{\ell} \times T_{\ell+1}
$$

Bijection with tuple of tableaux

Bijection:

$\varphi: \mathcal{O} \mathcal{P}_{n, k}$ with fixed $\ell \rightarrow \operatorname{SSYT}\left(1^{c_{1}}\right) \times \cdots \times \operatorname{SSYT}\left(1^{c_{\ell}}\right) \times \operatorname{SSYT}(\gamma)$ descents in blocks

$$
\pi \mapsto T_{1} \times \cdots \times T_{\ell} \times T_{\ell+1}
$$

Example

$\pi=(124|45 .|3| 46.1| 23.1|1| 25) \in \mathcal{O} \mathcal{P}_{15,7}$ in minimaj order

$$
\pi=(124|45 .|3| 46.1| 23.1|1| 25) \mapsto \begin{array}{|c}
\frac{1}{5}
\end{array} \times \begin{array}{|}
\frac{1}{3} \\
\hline 6
\end{array} \times
$$

Crystal structure

- Crystal operators e_{i}, f_{i} on (skew) tableaux exist

Crystal structure

- Crystal operators e_{i}, f_{i} on (skew) tableaux exist
- Define

$$
\tilde{e}_{i}, \tilde{f}_{i}: \mathcal{O} \mathcal{P}_{n, k} \rightarrow \mathcal{O} \mathcal{P}_{n, k} \cup\{0\}
$$

as $\tilde{e}_{i}=\varphi^{-1} \circ e_{i} \circ \varphi$ and $\tilde{f}_{i}=\varphi^{-1} \circ f_{i} \circ \varphi$

Crystal structure

- Crystal operators e_{i}, f_{i} on (skew) tableaux exist
- Define

$$
\tilde{e}_{i}, \tilde{f}_{i}: \mathcal{O} \mathcal{P}_{n, k} \rightarrow \mathcal{O} \mathcal{P}_{n, k} \cup\{0\}
$$

as $\tilde{e}_{i}=\varphi^{-1} \circ e_{i} \circ \varphi$ and $\tilde{f}_{i}=\varphi^{-1} \circ f_{i} \circ \varphi$
Theorem (minimaj preserving crystal)
The operators $\tilde{e}_{i}, \tilde{f}_{i}$, and wt impose an $\mathfrak{s l}_{r}$-crystal structure on $\mathcal{O} \mathcal{P}_{n, k}^{(r)}$. In addition, \tilde{e}_{i} and \tilde{f}_{i} preserve the minimaj statistic.

Crystal structure

- Crystal operators e_{i}, f_{i} on (skew) tableaux exist
- Define

$$
\tilde{e}_{i}, \tilde{f}_{i}: \mathcal{O} \mathcal{P}_{n, k} \rightarrow \mathcal{O} \mathcal{P}_{n, k} \cup\{0\}
$$

as $\tilde{e}_{i}=\varphi^{-1} \circ e_{i} \circ \varphi$ and $\tilde{f}_{i}=\varphi^{-1} \circ f_{i} \circ \varphi$
Theorem (minimaj preserving crystal)
The operators $\tilde{e}_{i}, \tilde{f}_{i}$, and wt impose an $\mathfrak{s l}_{r}$-crystal structure on $\mathcal{O} \mathcal{P}_{n, k}^{(r)}$. In addition, \tilde{e}_{i} and \tilde{f}_{i} preserve the minimaj statistic.

Corollary (Schur expansion)

$$
\operatorname{Val}_{n, k-1}(\mathbf{x} ; 0, t)=\sum_{\substack{\pi \in \mathcal{O} \mathcal{P}_{n, k} \\ \tilde{e}_{i}(\pi)=0}} t^{\operatorname{minimaj}(\pi)} \mathrm{S}_{\mathrm{wtt}(\pi)}
$$

Crystal structure on ordered multiset partitions

Crystal structure on ordered multiset partitions

$(231 \mid 1)$
$(23 \mid 12)$
(23)

1
(32|23) minimaj $2,0,1,1$
$\mathrm{Val}_{4,1}(\mathbf{x} ; 0, t)=\left(1+t+t^{2}\right) \mathrm{s}_{(2,1,1)}(\mathbf{x})+t \mathrm{~s}_{(2,2)}(\mathbf{x})$

Outline

(1) Motivation

(2) Crystal structure

(3) Equidistributivity between minimaj and maj

Major index for $\mathcal{O} \mathcal{P}_{n, k}$

w word obtained from π by reading each block in decreasing order

Major index for $\mathcal{O} \mathcal{P}_{n, k}$

w word obtained from π by reading each block in decreasing order Recursively construct v :

- $v_{0}=0$
- $v_{j}=v_{j-1}+\chi(j$ is the last position in its block)

Major index for $\mathcal{O} \mathcal{P}_{n, k}$

w word obtained from π by reading each block in decreasing order Recursively construct v :

- $v_{0}=0$
- $v_{j}=v_{j-1}+\chi(j$ is the last position in its block $)$

Definition (Major index)

$$
\operatorname{maj}(\pi)=\sum_{j: w_{j}>w_{j+1}} v_{j} \quad \text { for } \pi \in \mathcal{O} \mathcal{P}_{n, k}
$$

Major index for $\mathcal{O} \mathcal{P}_{n, k}$

w word obtained from π by reading each block in decreasing order Recursively construct v :

- $v_{0}=0$
- $v_{j}=v_{j-1}+\chi(j$ is the last position in its block $)$

Definition (Major index)

$$
\operatorname{maj}(\pi)=\sum_{j: w_{j}>w_{j+1}} v_{j} \quad \text { for } \pi \in \mathcal{O} \mathcal{P}_{n, k}
$$

Example
$\pi=(157|24| 56|468| 13 \mid 123) \in \mathcal{O} \mathcal{P}_{15,6}$

$$
\begin{aligned}
w & =751|42| 65|864| 31 \mid 321 \\
v & =001|12| 23|334| 45 \mid 556
\end{aligned}
$$

so that $\operatorname{maj}(\pi)=0+0+1+2+3+3+4+4+5+5=27$

Bijection

Theorem

The map $\psi: \mathcal{O P}_{n, k} \rightarrow \mathcal{O P}_{n, k}$ defined by

$$
\psi(\pi)=\mathrm{L}(\operatorname{read}(\varphi(\pi))) \quad \text { for } \pi \in \mathcal{O P}_{n, k} \text { in minimaj order }
$$

is a bijection and

$$
\operatorname{minimaj}(\pi)=\operatorname{maj}(\psi(\pi))
$$

φ bijection from $\mathcal{O} \mathcal{P}_{n, k}$ to tuple of (skew) tableaux read column reading word
L left shift map

read

Weak ordered multiset partitions $\mathcal{W O} \mathcal{P}_{n, k}=\mathcal{O} \mathcal{P}_{n, k}$ without condition that all blocks are nonempty

read

Weak ordered multiset partitions
$\mathcal{W O} \mathcal{P}_{n, k}=\mathcal{O} \mathcal{P}_{n, k}$ without condition that all blocks are nonempty

Example

$\pi=(1|56 .|4 .|37.12| 2.1| 1| 34) \in \mathcal{O} \mathcal{P}_{13,7}$ in minimaj order

$$
\begin{array}{r}
T^{\bullet}=\varphi(\pi)=\begin{array}{|c|}
\hline 1 \\
\hline 4 \\
\hline
\end{array} \times \begin{array}{|c|}
\hline 1 \\
\hline 2
\end{array} \times \begin{array}{|l|l|}
\hline 7 & 3 \\
\hline 2 & 3 \\
\hline & 3 \\
\hline & 4 \\
\hline
\end{array} \\
\begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 6 & \\
\hline
\end{array}
\end{array}
$$

read

Weak ordered multiset partitions
$\mathcal{W O} \mathcal{P}_{n, k}=\mathcal{O} \mathcal{P}_{n, k}$ without condition that all blocks are nonempty

Example

$\pi=(1|56 .|4 .|37.12| 2.1| 1| 34) \in \mathcal{O} \mathcal{P}_{13,7}$ in minimaj order

$$
\begin{array}{r}
T^{\bullet}=\varphi(\pi)=\begin{array}{|c|}
\hline 1 \\
\hline 4 \\
\hline
\end{array} \times \begin{array}{|c|}
\hline 1 \\
\hline 2
\end{array} \times \begin{array}{|l|l|}
\hline 7 & 3 \\
\hline 2 & 3 \\
\hline & 3 \\
\hline & 4 \\
\hline
\end{array} \\
\begin{array}{|l|l|}
\hline 1 & 5 \\
\hline 6 & \\
\hline
\end{array}
\end{array}
$$

$$
\operatorname{read}\left(T^{\bullet}\right)=(4.1|2.1| 7 .|\emptyset| 6.1|5.4 .3 .2 .1| 3)
$$

read

Weak ordered multiset partitions
$\mathcal{W O} \mathcal{P}_{n, k}=\mathcal{O} \mathcal{P}_{n, k}$ without condition that all blocks are nonempty

Example

$\pi=(1|56 .|4 .|37.12| 2.1| 1| 34) \in \mathcal{O} \mathcal{P}_{13,7}$ in minimaj order

$$
\begin{array}{r}
T^{\bullet}=\varphi(\pi)=\begin{array}{|c|}
\hline 1 \\
4 \\
\hline
\end{array} \times \begin{array}{|c|}
\hline 1 \\
\hline 2
\end{array} \times \begin{array}{|}
\hline 7 & \begin{array}{|l|l|}
\hline & 3 \\
\hline & 3 \\
\hline & 3 \\
\hline & 4 \\
\hline
\end{array} \\
\hline \begin{array}{|l|l}
1 & 5 \\
\hline
\end{array} &
\end{array}
\end{array}
$$

$$
\operatorname{read}\left(T^{\bullet}\right)=(4.1|2.1| 7 .|\emptyset| 6.1|5.4 .3 .2 .1| 3)
$$

Lemma
read is invertible.

Left shift

$\pi^{\prime}=\operatorname{read}(\varphi(\pi))$
Suppose π^{\prime} has blocks $\pi_{p_{m}}^{\prime}, \ldots, \pi_{p_{1}}^{\prime}$ with $1 \leqslant p_{m}<\cdots<p_{2}<p_{1}<k$:

- $\pi_{p_{i}}$ empty or
- $\pi_{p_{i}}$ has descent at the end

Left shift

$\pi^{\prime}=\operatorname{read}(\varphi(\pi))$
Suppose π^{\prime} has blocks $\pi_{p_{m}}^{\prime}, \ldots, \pi_{p_{1}}^{\prime}$ with $1 \leqslant p_{m}<\cdots<p_{2}<p_{1}<k$:

- $\pi_{p_{i}}$ empty or
- $\pi_{p_{i}}$ has descent at the end

Definition

Left shift operation L on π^{\prime}
(1) Set $\mathrm{L}^{(0)}\left(\pi^{\prime}\right)=\pi^{\prime}$.

Left shift

$\pi^{\prime}=\operatorname{read}(\varphi(\pi))$
Suppose π^{\prime} has blocks $\pi_{p_{m}}^{\prime}, \ldots, \pi_{p_{1}}^{\prime}$ with $1 \leqslant p_{m}<\cdots<p_{2}<p_{1}<k$:

- $\pi_{p_{i}}$ empty or
- $\pi_{p_{i}}$ has descent at the end

Definition

Left shift operation L on π^{\prime}
(1) Set $\mathrm{L}^{(0)}\left(\pi^{\prime}\right)=\pi^{\prime}$.
(2) Suppose $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ for $1 \leqslant i \leqslant m$ is defined:

By induction, the p_{i}-th block of $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ is $\pi_{p_{i}}^{\prime}$.

Left shift

$\pi^{\prime}=\operatorname{read}(\varphi(\pi))$
Suppose π^{\prime} has blocks $\pi_{p_{m}}^{\prime}, \ldots, \pi_{p_{1}}^{\prime}$ with $1 \leqslant p_{m}<\cdots<p_{2}<p_{1}<k$:

- $\pi_{p_{i}}$ empty or
- $\pi_{p_{i}}$ has descent at the end

Definition

Left shift operation L on π^{\prime}
(1) Set $\mathrm{L}^{(0)}\left(\pi^{\prime}\right)=\pi^{\prime}$.
(2) Suppose $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ for $1 \leqslant i \leqslant m$ is defined:

By induction, the p_{i}-th block of $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ is $\pi_{p_{i}}^{\prime}$.
$S_{i}=$ sequence of elements starting immediately to right of block $\pi_{p_{i}}^{\prime}$ in $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ up to and including the p_{i}-th descent after the block $\pi_{p_{i}}^{\prime}$

Left shift

$\pi^{\prime}=\operatorname{read}(\varphi(\pi))$
Suppose π^{\prime} has blocks $\pi_{p_{m}}^{\prime}, \ldots, \pi_{p_{1}}^{\prime}$ with $1 \leqslant p_{m}<\cdots<p_{2}<p_{1}<k$:

- $\pi_{p_{i}}$ empty or
- $\pi_{p_{i}}$ has descent at the end

Definition

Left shift operation L on π^{\prime}
(1) Set $\mathrm{L}^{(0)}\left(\pi^{\prime}\right)=\pi^{\prime}$.
(2) Suppose $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ for $1 \leqslant i \leqslant m$ is defined:

By induction, the p_{i}-th block of $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ is $\pi_{p_{i}}^{\prime}$.
$S_{i}=$ sequence of elements starting immediately to right of block $\pi_{p_{i}}^{\prime}$ in $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ up to and including the p_{i}-th descent after the block $\pi_{p_{i}}^{\prime}$ $\mathrm{L}^{(i)}\left(\pi^{\prime}\right)=$ move each element in S_{i} in $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ one block left

Left shift

$\pi^{\prime}=\operatorname{read}(\varphi(\pi))$
Suppose π^{\prime} has blocks $\pi_{p_{m}}^{\prime}, \ldots, \pi_{p_{1}}^{\prime}$ with $1 \leqslant p_{m}<\cdots<p_{2}<p_{1}<k$:

- $\pi_{p_{i}}$ empty or
- $\pi_{p_{i}}$ has descent at the end

Definition

Left shift operation L on π^{\prime}
(1) Set $\mathrm{L}^{(0)}\left(\pi^{\prime}\right)=\pi^{\prime}$.
(2) Suppose $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ for $1 \leqslant i \leqslant m$ is defined:

By induction, the p_{i}-th block of $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ is $\pi_{p_{i}}^{\prime}$.
$S_{i}=$ sequence of elements starting immediately to right of block $\pi_{p_{i}}^{\prime}$ in $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ up to and including the p_{i}-th descent after the block $\pi_{p_{i}}^{\prime}$ $\mathrm{L}^{(i)}\left(\pi^{\prime}\right)=$ move each element in S_{i} in $\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)$ one block left
$\mathrm{L}\left(\pi^{\prime}\right):=\mathrm{L}^{(m)}\left(\pi^{\prime}\right)$

Left shift

Example

$$
\pi^{\prime}=(4.1|2.1| 7 .|\emptyset| 6.1|5 \cdot 4.3 .2 .1| 3) \quad p_{1}=4, S_{1}=61543
$$

Left shift

Example

$$
\begin{aligned}
\pi^{\prime} & =(4.1|2.1| 7 .|\emptyset| 6.1|5.4 .3 .2 .1| 3) & & p_{1}=4, S_{1}=61543 \\
\mathrm{~L}^{(1)}\left(\pi^{\prime}\right) & =(4.1|2.1| 7 .|6.1| 5.4 .3 .|2.1| 3) & & p_{2}=3, S_{2}=6154
\end{aligned}
$$

Left shift

Example

$$
\begin{array}{rlrl}
\pi^{\prime} & =(4.1|2.1| 7 .|\emptyset| 6.1|5.4 .3 .2 .1| 3) & & p_{1}=4, S_{1}=61543 \\
\mathrm{~L}^{(1)}\left(\pi^{\prime}\right) & =(4.1|2.1| 7 .|6.1| 5.4 .3 .|2.1| 3) & & p_{2}=3, S_{2}=6154 \\
\mathrm{~L}^{(2)}\left(\pi^{\prime}\right) & =(4.1|2.1| 7.6 .1|5.4 .|3 .|2.1| 3) &
\end{array}
$$

Left shift

Example

$$
\begin{array}{rlrl}
\pi^{\prime} & =(4.1|2.1| 7 .|\emptyset| 6.1|5.4 .3 .2 .1| 3) & & p_{1}=4, S_{1}=61543 \\
\mathrm{~L}^{(1)}\left(\pi^{\prime}\right) & =(4.1|2.1| 7 .|6.1| 5.4 .3 .|2.1| 3) & & p_{2}=3, S_{2}=6154 \\
\mathrm{~L}^{(2)}\left(\pi^{\prime}\right) & =(4.1|2.1| 7.6 .1|5.4 .|3 .|2.1| 3) &
\end{array}
$$

$$
\operatorname{maj}\left(\mathrm{L}^{(i)}\left(\pi^{\prime}\right)\right)= \begin{cases}\operatorname{maj}\left(\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)\right)-p_{i}+1, & \text { if } \pi_{p_{i}}^{\prime}=\emptyset \\ \operatorname{maj}\left(\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)\right)-p_{i}, & \text { if } \pi_{p_{i}}^{\prime} \text { descent at end of block }\end{cases}
$$

Left shift

Example

$$
\begin{aligned}
\pi^{\prime} & =(4.1|2.1| 7 .|\emptyset| 6.1|5.4 .3 .2 .1| 3) & & p_{1}=4, S_{1}=61543 \\
\mathrm{~L}^{(1)}\left(\pi^{\prime}\right) & =(4.1|2.1| 7 .|6.1| 5.4 .3 \cdot|2.1| 3) & & p_{2}=3, S_{2}=6154 \\
\mathrm{~L}^{(2)}\left(\pi^{\prime}\right) & =(4.1|2.1| 7.6 .1|5.4 .|3 .|2.1| 3) & &
\end{aligned}
$$

$\operatorname{maj}\left(\mathrm{L}^{(i)}\left(\pi^{\prime}\right)\right)= \begin{cases}\operatorname{maj}\left(\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)\right)-p_{i}+1, & \text { if } \pi_{p_{i}}^{\prime}=\emptyset \\ \operatorname{maj}\left(\mathrm{L}^{(i-1)}\left(\pi^{\prime}\right)\right)-p_{i}, & \text { if } \pi_{p_{i}}^{\prime} \text { descent at end of block }\end{cases}$

Example

 $\operatorname{maj}\left(\pi^{\prime}\right)=28, \operatorname{maj}\left(\mathrm{~L}^{(1)}\left(\pi^{\prime}\right)\right)=25, \operatorname{maj}\left(\mathrm{~L}\left(\pi^{\prime}\right)\right)=22=\operatorname{minimaj}(\pi)$
Thank you!

