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Motivation

e Shuffle Conjecture/Theorem:

>

>

combinatorial description of bigraded Frobenius characteristic of
S,-module of diagonal harmonic polynomials

conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov
proven by Mellit, Carlsson

@ Delta Conjecture:

» generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson

vV vyVvVvyy

involves quasisymmetric functions Rise, x(x; g, t) and Val, «(x; g, t)
Risen k(x; 0, t) = Rise, k(x; t,0) = Val, «(x; 0, t) = Val, «(x; t, 0)
Val, «(x; 0, t) Schur positive symmetric function [Rhoades] [Wilson]
combinatorial formua

Val, «(x;0,t) = Z pminimaj(r) wt(r)
WEOP,,J(JFI
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Goal

@ Crystal structure on ordered multiset partitions

> representation theoretic proof/interpretation of positive Schur

expansion
@ Bijective proof of equidistributivity of minimaj and maj

» [Wilson] analyzed inv, dinv, maj, and minimaj on OP,
proved equidistributivity of inv, dinv, maj

» [Rhoades] non-bijective proof of equidistributivity of all these statistics
with minimaj

» crystal structure gives bijective proof
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Crystal structure

Ordered multiset partitions

e v = (v1,12,...) = n weak composition of n
e OP, = set of partitions of the multiset {i* | i > 1} into k
nonempty sets
o wt(rm) := v is weight of m € OP,,
°
OPni=J OPux
viEn

Example
m=(157]24|56|468 |13 |123) € OP1s56
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@ Start with last block 7. Put g in increasing order.
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@ Start with last block 7. Put 7y in increasing order.
@ Assume 741 is ordered.

> Let bj;1 be first letter of my1.
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Minimaj
Minimaj order: m = (my | m2 | ... | mk) € OPp i

@ Start with last block 7. Put 7y in increasing order.
@ Assume 741 is ordered.
> Let bj;1 be first letter of my1.

> Write 7; = bja: i with by < a; > i < biy1.
Example

m = (157 | 24| 56 | 468 | 13 | 123) € OP1s

i=1: (571|24|56|468|31|123) minimaj order!

Minimaj: minimaj(m) = maj(x) for 7 in minimaj order
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Minimaj
Minimaj order: m = (my | m2 | ... | mk) € OPp i

@ Start with last block 7. Put g in increasing order.
@ Assume 741 is ordered.

> Let bj;1 be first letter of my1.
> Write m; = b;ja;3; with b; < a; > i < bjy1.

Example

m=(157]24|56|468 |13 |123) € OP1s56

i=1: (571|24|56|468|31|123) minimaj order!
Minimaj: minimaj(m) = maj(x) for 7 in minimaj order

Example
minimaj(57.1 | 24 | 56. | 468. |3.1]123) =247 + 10+ 11 =30



Crystal structure

Bijection with tuple of tableaux
Bijection:
@: OPp i with fixed £ — SSYT (1) x -+ x SSYT(1%) x SSYT(~)

descents in blocks
T Ty X X Ty X Tpqq



Crystal structure Equidistributivity between minimaj and maj

Bijection with tuple of tableaux
Bijection:
@: OPp i with fixed £ — SSYT (1) x -+ x SSYT(1%) x SSYT(~)

descents in blocks
T Ty XX Ty X Tyqq

Example
m=(124]45.13]46.1|23.1|1]25) € OPis57 in minimaj order

m = (124 | 45. | 3 | 46. |2.1]1|25)r—>><Hx@x 112]

N

w
N

’U‘I|-J>|l\) [
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Crystal structure

o Crystal operators ¢;, f; on (skew) tableaux exist

@ Define

&, f: Opmk — OPn,k U {0}

1

as & =¢ loegopand f;=p !

ofiop
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Crystal structure

o Crystal operators ¢;, f; on (skew) tableaux exist
@ Define y
&,fi: OPpx = OPpn ik U{0}

:pflof,op

he

asé,-:pfloe,-O/ nd

Theorem (minimaj preserving crystal)
(r)

The operators €;, f, and wt impose an sl.-crystal structure on OP,

In addition, & and f~, preserve the minimaj statistic.
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Crystal structure

o Crystal operators ¢;, f; on (skew) tableaux exist
@ Define
&, f: O'P,Lk — O'P,Lk U {O}

ptofiop

he

asé,-:pfloe,-O/ nd

Theorem (minimaj preserving crystal)

The operators &;, f, and wt impose an sl.-crystal structure on (’)PE,r)k.

In addition, & and f~, preserve the minimaj statistic.

Corollary (Schur expansion)

Valn,k,l(x; 0 f) _ Z tminimaj(ﬂ')SWt(ﬂ_)
ﬂ'EOT"mk
&(m)=0 Vi
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Crystal structure on ordered multiset partitions

(23111) (1]123) (21]13) (21]12)
1 1 1 | 2
(23]12) (12]23) (2]123) (31112)
2 2 2 / \ 2
(23]13) (12313) (31123) (312]2) (31 | 13)
o

(32| 23)
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Crystal structure on ordered multiset partitions

(23111) (1]123) (21]13) (21]12)
1 1 1 | 2
(23]12) (12]23) (2]123) (31112)
2 2 2 1/ \ 2
(23]13) (12313) (31123) (312]2) (31 | 13)
2\ \ /1
(31 | 23)
| 1
(32]23)

minimaj 2,0,1,1
Valg1(x;0,t) = (1 4+t + tz) S(2,1,1)(X) + t 5(2,2)(x)
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Major index for OP,, «

w word obtained from 7 by reading each block in decreasing order

Recursively construct v:
e v=0
@ v; = vj_1 + x(J is the last position in its block)

Definition (Major index)
maj(m) = Z vj for m € OPp

Jr wi>wi

Example
7= (157 | 24 | 56 | 468 | 13 | 123) € OP1s6

w =751 | 42| 65 | 864 | 31 | 321
v =001 |12 2333445 | 556

so that maj(r) =0+0+1+24+3+3+4+44+5+5=27
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Bijection

Theorem
The map ¢: OPp — OPp i defined by

(7)) = L(read(p(m))) for m € OPp  in minimaj order

is a bijection and
minimaj(7) = maj(¢(m))

¢ bijection from OP, « to tuple of (skew) tableaux
read column reading word
L left shift map
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read

Weak ordered multiset partitions
WOP, = OPp« without condition that all blocks are nonempty
Example

m=(1]56.]4.]37.12]2.1|1]34) € OP137 in minimaj order

T = o(r I B x 7] x 0

3]

read(T*) = (4.1]2.1|7.|0|6.1|54.3.2.1]3)
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Equidistributivity between minimaj and maj

read

Weak ordered multiset partitions
WOP, = OPp« without condition that all blocks are nonempty
Example

m=(1]56.]4.]37.12]2.1|1]34) € OP137 in minimaj order

T® = o(m I B % [7]x 0 x ;3‘
3]
4
1(5
6
read(T*) = (4.1]2.1]7.|0]6.1|5.4.3.2.1|3)

Lemma

read is invertible.
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Left shift

7! = read(p(m))
Suppose 7’ has blocks 7, ..., 7, with 1 < pm <--- < p2 < p1 < k:
e T, empty or

@ mp, has descent at the end
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Left shift

7! = read(p(m))

Suppose 7’ has blocks 7/

s s Tpy With 1< py < -+ < pp < p1 < k

@ mp, empty or

@ mp, has descent at the end

Definition
Left shift operation L on 7’

Q Set LO(x') = 7.

@ Suppose LU—D(7') for 1 < i < m is defined:

By induction, the p;-th block of LU=1(7") is 7/, .

Si = sequence of elements starting immediately to right of block 7, in
LG=1(7") up to and including the p;-th descent after the block T,
L@ (7') = move each element in S; in LU~1) (") one block left
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Left shift

7! = read(p(m))
Suppose 7' has blocks 7, ..., 7, with 1 < pp < - < p2 < p1 < k:
e T, empty or

@ mp, has descent at the end

Definition
Left shift operation L on 7’

Q Set LO(x') = 7.

@ Suppose LU—D(7') for 1 < i < m is defined:

By induction, the p;-th block of LU=1(7") is 7/, .

Si = sequence of elements starting immediately to right of block 7, in
LG=1(7") up to and including the p;-th descent after the block T,
L@ (7') = move each element in S; in LU~1) (") one block left

L(7') := LM (7')
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Left shift

Example

' =(41|21|7.]0|6.1|54.321|3) p,=4,5 = 61543
LO(x') = (41]21]7.]6.1|5.4.3.|21|3) pr=3,5 =6154
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Left shift

Example

7 =(41]21|7.10]6.1]54321]|3) p =45 =61543
LO(x') = (41]21]7.]6.1|5.4.3.|21|3) pr=3,5 =6154
L@ (') =(41]21]7.6.1|5.4.]3.|21]3)
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Left shift

Example

7 =(41]21|7.10]6.1]54321]|3) p =45 =61543
LO(x') = (41]21]7.]6.1|5.4.3.|21|3) pr=3,5 =6154
L@ (') =(41]21]7.6.1|5.4.]3.|21]3)

maj(l_(f—l)(ﬂ./)) —pi + 1’ if Trlpi = @
maj(L0—(x")) — p;, if 7}, descent at end of block

maj(LO(x')) = {
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Left shift

Example

7 =(41]21|7.10]6.1]54321]|3) p =45 =61543
LO(x') = (41]21]7.]6.1|5.4.3.|21|3) pr=3,5 =6154
L@ (') =(41]21]7.6.1|5.4.]3.|21]3)

1 (i—1 _ : _
mai(LO()) = 4 MV =i 1w, =0
maj(L0—(x")) — p;, if 7}, descent at end of block
Example
maj(7’) = 28, maj(L(M)(x")) = 25, maj(L(7’)) = 22 = minimaj(r)



Equidistributivity between minimaj and maj

Thank you !
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