ABEN 263 —Biological Materials Processing (3 credits) Spring 2018
Classroom portion meets in ABEN 201 on WF 12:00-12:50 p.m.
Lab meets in the Pilot Plant or ABEN 210 cluster on T 2:00-4:50 p.m., or as arranged
Course website: enter Blackboard gateway at bb.ndsu.nodak.edu

About your instructor:
Dr. Dennis Wiesenborn is an ABEN Professor at NDSU. He has taught courses related to
food/bioproducts process engineering for students in the ABEN and Food Science programs
since 1989, and directs research on the processing of northern-grown crops for food, biofuel and
bioproducts uses. You will be assisted during the laboratory by Dr. Monono (who will also
perform some classroom teaching) and several ABEN grad students with special expertise.

How to reach Dr. Wiesenborn outside of class:
Office: room 206, ABEN building; Phone: 231-7277; E-mail address: d.wiesenborn@ndsu.edu
Office hours: Mon., 10 a.m. – noon; Wed. 2 – 4 p.m.; Thurs. 3 – 5 p.m.; and by special request

Bulletin Description of Course:
Quantitative analysis of processing systems for food, biofuels and bioproducts using principles
of mass and energy balances, fluid flow, steam properties and heat and mass transfer. Includes 3
hour lab.

Prerequisite: ABEN 255 Co-requisite: ME 221

Course Objectives:
Processors seek to convert biological materials into products at a profit and in ways that are safe
for the consumer and the employee, result in or preserve the desired characteristics of the
product, and are compatible with the environment. Process scientists and engineers must be able
to quantify relationships between process parameters—such as temperatures and flow rates—and
product quality, yield and cost. This requires an understanding of the underlying principles and
methods of formulating and using equations that model these relationships, also, an
understanding of rheological and thermal properties.

Therefore, students completing this course should be able to:

A. Analyze processes for biological materials using one or more of (1) mass, component and
thermal energy balances, with correct use of units and conversions; (2) mechanical energy
balances applied to fluid systems; (3) properties of process steam, especially through use of
steam tables; and (4) principles of steady state heat transfer, including heat transfer
resistances in series [ABEN PEO 1 (see below), Student outcomes a, c, and e].
B. Apply professional standards for performing and documenting analyses [ABEN PEO 2,
Student outcomes f and g].
C. Conduct experiments, record data, write reports, and accomplish tasks as a member of a team
[ABEN PEO 1, Student outcome b; PEO 2, Student outcomes d and g]
D. Program and use dataloggers and PLCs at a basic level [PEO 1, Student outcome k]
ABEN Department Program Educational Objectives (PEO) and Student Outcomes for ABET:

Program Educational Objective 1: Graduates will become engineers with the ability to use their technical knowledge, design, and problem solving skills throughout their careers. This will be accomplished by ensuring that graduates have ability to:

ABET-a Apply knowledge of mathematics, science, and engineering.
ABET-b Design and conduct experiments, as well as to analyze and interpret data.
ABET-c Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
ABET-e Identify, formulate, and solve engineering problems.
ABET-k Use techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objective 2: Graduates will become engineers who have interpersonal and collaborative skills and the capacity for productive careers. This will be accomplished by ensuring that graduates have:

ABET-d Ability to function on multidisciplinary teams.
ABET-f Understanding of professional and ethical responsibility
ABET-g An ability to communicate effectively.
ABET-h The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
ABET-i Recognition of the need for, and an ability to engage in life-long learning.
ABET-j Knowledge of contemporary issues.

Evaluation Procedures and Criteria:

Graded assignments and their relative contribution to your grade are tentatively as follows:

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Points</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tests (3, each 100 points)</td>
<td>300</td>
<td>Feb. 6, Mar. 6, Apr. 10</td>
</tr>
<tr>
<td>Final exam</td>
<td>150</td>
<td>May 7, 10:30 a.m. – 12:30 p.m.</td>
</tr>
<tr>
<td>Graded problem sets</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Lab quizzes/worksheets/reports</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Professional practice/notebook</td>
<td>50</td>
<td>Notebook due on Apr. 20</td>
</tr>
<tr>
<td>Total</td>
<td>750</td>
<td></td>
</tr>
</tbody>
</table>

Letter grades assigned as follows: A=90-100%; B=80-89%; C=70-79%; D=60-69%; F< 60%. A mid-term grade will be posted at Spring Break which will be based on the first two tests and other graded assignments from the first half of the semester.

Problem Sets and Professional Standards (please also follow format on p. 9 of online textbook)

Working the problems is the best way to master the material in this course. You may work in a small group, particularly if you have limited time and find the problems frustrating. While students are encouraged to share ideas on solving problems and compare final answers, the work you submit should still be essentially your own -- not a solution you copied from someone else.

Professional standards apply to all work in this course. The foremost expectation is to clearly communicate the method used to solve the problem. Students with good penmanship may complete problem sets in pencil on only one side of lined or grid 8-1/2” x 11” notepad paper (not spiral-bound paper); otherwise, use a word processor and then print on standard printer paper.
Concisely summarize the **GIVEN** information, briefly state what you are asked to **FIND**, and then give a clear, organized, logical **SOLUTION** to the problem. **Clearly communicate the method for solving the problem.** Be generous with space. Show correct units throughout your solution, especially in the final answer. Round off your final answers. Professional practice is to show no more than 2-3 significant figures in the final answers, unless the accuracy of the data warrants more; please round your answers accordingly. **Underline your final answers.**

You typically have one week to complete assigned problem sets. If you cannot meet that deadline, assignments are **sometimes** accepted with advance permission up to 3 days late (10% deduction per day, based on maximum possible score). Problem sets may not be returned in advance of the corresponding test. Thus, **photocopy your answers and compare them to the posted solution key** to ensure that you are using correct procedures.

Laboratory Exercises:

Students will be able to download the lab guide by the Friday before the corresponding lab exercise is performed. The lab exercise will usually be conducted by separate teams of 3-4 students, with teams usually working at separate parts of the period. It may sometimes be necessary to have a team conduct the exercise on an alternative day, so that each team has adequate time. For some exercises, teams will share data with one another. Please study the lab guide for 30 to 60 min prior to reporting to lab to perform the exercise. You will usually be quizzed on the lab guide when you arrive to perform the exercise. Please make it a habit to record your original data in a neat and orderly way directly into a **bound lab notebook** (avoid using photocopies of data); **this is due by April 20**. Please assist with cleanup.

7 Marks of Professionalism in the Lab
1. Lab guide is carefully studied before the lab period, and consulted as needed during the lab.
2. Work is performed safely according to precautions, e.g., with eye protection if needed.
3. Questions are asked and constructive suggestions offered, where needed to perform experiments safely and accurately, and to help discern relevance of the lab to the course.
4. Experiments are repeated, to the extent that time and resources allow.
5. Your team’s data are recorded neatly **in ink** directly into a bound notebook.
6. Behavior towards others is courteous and helpful; use of humor is graceful.
7. Equipment and facilities are treated with respect, and assistance with clean up is volunteered.

What should be entered into the lab notebook?
1. Title of experiment (title used in lab guide)
2. Your name and date of lab exercise, and your lab partner names
3. Brief statement of objective(s) of lab exercise
4. Simple, labeled sketch of lab apparatus, where appropriate
5. Complete record of relevant data **with units**, organized in a table where appropriate
6. Record departures from the lab guide procedure, and observations made

Please write **in black or dark blue ink** and use **only the front side** of each notebook sheet. The back side of the sheet may be used to perform calculations and to make other informal entries.
Professional Practice: Participation and Attendance
According to NDSU Policy 333 (www.ndsu.edu/fileadmin/policy/333.pdf), attendance in classes is expected. Your attendance and full participation is expected and is incorporated into the professional practice component of your course grade, through punctuality, classroom discussions, volunteering answers to questions, asking constructive questions, and by helping to create a spirit of cooperation within the class.

Please also note: Students who exceed one unexcused absence for the semester should provide documentation of a valid excuse for all absences, such as from an advisor of an NDSU student organization, to avoid a grade penalty of up to 8 points (6 points if <2) per unexcused absence.

Course Schedule—Classroom Period Component (30 classes total):
Chapters refer to the online textbook mentioned on the next page.

1. Mass balances; units & dimensions (3 classes; Ch. 1 and 2)
2. Thermal energy balances (3 classes; Ch. 3)
3. Mechanical energy balances applied to fluid system (2 classes; Ch. 4)
4. Viscosity, flow props of fluids, fluid friction (3 classes; Ch. 5 and 6)
5. Pumps and fans, pressure drop in processes (1 class; Ch. 7)
6. Properties and use of steam & evaporator analysis (4 classes; Ch. 8 and 9)
7. Steady state heat transfer by conduction & convection; Thermal properties of biological materials (4 classes; Ch. 10 and 11)
8. Heat exchangers, predict convection, cylindrical walls (4 classes; Ch. 12 and 13)
9. Introduction to Dataloggers and PLCs (3 classes)
10. Integration of process principles: evaporator example (1.5 classes)
11. Course assessment, evaluation and review (1.5 classes)

Course Schedule—Laboratory Period Component by Week:

1. Course introduction; course pre-test (Jan. 9, 2 p.m. in Pilot Plant)
2. Quality evaluation of canola seed, seed cleaning & tempering (Jan. 16 in Pilot Plant)
3. Mass balance for screw pressing of canola oil (Jan. 23 in Pilot Plant)
4. Spreadsheet software for data analysis (Jan. 30, 2 p.m. in ABEN 210 cluster)
5. 1st test (Feb. 6, 2-3:30 p.m. in ABEN 201; bring calculator & paper)
6. Fluid properties of soup concentrates and biodiesel (Feb. 13 in Pilot Plant)
7. Process plant tour TBD (Feb. 20, 2 p.m. meet E. side of ABEN building)
8. Thermal energy balance on evaporator (Feb. 27 in Pilot Plant)
9. 2nd test (Mar. 6, 2-3:30 p.m. in ABEN 201; bring calculator & paper)
10. Mid-course review & assessment (Mar. 20, 2 p.m. in ABEN 210 cluster)
11. Process plant tour TBD (Mar. 27, 2 p.m. meet E. side of ABEN building)
12. Double pipe heat exchanger (Apr. 3 in Pilot Plant)
13. 3rd test (Apr. 10, 2-3:30 p.m. in ABEN 201; bring calculator & paper)
14. Dataloggers and “Hot Box” event (Apr. 17 in ABEN 210 cluster)
15. Programmable logic controllers in processing (Apr. 24 in ABEN 210 cluster)
16. Makeup for weather-related postponement of lab or class (May 1)
Required and Recommended Student Resources:

Other required resources: electronic calculator, lab notebook (a few recycled lab notebooks are available at no cost—please ask), safety glasses or goggles, protection for your clothes in lab such as a lab coat or apron

Recommended resources:

Students with Special Needs and/or Circumstances:

Any students with disabilities or other special needs, who need special accommodations in this course, are invited to share these concerns or requests with the instructor and contact the Disability Services Office (www.ndsu.edu/disabilityservices) as soon as possible.

Veterans and student service members with special circumstances or who are activated are encouraged to notify the instructor as soon as possible and are encouraged to provide Activation Orders.

Academic Honesty:

The academic community is operated on the basis of honesty, integrity, and fair play. NDSU Policy 335: Code of Academic Responsibility and Conduct applies to cases in which cheating, plagiarism, or other academic misconduct have occurred in an instructional context. Students found guilty of academic misconduct are subject to penalties, up to and possibly including suspension and/or expulsion. Student academic misconduct records are maintained by the Office of Registration and Records. Informational resources about academic honesty for students and instructional staff members can be found at www.ndsu.edu/academichonesty.

Honor Pledge in the College of Engineering: “On my honor I will not give nor receive unauthorized assistance in completing assignments and work submitted for review or assessment. Furthermore, I understand the requirements in the College of Engineering Honor System and accept the responsibility I have to complete all my work with complete integrity. Students who are suspected of academic dishonesty may not withdraw from the course in which dishonesty is suspected while the case is under review by the Honor Commission (NDSU Policy 335, 5b).”

http://www.ndsu.edu/coe/undergraduate_students/honor_code/

Last updated: December 27, 2017