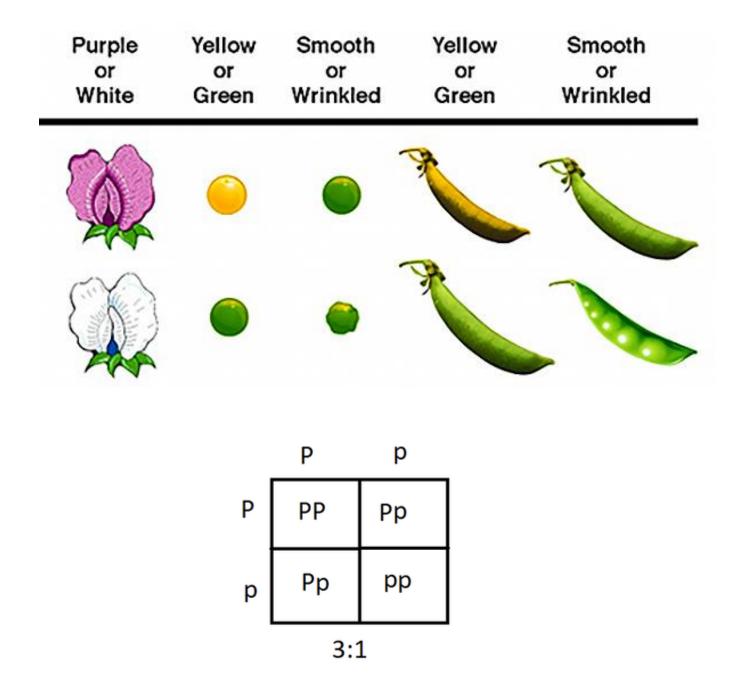


Why is it difficult to find varieties with IDC <u>OR</u> SCN resistance?

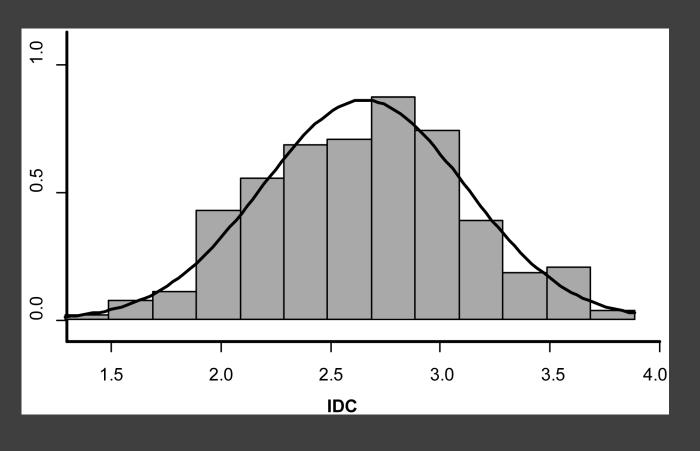
A quick genetics / breeding lesson...

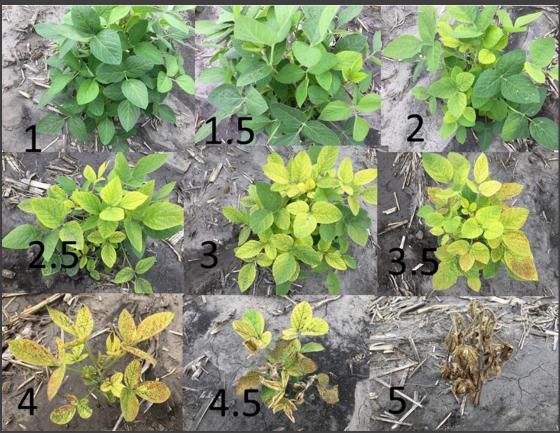
There are two types of traits...


A trait is a characteristic that we are interested in:

- Season Length/ Maturity
- Herbicide Tolerance
- Yield
- Height
- Disease resistance

A trait can be controlled by 1-2 genes or many, many genes


Trait types: Qualitative


- 1-2 genes
- Easy(ier) to breed for
- It's either present or not present
- Examples: Flower color, herbicide resistance, seed color

Trait types: Quantitative

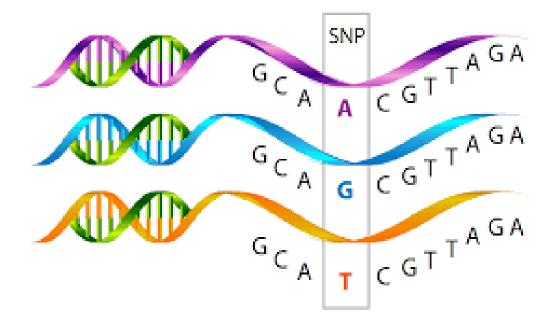
- Many, many genes
- Difficult to breed for
- A spectrum of phenotypes
- Examples (all the good traits): maturity, yield, IDC tolerance

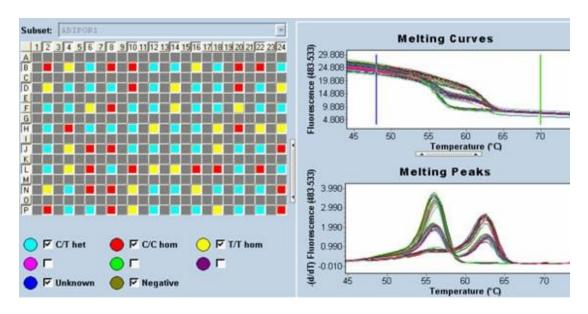


There is help!

Molecular marker tools!

These tools can detect genomic/ nucleotide data that detects the likelihood of a phenotype

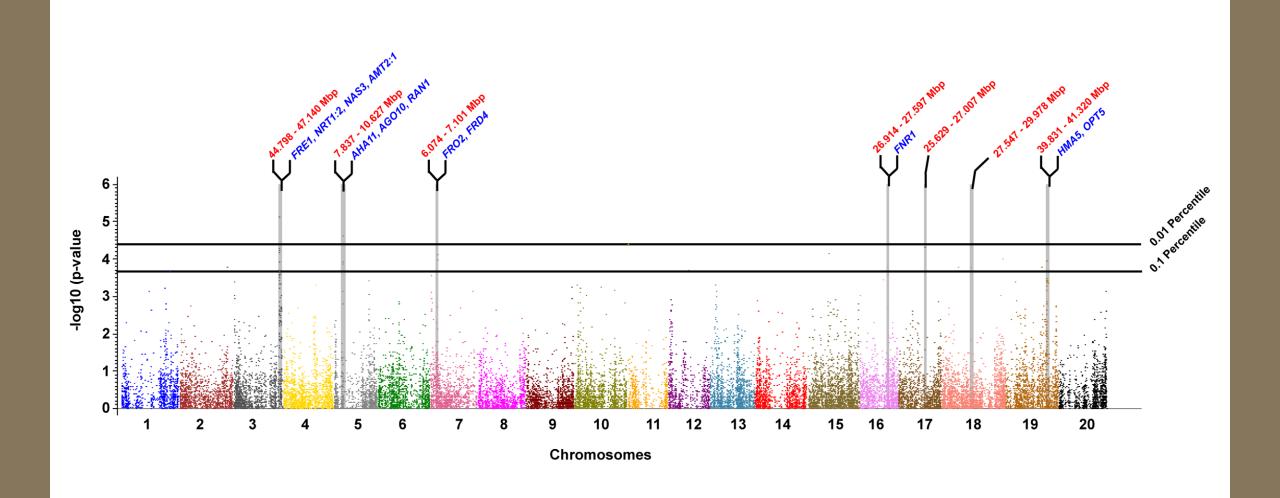

Old School: Gel based



There is help!

Molecular marker tools!

These tools can detect genomic/ nucleotide data that detects the likelihood of a phenotype

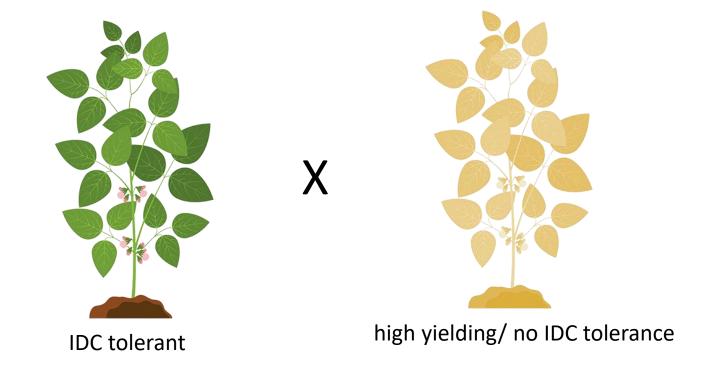


RESEARCH ARTICLE

Genome-Wide Association Studies Identifies Seven Major Regions Responsible for Iron Deficiency Chlorosis in Soybean (*Glycine max*)

Sujan Mamidi, Rian K. Lee, Jay R. Goos, Phillip E. McClean

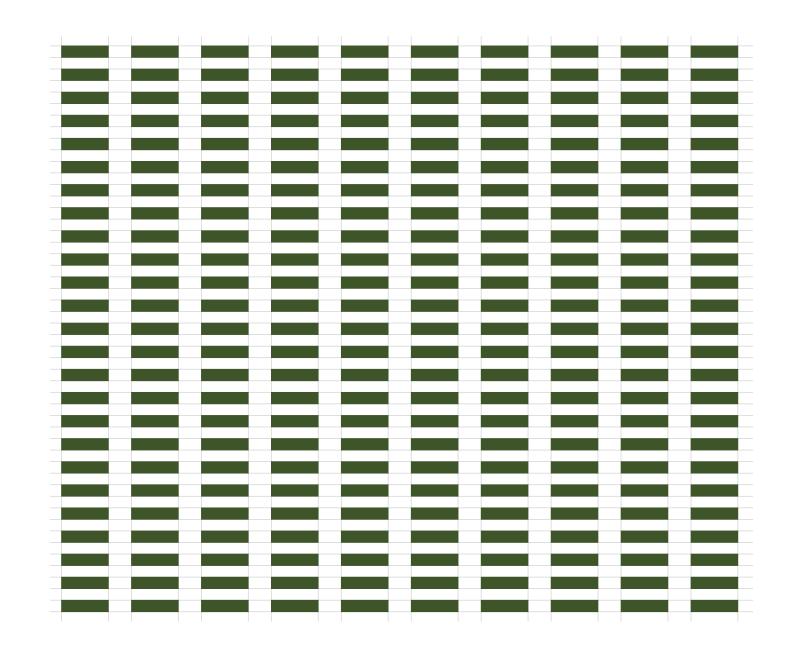
Published: September 16, 2014 • https://doi.org/10.1371/journal.pone.0107469



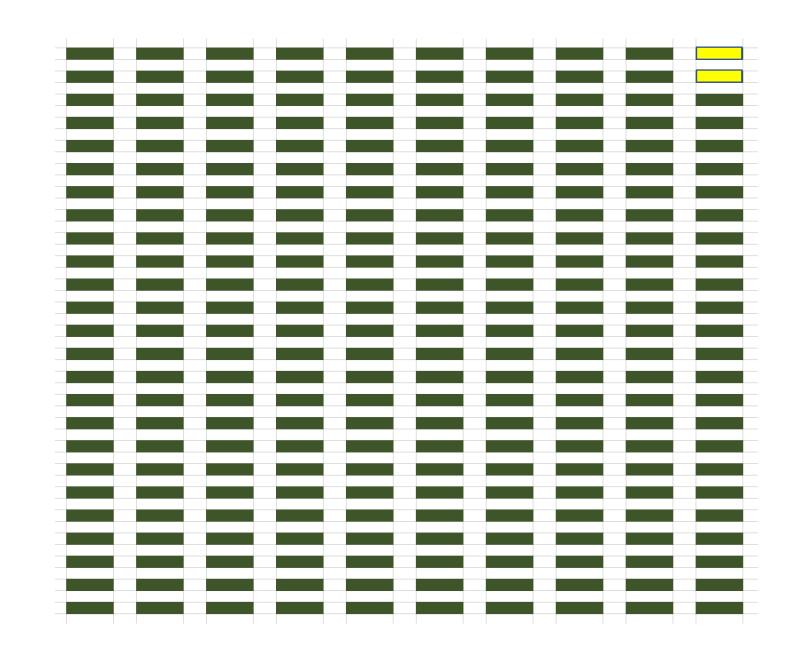
Allelic combination [§]	# of genotypes	IDC					
		Minimum	Maximum	Mean	Standard Deviation		
CTTATTGA	3	1.63	2.23	1.88	0.31		
TGTATTGA	7	1.46	2.58	2.17	0.37		
CGTAGTGA	2	2.18	2.34	2.26	0.11		
CTTATTGC	6	1.96	2.86	2.29	0.33		
TTTATTGA	11	1.95	3.25	2.32	0.40		
CGCATTGA	9	2.08	2.83	2.38	0.26		
CTCGTTAA	1	2.4	2.4	2.40			
СТТАТТАА	2	2.16	2.66	2.41	0.35		
CTCATTGA	26	1.8	3.01	2.41	0.33		
сттдттдс	2	2.16	2.69	2.43	0.37		
CTCATTGC	9	2.11	3.03	2.44	0.33		
CGTATTGA	5	2.31	2.57	2.47	0.13		
CTTATCGC	2	2.42	2.52	2.47	0.07		
CGTATTGC	1	2.5	2.5	2.50			
TTCGTTAC	1	3.56	3.56	3.56			
TTCAGTAC	1	3.58	3.58	3.58			
TGCAGCGC	1	3.68	3.68	3.68			
TGCGTTGC	1	3.7	3.7	3.70			
TGCGTTAA	1	3.72	3.72	3.72			
TGCGTTAC	1	3.79	3.79	3.79			

[§]The order of the markers for the allelic combination are Gm03_45031929, Gm05_8877264, Gm07_6397319, Gm11_530116, Gm16_27300116, Gm17_25859992, Gm18_28141888, and Gm19_40193564. doi:10.1371/journal.pone.0107469.t003

Breeding for Quantitative Traits


How many plants to grow to find one with IDC tolerance?

7 genes necessary for IDC score of 1


0.78% change of finding and individual!!!

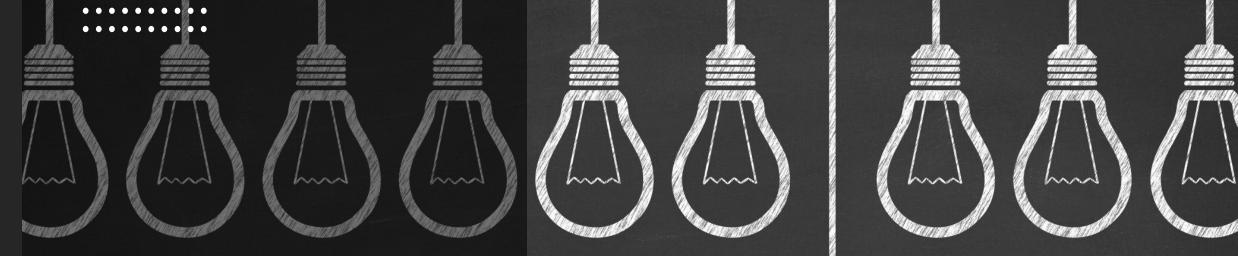
Population with 250 individuals

Population with 250 individuals

250 x .0078 = 1.95 or 2 plants!!

Probability of a plant being selected for yield: 10% or .1

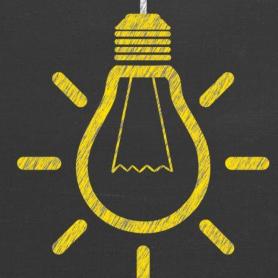
Probability of a plant having IDC score of 1: .0078


Probability of a plant being high yielding AND having an IDC score of 1: .00078

Or .195 out of 250

The dilemma.... yield comes first!

Select top 10% highest yielding lines



Priorities.... Breed for IDC!

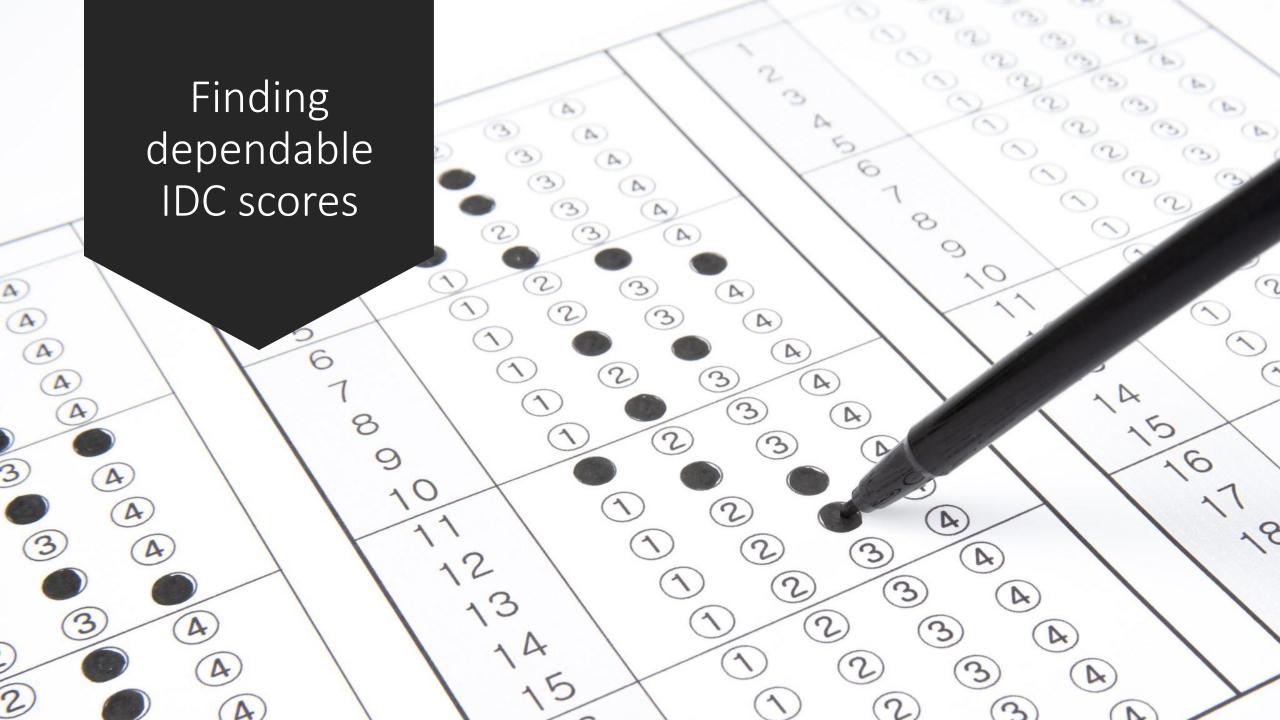
Establish that IDC AND yield are important

Develop molecular marker tools to help find IDC tolerant varieties early

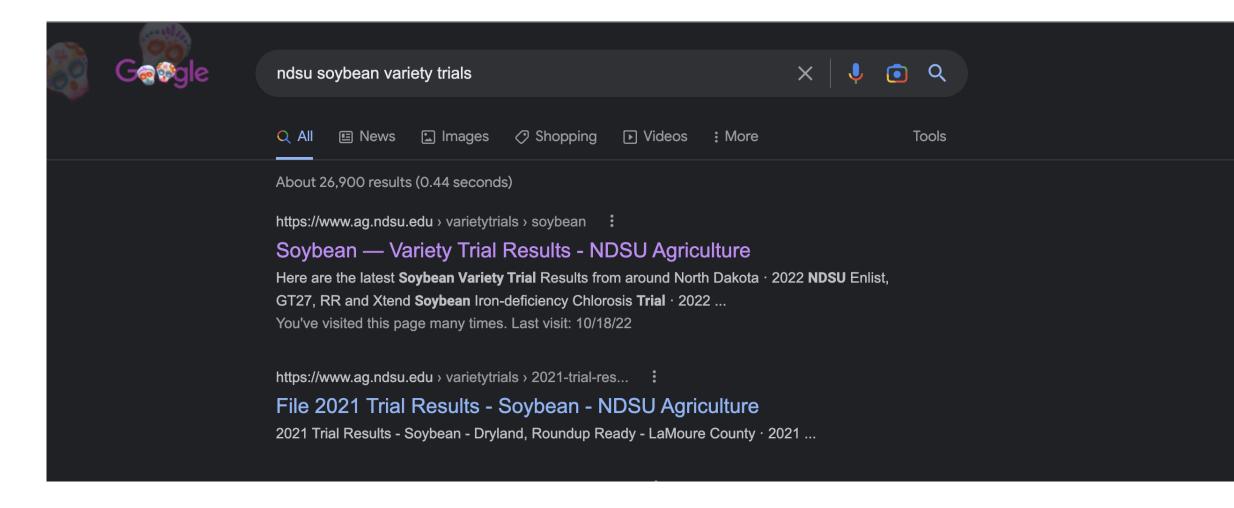
Choose parents that have some IDC tolerance already- improve your probabilities

Solution!

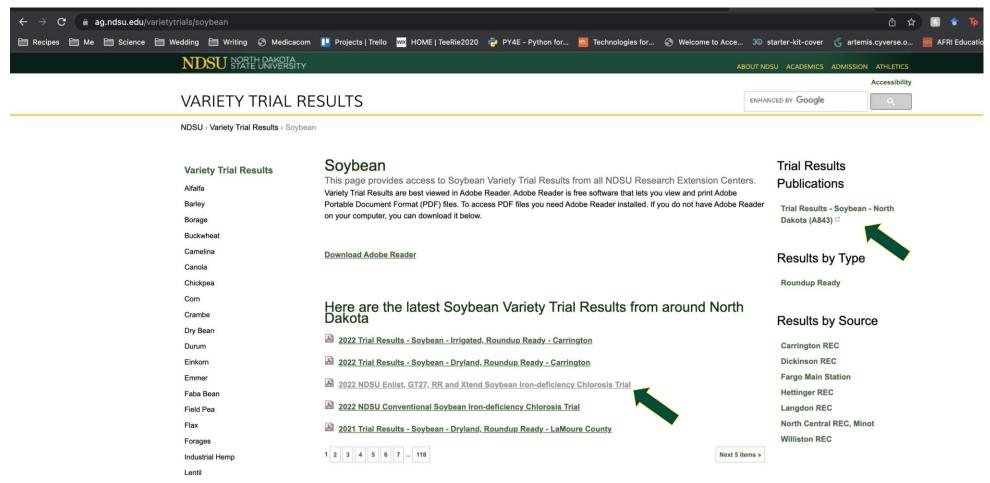
NDSU is here to help!


Involved in projects to:

Develop reliable markers (hopefully reduce numbers)



Determine environmental stability of IDC tolerance



To find the reports:

To find the reports:

Download results as .pdf

Iron Deficiency Chlorosis Report

		Trial			Trial
		Mean			Mean
Company	Variety	IDC^1	Company	Variety	
Pioneer	P06A38E	2.8	Stine	05EB23	5.4
Pioneer	P06A85E	2.6	Stine	06EC	3.4
Proseed	EL30-33	3.1	Stine	07EA36	3.8
Proseed	EL30-53	3.4	Stine	08EC32	3.0
Proseed	EL30-93N	3.9	Stine	11EC02	3.3
Proseed	EL31-13N	3.6	Stine	16EC32	3.4
Proseed	EL31-43N	3.5	Sunrise	SR 00630XF	3.3
Proseed	EL80-33	3.6	Syng NK	NK02-T4E3	3.1
Proseed	EL90-93N	3.6	Syng NK	NK03-V5E3	3.4
Proseed	XF30-42N	3.1	Syng NK	NK05-W3XF	3.4
Proseed	XF30-52N	3.0	Syng NK	NK06-D9E3	3.2
Proseed	XF30-62N	3.8	Syng NK	NK06-P2XF	3.1
Proseed	XF30-72N	3.4	Syng NK	NK08-M1XF	3.5
Proseed	XF30-82N	3.4	Syng NK	NK09-B5XF	3.6
Proseed	XF30-92N	3.8	Syng NK	NK09-H7E3	3.8
Proseed	XF31-12	3.3	Syng NK	NK10-W8XF	3.7
Proseed	XF31-32N	3.1	Syng NK	NK13-Y4XF	3.1
Proseed	XT90-50	3.3	Syng NK	SO4-Q7X	3.4
REA	R0112XF	3.6	Thunder	SB8104N	3.2
REA	R0422XF	3.1	Thunder	SB8903N	2.9
REA	R0632XF	3.4	Thunder	TE7207	3.0
REA	R0843XF	3.2	Thunder	TE7304N	3.6
REA	R1042XF	3.6	Thunder	TE7309N	3.4
REA	R1133XF	3.3	Thunder	TX8211N	3.1
REA	RX0721	3.0	Thunder	TX8304N	2.7
Stine	01EA63	3.6	Thunder	TX8305N	3.1
Stine	03EB02	3.4	Thunder	TX8307N	3.8
Stine	04EE06	3.2	Thunder	TX8309N	3.5
Stine	05EA23	3.6	Thunder	TX8312N	3.2
Mean		3.5	Mean		3.5
CV %		16.1	CV %		16.1
LSD 0.05		0.8	LSD 0.05		0.8
LSD 0.10		0.7	LSD 0.10		0.7

Results are posted yearly in August

1DC score was 1-5 with 1-green 3-vellow 5-dead tissue

Supported by:

As a breeder, want complete genetic tolerance/resistance to IDC and SCN

However, genetic tolerance to SCN is more important because other management strategies are.... not great

Types of genetic resistance

SCN races: 16 races

PI 88788:

- Oldest source
- Resistant to 8 races: (1, 2, 4, 5, 7, 11, 15, 16)

Peking:

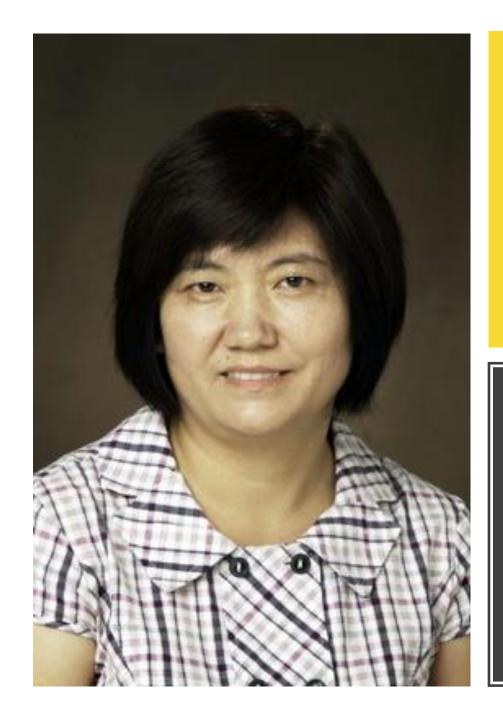
- Newer
- (2, 4, 9, 11, 12, 13, 14, 16)

Genetic source of resistance

PI 88788:

- *Rhg1-b*
- requires multiple copy numbers
- Slower mechanisms of resistancedeath at J3/J4 stage

Peking:


- *Rhg1-a*
- Rhg4
- Two genes work together for fast death of the parasite at J2

Chu, Shanshan, et al. Frontiers in Genetics 13 (2022).

Effort! Tools!
How do you design a tool to detect number of genes??

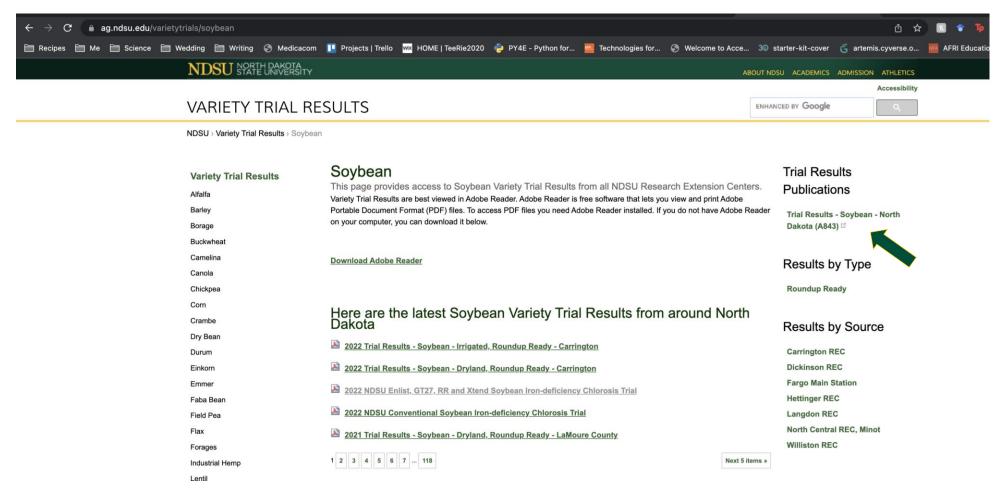
New sources of resistance

Breeding challenges

Solution

Hire a nematologist

Guiping Yan


Solution

Talk to your extension agent

Sam Markell

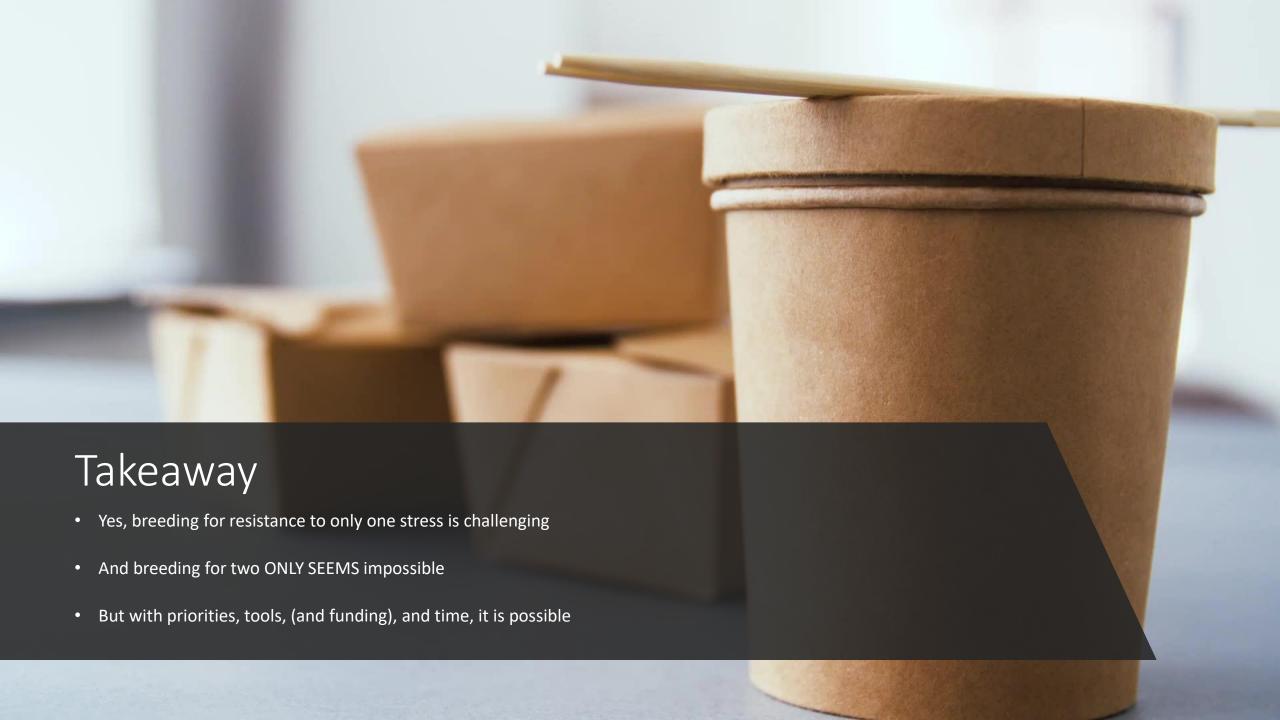
Test your fields!!

To find the reports:

SCN Yield Test Reports: GMO and Conv

Company	Variety	Mat.	Maturity ¹	Seed Oil	Seed Protein	Seed Yield			
						Colfax	Prosper	2-site Avg.	2-yr. Avg
			(date)	(%)	(%)		(b	(bu/a)	
Dahlman	1201E3N	0.1	9/10	19.5	37.5	24.5	2.4	34.0	
Dahlman	1213E3N	1.3	9/1	19.7	37.0	41.7		47.2	
Dahlman	7203XF	0.3	9/8	21.0	37.4	19.6	22.9	21.3	
Dahlman	10XF	1.0	9/28	20.3	36.6	45.8	58.0	51.9	
Dahlman	XF	1.3	9/28	20.4	36.2	42.4	53.1	47.8	
Golden H.	GH0502XF	0.5	9/14	19.2	37.3	42.3	46.8	44.5	**
Golden H.	GH0593E3	0.5	9/16	20.5	36.0	37.5	31.1	34.3	
Golden H.	GH0749X	0.7	9/24	19.8	37.4	48.4	48.8	48.6	51.4
Golden H.	GH0822XF	0.8	9/22	20.0	35.8	27.0	51.4	39.2	
Golden H.	GH0842E3	0.8	9/22	19.2	37.3	33.9	51.2	42.6	
Golden H.	GH1032XF	1.0	9/24	18.7	38.1	63.5	47.5	55.5	
Golden H.	GH1362E3	1.3	9/30	19.2	37.6	64.9	56.1	60.5	
Golden H.	GH1442XF	1.4	9/30	20.3	36.4	55.5	54.4	55.0	
Golden H.	GH1472E3	1.4	9/28	19.7	38.1	49.0	54.0	51.5	
REA	R0632XF	0.6	9/14	19.1	37.3	31.6	49.5	40.5	
REA	R1042XF	1.0	9/28	19.6	37.6	38.5	38.7	38.6	
REA	R1350XF	1.3	9/28	20.7	35.6	38.5	36.4	37.5	
REA	RX0411	0.4	9/12	19.6	37.2	35.2	33.6	34.4	38.8
REA	RX0721	0.7	9/20			31.6	49.8	40.7	46.1
Syng NK	NK08-B7XF	0.8	9/22	20.0	35.4	35.1	48.4	41.7	
Syng NK	NK10-W8XF	1.0	9/18	18.6	37.3	37.1	48.2	42.7	
Syng NK	NK14-C7XF	1.4	10/2	19.7	37.3	33.0	40.3	36.7	
Syng NK	S14-U9X	1.4	9/30	19.8	36.4	47.0	46.3	46.6	
Mean		0.9	9/22	19.8	36.9	40.2	46.2	43.2	45.5
CV %			17.1			41.1	18.8	30.5	
LSD 0.05			4.5			19.5	10.3	12.7	
LSD 0.10			3.5	**		15.1	7.9	10.6	

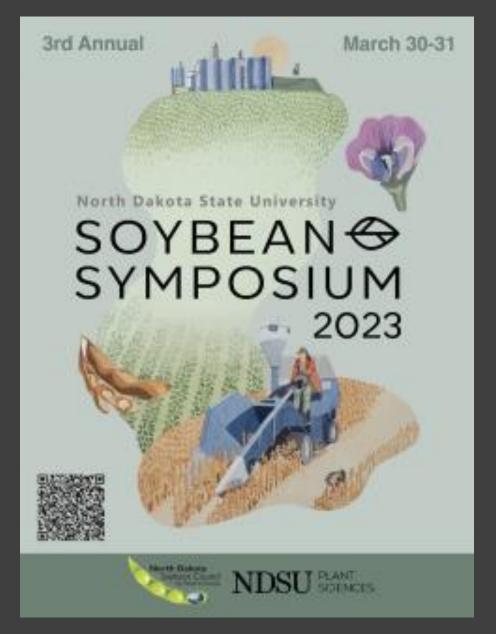
Colfax Planted: May 11. Harvested: Oct 15. Previous crop: Corn Prosper Planted: May 17. Harvested: Oct 5. Previous crop: Wheat


¹Maturity is date of 95% brown or tan pods

Company/		Mat. Group	Maturity ¹	Seed	Seed . Protein	Seed Yield			
Brand	Variety					Colfax	Prosper	2-site Avg.	2-yr. Avg
			(date)	(%)		(bu/a)			
MS Tech.	XO 0311E	0.3	9/10	19.5	36.	59.0	44.4	51.7	
MS Tech.	XO 0521E	0.5	9/12	17.0	42.1	31.5	24.1	27.8	**
MS Tech.	XO 0731E	0.7	9/25	19.8	36.8	67.0	46.3	56.6	
MS Tech.	XO 1041E	1.0	9/28	18.8	38.0	61.1	59.2	60.2	
NDSU	ND Benson	0.4	9/11	19.0	39.4	58.9	42.8	50.9	49.0
NDSU	ND Dickey	0.7	9/15	17.7	41.1	36.6	20.0	28.3	37.3
Sevita	Skyline	1.0	9/31	19.2	38.6	49.6	43.4	46.5	46.4

Results are posted yearly in December online and in the A843 publication

Supported by:


NDSU Soybean Symposium

March 30-31st NDSU Alumni Center

Keynote: Ed Anderson, PhD

<u>Executive Director</u> of NCSRP

"The Soybean Checkoff's
Leadership Role in
Research for Advancing the
Soybean Industry"

NDSU NORTH DAKOTA STATE UNIVERSITY

Thank you!!

NDSU breeding team:

Gustavo Kreutz Clara Mvuta

Forrest Hanson Cole Williams

Ashley Cooper

NDSU soybean breeding support

