A minimaj-preserving crystal on ordered multiset partitions

Anne Schilling

Department of Mathematics, UC Davis

based on joint work with Georgia Benkart, Laura Colmenarejo, Pamela Harris, Rosa Orellana, Greta Panova, Martha Yip

Advances in Applied Math. 95 (2018) 96-115 (arXiv:1707.08709)

Joint Mathematics Meetings, San Diego, January 13, 2018

Project idea from talk by Brendon Rhoades in summer 2016 in Seoul

Project idea from talk by Brendon Rhoades in summer 2016 in Seoul Working group in Banff in May 2017

Outline

Motivation

2 Crystal structure

3 Equidistributivity between minimaj and maj

- Shuffle Conjecture/Theorem:
 - ightharpoonup combinatorial description of bigraded Frobenius characteristic of S_n -module of diagonal harmonic polynomials

- Shuffle Conjecture/Theorem:
 - \triangleright combinatorial description of bigraded Frobenius characteristic of S_n -module of diagonal harmonic polynomials
 - conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson

- Shuffle Conjecture/Theorem:
 - \triangleright combinatorial description of bigraded Frobenius characteristic of S_n -module of diagonal harmonic polynomials
 - conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
 - ▶ generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson

- Shuffle Conjecture/Theorem:
 - \triangleright combinatorial description of bigraded Frobenius characteristic of S_n -module of diagonal harmonic polynomials
 - conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
 - generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
 - involves quasisymmetric functions Rise_{n,k}($\mathbf{x}; q, t$) and Val_{n,k}($\mathbf{x}; q, t$)

- Shuffle Conjecture/Theorem:
 - \triangleright combinatorial description of bigraded Frobenius characteristic of S_n -module of diagonal harmonic polynomials
 - conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
 - generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
 - ▶ involves quasisymmetric functions $Rise_{n,k}(\mathbf{x};q,t)$ and $Val_{n,k}(\mathbf{x};q,t)$
 - ► Rise_{n,k}(\mathbf{x} ; 0, t) = Rise_{n,k}(\mathbf{x} ; t, 0) = Val_{n,k}(\mathbf{x} ; 0, t) = Val_{n,k}(\mathbf{x} ; t, 0)

- Shuffle Conjecture/Theorem:
 - combinatorial description of bigraded Frobenius characteristic of S_n -module of diagonal harmonic polynomials
 - conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
 - ▶ generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
 - ▶ involves quasisymmetric functions $Rise_{n,k}(\mathbf{x};q,t)$ and $Val_{n,k}(\mathbf{x};q,t)$
 - ► Rise_{n,k}(**x**; 0, t) = Rise_{n,k}(**x**; t, 0) = Val_{n,k}(**x**; 0, t) = Val_{n,k}(**x**; t, 0)
 - ▶ $Val_{n,k}(\mathbf{x}; 0, t)$ Schur positive symmetric function [Rhoades] [Wilson]

- Shuffle Conjecture/Theorem:
 - ightharpoonup combinatorial description of bigraded Frobenius characteristic of S_n -module of diagonal harmonic polynomials
 - conjectured by Haglund, Haiman, Loehr, Remmel, Ulyanov proven by Mellit, Carlsson
- Delta Conjecture:
 - ▶ generalized Shuffle Theorem conjectured by Haglund, Remmel, Wilson
 - ▶ involves quasisymmetric functions $Rise_{n,k}(\mathbf{x};q,t)$ and $Val_{n,k}(\mathbf{x};q,t)$
 - ► Rise_{n,k}(\mathbf{x} ; 0, t) = Rise_{n,k}(\mathbf{x} ; t, 0) = Val_{n,k}(\mathbf{x} ; 0, t) = Val_{n,k}(\mathbf{x} ; t, 0)
 - ▶ $Val_{n,k}(\mathbf{x}; 0, t)$ Schur positive symmetric function [Rhoades] [Wilson]
 - combinatorial formua

$$\mathsf{Val}_{n,k}(\mathbf{x};0,t) = \sum_{\pi \in \mathcal{OP}_{n,k+1}} t^{\mathsf{minimaj}(\pi)} \mathbf{x}^{\mathsf{wt}(\pi)}$$

Crystal structure on ordered multiset partitions

- Crystal structure on ordered multiset partitions
 - representation theoretic proof/interpretation of positive Schur expansion

- Crystal structure on ordered multiset partitions
 - representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj

- Crystal structure on ordered multiset partitions
 - representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj
 - ▶ [Wilson] analyzed inv, dinv, maj, and minimaj on $\mathcal{OP}_{n,k}$ proved equidistributivity of inv, dinv, maj

- Crystal structure on ordered multiset partitions
 - representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj
 - ▶ [Wilson] analyzed inv, dinv, maj, and minimaj on $\mathcal{OP}_{n,k}$ proved equidistributivity of inv, dinv, maj
 - ► [Rhoades] non-bijective proof of equidistributivity of all these statistics with minimaj

- Crystal structure on ordered multiset partitions
 - representation theoretic proof/interpretation of positive Schur expansion
- Bijective proof of equidistributivity of minimaj and maj
 - ▶ [Wilson] analyzed inv, dinv, maj, and minimaj on $\mathcal{OP}_{n,k}$ proved equidistributivity of inv, dinv, maj
 - ► [Rhoades] non-bijective proof of equidistributivity of all these statistics with minimaj
 - crystal structure gives bijective proof

Outline

Motivation

2 Crystal structure

3 Equidistributivity between minimaj and maj

• $\nu = (\nu_1, \nu_2, \ldots) \models n$ weak composition of n

- $\nu = (\nu_1, \nu_2, \ldots) \models n$ weak composition of n
- $\mathcal{OP}_{\nu,k}=$ set of partitions of the multiset $\{i^{\nu_i}\mid i\geqslant 1\}$ into k nonempty sets

- $\nu = (\nu_1, \nu_2, \ldots) \models n$ weak composition of n
- $\mathcal{OP}_{\nu,k}=$ set of partitions of the multiset $\{i^{\nu_i}\mid i\geqslant 1\}$ into k nonempty sets
- $\operatorname{wt}(\pi) := \nu$ is weight of $\pi \in \mathcal{OP}_{\nu,k}$

- $\nu = (\nu_1, \nu_2, \ldots) \models n$ weak composition of n
- $\mathcal{OP}_{\nu,k}=$ set of partitions of the multiset $\{i^{\nu_i}\mid i\geqslant 1\}$ into k nonempty sets
- $\operatorname{wt}(\pi) := \nu$ is weight of $\pi \in \mathcal{OP}_{\nu,k}$

•

$$\mathcal{OP}_{n,k} = \bigcup_{\nu \models n} \mathcal{OP}_{\nu,k}$$

- $\nu = (\nu_1, \nu_2, \ldots) \models n$ weak composition of n
- $\mathcal{OP}_{\nu,k}=$ set of partitions of the multiset $\{i^{\nu_i}\mid i\geqslant 1\}$ into k nonempty sets
- $\operatorname{wt}(\pi) := \nu$ is weight of $\pi \in \mathcal{OP}_{\nu,k}$

•

$$\mathcal{OP}_{n,k} = \bigcup_{\nu \models n} \mathcal{OP}_{\nu,k}$$

$$\pi = (157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123) \in \mathcal{OP}_{15.6}$$

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

• Start with last block π_k . Put π_k in increasing order.

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

$$\pi = (157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123) \in \mathcal{OP}_{15,6}$$

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

$$\pi = \textbf{(157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123)} \in \mathcal{OP}_{\textbf{15},6}$$

$$i = 6$$
: (157 | 24 | 56 | 468 | 13 | 123)

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

$$\pi = (157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123) \in \mathcal{OP}_{15,6}$$

$$i = 5$$
: (157 | 24 | 56 | 468 | 31 | 123)

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

$$\pi = \textbf{(157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123)} \in \mathcal{OP}_{\textbf{15},6}$$

$$i = 4$$
: (157 | 24 | 56 | 468 | 31 | 123)

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

$$\pi = \textbf{(157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123)} \in \mathcal{OP}_{\textbf{15},6}$$

$$i = 3$$
: (157 | 24 | 56 | 468 | 31 | 123)

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

$$\pi = \textbf{(157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123)} \in \mathcal{OP}_{\textbf{15},6}$$

$$i = 2$$
: $(157 \mid 24 \mid 56 \mid 468 \mid 31 \mid 123)$

Minimaj order:
$$\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

$$\pi = (157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123) \in \mathcal{OP}_{15,6}$$

$$i = 1$$
: (571 | 24 | 56 | 468 | 31 | 123) minimaj order!

Minimaj order: $\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leq b_{i+1}$.

Example

$$\pi = (157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123) \in \mathcal{OP}_{15,6}$$

$$i = 1$$
: (571 | 24 | 56 | 468 | 31 | 123) minimaj order!

Minimaj: minimaj $(\pi) = maj(\pi)$ for π in minimaj order

Minimaj

Minimaj order: $\pi = (\pi_1 \mid \pi_2 \mid \ldots \mid \pi_k) \in \mathcal{OP}_{n,k}$

- Start with last block π_k . Put π_k in increasing order.
- Assume π_{i+1} is ordered.
 - ▶ Let b_{i+1} be first letter of π_{i+1} .
 - ▶ Write $\pi_i = b_i \alpha_i \beta_i$ with $b_i < \alpha_i > \beta_i \leqslant b_{i+1}$.

Example

$$\pi = (157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123) \in \mathcal{OP}_{15,6}$$

$$i = 1$$
: (571 | 24 | 56 | 468 | 31 | 123) minimaj order!

Minimaj: minimaj $(\pi) = maj(\pi)$ for π in minimaj order

Example

minimaj(57.1 | 24 | 56. | 468. | 3.1 | 123) = 2 + 7 + 10 + 11 = 30

Bijection with tuple of tableaux

Bijection:

$$\varphi \colon \mathcal{OP}_{n,k}$$
 with fixed $\ell \to \mathsf{SSYT}(1^{c_1}) \times \cdots \times \mathsf{SSYT}(1^{c_\ell}) \times \mathsf{SSYT}(\gamma)$ descents in blocks

$$\pi \mapsto T_1 \times \cdots \times T_\ell \times T_{\ell+1}$$

Bijection with tuple of tableaux

Bijection:

Motivation

$$\varphi \colon \mathcal{OP}_{n,k}$$
 with fixed $\ell \to \mathsf{SSYT}(1^{c_1}) \times \cdots \times \mathsf{SSYT}(1^{c_\ell}) \times \mathsf{SSYT}(\gamma)$ descents in blocks

$$\pi \mapsto T_1 \times \cdots \times T_\ell \times T_{\ell+1}$$

$$\pi = (124 \mid 45. \mid 3 \mid 46.1 \mid 23.1 \mid 1 \mid 25) \in \mathcal{OP}_{15,7}$$
 in minimaj order

$$\pi = (124 \mid 45. \mid 3 \mid 46.1 \mid 23.1 \mid 1 \mid 25) \mapsto \boxed{\frac{1}{5}} \times \boxed{\frac{1}{3}} \times \boxed{6} \times$$

 \bullet Crystal operators e_i , f_i on (skew) tableaux exist

- Crystal operators e_i , f_i on (skew) tableaux exist
- Define

$$\tilde{e}_i, \tilde{f}_i \colon \mathcal{OP}_{n,k} \to \mathcal{OP}_{n,k} \cup \{0\}$$

as
$$\tilde{e}_i = \varphi^{-1} \circ e_i \circ \varphi$$
 and $\tilde{f}_i = \varphi^{-1} \circ f_i \circ \varphi$

- Crystal operators e_i , f_i on (skew) tableaux exist
- Define

$$\tilde{e}_i, \tilde{f}_i \colon \mathcal{OP}_{n,k} \to \mathcal{OP}_{n,k} \cup \{0\}$$

as
$$\tilde{e}_i = \varphi^{-1} \circ e_i \circ \varphi$$
 and $\tilde{f}_i = \varphi^{-1} \circ f_i \circ \varphi$

Theorem (minimaj preserving crystal)

The operators \tilde{e}_i , \tilde{f}_i , and wt impose an \mathfrak{sl}_r -crystal structure on $\mathcal{OP}_{n,k}^{(r)}$. In addition, \tilde{e}_i and \tilde{f}_i preserve the minimal statistic.

- Crystal operators e_i , f_i on (skew) tableaux exist
- Define

$$\tilde{e}_i, \tilde{f}_i \colon \mathcal{OP}_{n,k} \to \mathcal{OP}_{n,k} \cup \{0\}$$

as
$$\tilde{e}_i = \varphi^{-1} \circ e_i \circ \varphi$$
 and $\tilde{f}_i = \varphi^{-1} \circ f_i \circ \varphi$

Theorem (minimaj preserving crystal)

The operators \tilde{e}_i , \tilde{f}_i , and wt impose an \mathfrak{sl}_r -crystal structure on $\mathcal{OP}_{n,k}^{(r)}$. In addition, \tilde{e}_i and \tilde{f}_i preserve the minimaj statistic.

Corollary (Schur expansion)

$$\mathsf{Val}_{n,k-1}(\mathbf{x};0,t) = \sum_{\substack{\pi \in \mathcal{OP}_{n,k} \\ \tilde{e}: (\pi) = 0 \ \forall \ i}} t^{\mathsf{minimaj}(\pi)} \mathsf{s}_{\mathsf{wt}(\pi)}$$

Crystal structure on ordered multiset partitions

Crystal structure on ordered multiset partitions

minimaj 2, 0, 1, 1

$$Val_{4,1}(\mathbf{x}; 0, t) = (1 + t + t^2) s_{(2,1,1)}(\mathbf{x}) + t s_{(2,2)}(\mathbf{x})$$

Outline

Motivation

2 Crystal structure

3 Equidistributivity between minimaj and maj

Major index for $\mathcal{OP}_{n,k}$

 $\it w$ word obtained from π by reading each block in decreasing order

Major index for $\mathcal{OP}_{n,k}$

w word obtained from π by reading each block in decreasing order Recursively construct v:

- $v_0 = 0$
- $v_j = v_{j-1} + \chi(j \text{ is the last position in its block})$

Major index for $\mathcal{OP}_{n,k}$

w word obtained from π by reading each block in decreasing order Recursively construct v:

- $v_0 = 0$
- $v_j = v_{j-1} + \chi(j \text{ is the last position in its block})$

Definition (Major index)

$$\mathsf{maj}(\pi) = \sum_{j: |w_i| > |w_{i+1}|} v_j \qquad \mathsf{for} \; \pi \in \mathcal{OP}_{n,k}$$

Equidistributivity between minimaj and maj

Major index for $\mathcal{OP}_{n,k}$

 ${\it w}$ word obtained from π by reading each block in decreasing order

Recursively construct v:

- $v_0 = 0$
- $v_i = v_{i-1} + \chi(j \text{ is the last position in its block})$

Definition (Major index)

$$\mathsf{maj}(\pi) = \sum_{j \colon w_i > w_{i+1}} v_j \qquad \mathsf{for} \ \pi \in \mathcal{OP}_{n,k}$$

$$\pi = (157 \mid 24 \mid 56 \mid 468 \mid 13 \mid 123) \in \mathcal{OP}_{15.6}$$

$$w = 751 \mid 42 \mid 65 \mid 864 \mid 31 \mid 321$$

 $v = 001 \mid 12 \mid 23 \mid 334 \mid 45 \mid 556$

so that
$$maj(\pi) = 0 + 0 + 1 + 2 + 3 + 3 + 4 + 4 + 5 + 5 = 27$$

Bijection

Theorem

The map $\psi \colon \mathcal{OP}_{n,k} \to \mathcal{OP}_{n,k}$ defined by

$$\psi(\pi) = \mathsf{L}(\mathsf{read}(\varphi(\pi)))$$
 for $\pi \in \mathcal{OP}_{n,k}$ in minimaj order

is a bijection and

$$minimaj(\pi) = maj(\psi(\pi))$$

- φ bijection from $\mathcal{OP}_{n,k}$ to tuple of (skew) tableaux read column reading word
- L left shift map

Weak ordered multiset partitions

 $\mathcal{WOP}_{n,k} = \mathcal{OP}_{n,k}$ without condition that all blocks are nonempty

Weak ordered multiset partitions

 $\mathcal{WOP}_{n,k} = \mathcal{OP}_{n,k}$ without condition that all blocks are nonempty

$$\pi = (1 \mid 56. \mid 4. \mid 37.12 \mid 2.1 \mid 1 \mid 34) \in \mathcal{OP}_{13.7}$$
 in minimaj order

$$T^{\bullet} = \varphi(\pi) = \boxed{\frac{1}{4}} \times \boxed{\frac{1}{2}} \times \boxed{7} \times \emptyset \times \boxed{\boxed{\frac{1}{3}}}$$

Weak ordered multiset partitions

 $\mathcal{WOP}_{n,k} = \mathcal{OP}_{n,k}$ without condition that all blocks are nonempty

$$\pi = (1 \mid 56. \mid 4. \mid 37.12 \mid 2.1 \mid 1 \mid 34) \in \mathcal{OP}_{13.7}$$
 in minimaj order

$$T^{\bullet} = \varphi(\pi) = \boxed{\frac{1}{4}} \times \boxed{\frac{1}{2}} \times \boxed{7} \times \emptyset \times \boxed{\frac{1}{3}}$$

$$read(T^{\bullet}) = (4.1 \mid 2.1 \mid 7. \mid \emptyset \mid 6.1 \mid 5.4.3.2.1 \mid 3)$$

Weak ordered multiset partitions

 $\mathcal{WOP}_{n,k} = \mathcal{OP}_{n,k}$ without condition that all blocks are nonempty

Example

$$\pi = (1 \mid 56. \mid 4. \mid 37.12 \mid 2.1 \mid 1 \mid 34) \in \mathcal{OP}_{13.7}$$
 in minimaj order

$$T^{\bullet} = \varphi(\pi) = \boxed{\frac{1}{4}} \times \boxed{\frac{1}{2}} \times \boxed{7} \times \emptyset \times \boxed{\frac{1}{3}}$$

$$read(T^{\bullet}) = (4.1 \mid 2.1 \mid 7. \mid \emptyset \mid 6.1 \mid 5.4.3.2.1 \mid 3)$$

Lemma

read is invertible.

 $\pi' = \operatorname{read}(\varphi(\pi))$ Suppose π' has blocks $\pi'_{p_m}, \dots, \pi'_{p_1}$ with $1 \leqslant p_m < \dots < p_2 < p_1 < k$:

- π_{p_i} empty or
- π_{p_i} has descent at the end

$$\pi' = \operatorname{read}(\varphi(\pi))$$

Suppose π' has blocks $\pi'_{p_m}, \dots, \pi'_{p_1}$ with $1 \leqslant p_m < \dots < p_2 < p_1 < k$:

- π_{p_i} empty or
- \bullet π_{p_i} has descent at the end

Definition

• Set
$$L^{(0)}(\pi') = \pi'$$
.

$$\pi' = \operatorname{read}(\varphi(\pi))$$

Suppose π' has blocks $\pi'_{p_m}, \dots, \pi'_{p_1}$ with $1 \leqslant p_m < \dots < p_2 < p_1 < k$:

- π_{p_i} empty or
- \bullet π_{p_i} has descent at the end

Definition

- Set $L^{(0)}(\pi') = \pi'$.
- ② Suppose $L^{(i-1)}(\pi')$ for $1 \leqslant i \leqslant m$ is defined:
 - By induction, the p_i -th block of $L^{(i-1)}(\pi')$ is π'_{p_i} .

$$\pi' = \operatorname{read}(\varphi(\pi))$$

Suppose π' has blocks $\pi'_{p_m}, \dots, \pi'_{p_1}$ with $1 \leqslant p_m < \dots < p_2 < p_1 < k$:

- π_{p_i} empty or
- π_{p_i} has descent at the end

Definition

- Set $L^{(0)}(\pi') = \pi'$.
- ② Suppose $L^{(i-1)}(\pi')$ for $1 \le i \le m$ is defined:
 - ▶ By induction, the p_i -th block of $L^{(i-1)}(\pi')$ is π'_{p_i} .
 - S_i = sequence of elements starting immediately to right of block π'_{p_i} in $\mathsf{L}^{(i-1)}(\pi')$ up to and including the p_i -th descent after the block π'_{p_i}

$$\pi' = \operatorname{read}(\varphi(\pi))$$

Suppose π' has blocks $\pi'_{p_m}, \dots, \pi'_{p_1}$ with $1 \leqslant p_m < \dots < p_2 < p_1 < k$:

- π_{p_i} empty or
- ullet π_{p_i} has descent at the end

Definition

- Set $L^{(0)}(\pi') = \pi'$.
- ② Suppose $L^{(i-1)}(\pi')$ for $1 \le i \le m$ is defined:
 - ▶ By induction, the p_i -th block of $L^{(i-1)}(\pi')$ is π'_{p_i} .
 - S_i = sequence of elements starting immediately to right of block π'_{p_i} in $\mathsf{L}^{(i-1)}(\pi')$ up to and including the p_i -th descent after the block π'_{p_i}
 - $ightharpoonup \mathsf{L}^{(i)}(\pi') = \mathsf{move}$ each element in S_i in $\mathsf{L}^{(i-1)}(\pi')$ one block left

$$\pi' = \operatorname{read}(\varphi(\pi))$$

Suppose π' has blocks $\pi'_{p_m}, \dots, \pi'_{p_1}$ with $1 \leqslant p_m < \dots < p_2 < p_1 < k$:

- π_{p_i} empty or
- π_{p_i} has descent at the end

Definition

- Set $L^{(0)}(\pi') = \pi'$.
- ② Suppose $L^{(i-1)}(\pi')$ for $1 \le i \le m$ is defined:
 - ▶ By induction, the p_i -th block of $L^{(i-1)}(\pi')$ is π'_{p_i} .
 - S_i = sequence of elements starting immediately to right of block π'_{p_i} in $\mathsf{L}^{(i-1)}(\pi')$ up to and including the p_i -th descent after the block π'_{p_i}
 - $\mathsf{L}^{(i)}(\pi') = \mathsf{move}$ each element in S_i in $\mathsf{L}^{(i-1)}(\pi')$ one block left

$$\mathsf{L}(\pi') := \mathsf{L}^{(m)}(\pi')$$

$$\pi' = (4.1 \mid 2.1 \mid 7. \mid \emptyset \mid 6.1 \mid 5.4.3.2.1 \mid 3) \quad p_1 = 4, S_1 = 61543$$

$$\pi' = (4.1 \mid 2.1 \mid 7. \mid \emptyset \mid 6.1 \mid 5.4.3.2.1 \mid 3)$$
 $p_1 = 4, S_1 = 61543$
 $L^{(1)}(\pi') = (4.1 \mid 2.1 \mid 7. \mid 6.1 \mid 5.4.3. \mid 2.1 \mid 3)$ $p_2 = 3, S_2 = 6154$

$$\pi' = (4.1 \mid 2.1 \mid 7. \mid \emptyset \mid 6.1 \mid 5.4.3.2.1 \mid 3)$$
 $p_1 = 4, S_1 = 61543$

$$L^{(1)}(\pi') = (4.1 \mid 2.1 \mid 7. \mid 6.1 \mid 5.4.3. \mid 2.1 \mid 3)$$
 $p_2 = 3, S_2 = 6154$

$$L^{(2)}(\pi') = (4.1 \mid 2.1 \mid 7.6.1 \mid 5.4. \mid 3. \mid 2.1 \mid 3)$$

$$\pi' = (4.1 \mid 2.1 \mid 7. \mid \emptyset \mid 6.1 \mid 5.4.3.2.1 \mid 3) \quad p_1 = 4, S_1 = 61543$$

$$\mathsf{L}^{(1)}(\pi') = (4.1 \mid 2.1 \mid 7. \mid 6.1 \mid 5.4.3. \mid 2.1 \mid 3) \quad p_2 = 3, S_2 = 6154$$

$$\mathsf{L}^{(2)}(\pi') = (4.1 \mid 2.1 \mid 7.6.1 \mid 5.4. \mid 3. \mid 2.1 \mid 3)$$

$$\mathsf{maj}(\mathsf{L}^{(i)}(\pi')) = \begin{cases} \mathsf{maj}(\mathsf{L}^{(i-1)}(\pi')) - p_i + 1, & \text{if } \pi'_{p_i} = \emptyset \\ \mathsf{maj}(\mathsf{L}^{(i-1)}(\pi')) - p_i, & \text{if } \pi'_{p_i} \text{ descent at end of block} \end{cases}$$

Example

$$\pi' = (4.1 \mid 2.1 \mid 7. \mid \emptyset \mid 6.1 \mid 5.4.3.2.1 \mid 3) \quad p_1 = 4, S_1 = 61543$$

$$L^{(1)}(\pi') = (4.1 \mid 2.1 \mid 7. \mid 6.1 \mid 5.4.3. \mid 2.1 \mid 3) \quad p_2 = 3, S_2 = 6154$$

$$L^{(2)}(\pi') = (4.1 \mid 2.1 \mid 7.6.1 \mid 5.4. \mid 3. \mid 2.1 \mid 3)$$

$$\mathsf{maj}(\mathsf{L}^{(i)}(\pi')) = \begin{cases} \mathsf{maj}(\mathsf{L}^{(i-1)}(\pi')) - p_i + 1, & \text{if } \pi'_{p_i} = \emptyset \\ \mathsf{maj}(\mathsf{L}^{(i-1)}(\pi')) - p_i, & \text{if } \pi'_{p_i} \text{ descent at end of block} \end{cases}$$

Example

 ${\sf maj}(\pi') = {\sf 28}, \; {\sf maj}({\sf L}^{(1)}(\pi')) = {\sf 25}, \; {\sf maj}({\sf L}(\pi')) = {\sf 22} = {\sf minimaj}(\pi)$

Thank you!