Carrington REC Crop Research Update: Selected Production Management Studies

Greg Endres, Extension cropping systems specialist 701-652-5032; gregory.endres@ndsu.edu

EXTENSION

Presentation content

- 1. Winter rye as a cover crop preceding soybean
- 2. Tolerance of broadleaf crops to preplant, lowrate dicamba for early season weed control
- 3. Corn response to P and Zn
- 4. Prior-year P for soybean
- 5. Durum intensive management
- 6. 2023 research and demo plans

Winter rye cover crop planting dates and rates preceding soybean (Carrington; 2019-2023)

- What is the recommended <u>rye plant density</u> as a preplant cover crop for soybean based on fall planting dates (two: mid and late fall) and rates (three: 25, 50, and 75 lb/A) to achieve farmer goals?
 - Ground cover and weed suppression
 - Soybean performance

Seeding date and rate impact on <u>winter rye stand and</u> <u>ground cover</u>, Carrington, 2019-22 (4-year average)

Rye planting treatment		Rye ¹				
	Rate Plant der		nsity	Ground cover		
Date	lb/A	plt/A	plt/ft ²	%		
First: Oct 2, 2018	25	172,370	4	21		
Sept 26, 2019 Sept 17, 2020	50	364,780	8	21		
Sept 22, 2021	75	598,270	14	27		
Second: Oct 31 2018	25	137,790	3	9		
Nov 1, 2019	50	372,950	9	17		
Oct 8, 2021	75	569,390	13	18		

¹Rye plant density measured and ground cover visually evaluated in May prior to planting soybean.

<u>Foxtail suppression in soybean</u> among winter rye planting dates and rates, Carrington, 2020-22¹ (3-year average)

Rye planting treatment		Rye		Weed suppression (prior to POST herbicide app)	
	Rate	Plant density (first-half May)		Foxtail	
Date	lb/A	plt/A	plt/ft ²	%	
Sept 26, 2019 Sept 17, 2020 Sept 22, 2021	25	185,240	4	66	
	50	377,720	9	63	
	75	592,800	14	73	
Nov 1, 2019 Oct 8, 2020 Oct 8, 2021	25	170,460	4	51	
	50	441,290	10	53	
	75	681,750	16	56	

¹Rye (tillering to boot stages) terminated with glyphosate near soybean planting date ('green-planted').

Winter rye cover crop planting date and rate impact on <u>soybean</u>, Carrington, 2019-22 (4-year average)

 Soybean plant development (emergence, flower and maturity) and canopy closure generally were similar among treatments

Rye planting treatment ¹		Soybean		
	Rate	Plant density	Seed yield	
Date	lb/A	plt/A	bu/A	
First:	25	153,300	51.9	
Sept 26, 2019	50	159,200	50.9	
Sept 22, 2021	75	151,400	52.1	
Last:	25	164,200	53.0	
Nov 1, 2019	50	164,700	52.3	
Oct 8, 2020	75	163,900	51.4	

¹Timing of rye termination with glyphosate: 1 week before to 2 days after soybean planting.

Summary

Winter rye cover crop planting dates and rates

- (Preliminary)
- o Ground cover
 - First date at 75 lb/A (>0.5 million plants/A or >12 plants/ft²)
- Weed suppression (73-83%)
 - First date with 75 lb/A for foxtail (>0.5 million plants/A); <u>50-75 lb/A for kochia</u> (>0.75 million plants/A or <u>></u>18 plants/ft²)
- Soybean plant development and seed yield
 - Similar among treatments

NDSU EXTENSION

Summary of weed control with winter rye as preplant cover crop in soybean and pinto bean, Carrington REC, 2018-22

	Contr	Number of research trials	
Weed	Average	Range ²	
Foxtail	70	0-99	10
Horseweed	31	22-40	1
Kochia	47	0-89	2
Common lambsquarters	72	66-97	1
Redroot and prostrate pigweed	69	54-81	1
Wild buckwheat	79	64-94	1

¹Visual evaluation at soybean or pinto bean planting to one month after planting. ²Among all trial treatments with rye.

Tolerance of broadleaf crops to preplant (PP) low-rate **dicamba** for early season weed control

- Limited number of PP burndown herbicides available for conservation-till <u>dry bean and sunflower</u> that control early season broadleaf weeds at low cost.
- Dicamba
 - G-E: wild buckwheat, nightshade, ragweed, biennial wormwood and lambsquarters; F-E: horseweed; F-G: pigweed species (kochia?)

waiting periods between dicamba application and planting plus annual rainfall restrictions generally restrict use, due to potential crop injury

Objective and Description of Research Study, 2021-22

Primary objective

 Build a ND crop response database that provides a reference for farmers and crop advisers considering use of this strategy.

• Locations

Carrington (irrigated site) and North Central (Minot) RECs, and Prosper

• Crops

- Soybean (non Xtend), pinto bean and sunflower
- Treatments
 - untreated crop checks
 - PP dicamba (Clarity or generic) applied at <u>4 fl oz product/A</u>
 - planting date <1 wk after dic app and no rain;</p>
 - planting date >2 wk after dic app plus rainfall (irrigation) >1"

Pinto bean injury (June 14, 2021; Carrington): Dic app May 13; 'ND Palomino' planted May 19

SUMMARY: Tolerance of broadleaf crops to PP low-rate dicamba, ND, 2021-22

- Pinto bean generally moderate to high plant injury and stand reduction with first planting dates; *low to moderate injury and minimal stand reduction with second planting dates. Seed yield maintained* with second planting dates but loss likely with no rain and prompt planting after dicamba.
- **Sunflower** had *no to moderate plant injury and stand reduction with first planting dates; no to low with second planting dates. Seed yield not impacted by dicamba.*

Carrington REC Research Overview: Corn response to preplant incorporated, starter and postapplied fertilizer

Center Points (April 10, 2023)

Center Points is a weekly newsletter produced by the Carrington Research Extension Center.

Update on Carrington REC Corn Fertilizer Research: Phosphorus and Zinc

NDSU recommends starter phosphorus (P) fertilizer for corn, regardless of P soil level. Corn is expected to respond to zinc (Zn) fertilizer if soils levels are below 1 ppm. The Carrington Research Extension Center began a corn field study in 2007 to document response to starter P fertilizer, primarily using 10-34-0 with various application methods and rates on loam soil generally testing medium or less for P. In 2016, the research focus transitioned to tests with Zn and specialty fertilizers.

SUMMARY: Corn grain yield response with <u>starter</u> P fertilizer (10-34-0), Carrington REC

 Corn grain yield was similar with <u>band- or IF-applied</u> 10-34-0 (2.5-6 gpa), and starter fertilizer increased yield 4-5%, compared with the untreated check (8 site-years).

■ Yield was similar between the <u>3- and 6-gpa</u> rates of IF-applied 10-34-0 (6 site-years).

Yield did not improve with a <u>split application</u> of 10-34-0 using band plus IF placement, compared with similar rates of only band- or IF-applied fertilizer (3 site-years).

 <u>Deep-band</u> (5 to 6 inches deep, fall or spring placed) or deep-band plus IF-applied 10-34-0 had similar yield as the planting-time band-applied fertilizer (3 site-years).

■ Yield was similar between IF-applied 10-34-0 and the low-salt fertilizer 6-24-6 at similar P rates (3 site-years).

■ Yield was similar between IF- and <u>soil-surface-applied</u> 10-34-0 (rain totaling <u>></u>0.3 inches for incorporation of surface-applied fertilizer was delayed <u>></u>5 days after application among years; 4 site-years).

NDSU EXTENSION

A1851 (Revised April 2022)

Corn Response to Phosphorus Starter Fertilizer

in North Dakota

Greg Endres, Extension Cropping Systems Specialist Dave Franzen, Extension Soil Science Specialist Hans Kandel, Extension Agronomist Mike Ostlie, Carrington Research Extension Center Director and Research Agronomist

The acres of corn planted in North Dakota for grain increased from about 1 million in 2000 to more than 4 million in 2021, and averaging 2.4 million per year since 2000. Field trials in North Dakota continue to evaluate starter fertilizer recommendations derived from other north-central U.S. land-grant universities.

NDSU recommends phosphorus (P) starter fertilizer be placed within 2 inches of the seed in-furrow (also called "pop-up") or banded near the seed at planting time (Franzen, 2017). The P starter fertilizer provides the potential to increase early season plant growth by increasing nutrient uptake, and ultimately increase grain yield and test weight.

This publication summarizes results of NDSU P-based starter fertilizer trials conducted in east-central North Dakota that evaluated corn grain yield response, primarily with liquid ammonium phosphate (10-34-0) applied using different methods and rates.

Materials and Methods

Location and years: NDSU Carrington Research Extension Center; 2007-21.

Soil: Heimdal-Emrick and Fram-Wyard loams; 2.6% to 3.8% organic matter; 5.9 to 8.2 pH (primarily 7.5 or greater); 3 to 20 parts per million (ppm) P (Olsen test; most sites in the low to medium range at 8 ppm or less).

Standard treatments: 10-34-0 applied in a 2x0" band (2 inches horizontally placed from planted seed) with a single-disk coulter or in-furrow with seed (Photo 2). P application rates were based on NDSU corn fertilizer recommendation tables (Franzen, 2017).

Photo 2. Planter set for in-furrow fertilizer placement. (Greg Endres, NDSU)

Experimental design: Randomized complete block with four replications.

General: The dryland trials were conducted using strip- or conventional-tillage systems. Responses did not appear to relate to the tillage system used. Corn row spacing was 22 or 30 inches. The starter fertilizer treatments included ammonium-N in the formulation, which has been shown to increase plant P

North Dakota State University, Fargo, North Dakota

Corn P and **Zinc** Fertilizer Application Study, Carrington REC, 2017-22

- Fertilizer treatments (include in-furrow [IF] 10-34-0)
 - Preplant incorporated (PPI) 80 lb P + 20 lb S + 2 lb Zn/acre
 - triple super phosphate = 0-46-0 plus ammonium sulfate = 20-0-0-24 plus zinc sulfate = 35.5% Zn + 17.5% S
 - MESZ (Microessentials SZ) = 12-40-0 10S 1Zn

IF and foliar Zn

• Ammend (CHS) = 8% N + 9% chelated EDTA zinc

Corn grain yield with IF 10-34-0 and <u>10-34-0 plus Zn</u>, Carrington, 2016-18 and 2020-22 (6-year average)*

*Soil: P=2-8 ppm (very low-med); Zn=0.26-0.65 ppm (low). 10-34-0 at 2.75-3 gpa; Zn at 0.25 gpa.

Corn grain yield with <u>PPI vs. IF P and Zn</u>, Carrington, 2020-22 (3-year average)*

*Soil: P=2-8 ppm (very low-med); Zn=0.26-0.65 ppm (low). 10-34-0 at 2.75-3 gpa; Zn at 0.25 gpa; TSP+AS+ZS at 174+83+5.6 lb/A; MESZ at 200 lb/A.

Corn grain yield between IF and <u>foliar Zn</u>, Carrington, 2017-18 and 2020-22 (5-year average)*

*Soil: P=2-8 ppm (very low-med); Zn=0.26-0.65 ppm (low). 10-34-0 at 2.75; Zn at 0.25 gpa, foliar app at V4-7.

Web search: "NDSU soybean fertility"

Dave Franzen Soil Science Specialist NDSU Extension

R. Jay Goos Professor NDSU Soil Science Department

Hans Kandel Agronomist NDSU Extension

Chris Augustin NDSU Extension Soil Health Specia North Central Research Extension (

Ryan Buetow NDSU Extension Cropping Systems

Dickinson Research Extension Center

Jasper Teboh Soil Scientist

NDSU Carrington Research Extension Center

Shana Forster

NDSU North Central Research Extension Center

Greg Endres

NDSU Extension Cropping Systems Specialist Carrington Research Extension Center

In the central U.S. Corn Belt, P fertilizer commonly is applied to corn only in a corn-soybean rotation. This practice tends to provide good benefits to soybean and corn because the soil P levels are most often in the "high" range. In North Dakota, the P test is much lower, so P should be applied to soybean in a separate application. Fertilizing each crop is important until the field P test reaches the high availability range.

N, P, K, S and Fe.

Nitrogen

Nodulation

Although the atmosphere is 78% nitrogen (N) gas, plants cannot use it directly. Plants can use only ammoniumNitrogen-fixing bacteria are attracted to soybean roots by chemical signals from the soybean root in the form of flavenoid compounds (1). Once in contact with the root hairs, a root compound binds the bacteria to the root hair cell wall. The bacteria releases a chemical that causes curling and cracking of the root hair, allowing the bacteria to

Soybean response to prior-year application of phosporus (Carrington, 2021-23; Minot, 2022)

- North Dakota Soybean Council Our World Is Growing
- Evaluate soybean yield response to prior-year broadcast application of P (for corn and soybean) compared to P application each year
 - a) Study
 - Initial P soil analysis
 - **Carrington: 2-7 ppm (very low to low);** Minot: 8 ppm (medium)
 - P fertilizer (0-46-0) applied at NDSU Extension recs
 - b) Potential benefits
 - Eliminate fertilizer application and incorporation costs during year of soybean production

Treatments:

1) Untreated check; 2) P corn/P soy; and 3) P corn+soy (year 1)

Soybean yield (Carrington 2-yr ave; low P-testing [4-7 ppm] soil): Check=34.8; <u>P corn/P soy=36.2; P corn+soy=37.5 bu/A</u> (LSD 0.10: NS)

Durum intensive management study, CREC, 2021-23

 Objective: Optimize seed yield and quality (vitreous kernel %) as influenced by application timing of N, sequential application of foliar fungicide, and seeding rates

97%

Hard count

Durum intensive management, Carrington REC, 2022

Materials and methods:

- Irrigated 'ND Riveland'
 - May 19; 1.4 million plants/A (June 9)
- **-** N
 - 1. 140 lb/A preplant soil N (trial)
 - 2. 30 lb/A tillering (3-4 leaf stage)
 - 3. 30 lb/A post anthesis (foliar)
- Fungicide
 - 1. Early anthesis (Miravis Ace)
 - 2. E. anthesis plus 5-7 days (Prosaro)

Durum intensive management, Carrington REC, 2022

Table. Durum wheat response to post N and foliar fungicides, Carrington, 2022.									
Treatment		Plant							
			Physiological						
		Lodge	maturity				Seed		
		17-Aug		Yield	TW	250 kwt	Count	Protein	Vitreous ²
Input	Plant stage	0-9	Day of year ¹	bu/A	lb/bu	g	no./lb		%
	untreated check	2	227	97.5	64.6	11.8	9,650	11.5	82
	tillering	4	229	106.0	64.2	11.8	9,645	12.2	87
Ν	post flower	3	229	96.8	64.2	11.6	9,805	13.3	95
CV (%)		56	0.5	5.4	0.4	1.6	2	3.7	4.7
LSD (0.05)		NS	2	6.6	0.3	NS	NS	0.6	5

Summary

- Preliminary data
 - No response to fungicides due to absence of disease
 - Seed yield increase with N at tillering
 - Seed protein increase with N at tillering or post-anthesis
 - Hard count increase with N at tillering or post-anthesis
- Study will continue at both locations in 2023

CROP PRODUCTION RESEARCH AND DEMONSTRATION PROJECTS, 2023							
Gre	6-Apr						
RE:	RESEARCH						
	Trial no.	Title	Cooperators	Sponsor			
Cro	op protecti	on					
1	312	Vios FX foxtail control in wheat	x				
2	311	Huskie FX kochia control in wheat	x	Bayer			
Ag	ronomy						
				ND Corn Utilization			
1	342	Corn response to preplant and starter PZn fertilizer	x	Council			
2	343	*Pinto bean ground roll X herbicides	J. Ikley	Northarvest			
3	307	Rye seeding rates and dates for soybean	x	Soybean Council			
4	341	Soybean response to prior P app in corn	x	Soybean Council			
			Szilvia/L.				
5	430&431	*Soybean P rates	Malone et al.	Soybean Council			
6	381	Durum Intensive Management	L. Bortolon	Wheat Commission			
DEMONSTRATIONS AND SURVEYS							
1	x	Weed Arboretum	x				
2	320	Herbicide Site-of-action demonstration	x				
			R.Jones/J.				
3	x	IPM Crop Field survey	Knodel et al.				
4	x	Sunflower survey	?				
*N	*New projects						

NDSU EXTENSION

Comments or questions?

Greg Endres, Extension cropping systems specialist 701-652-5032; gregory.endres@ndsu.edu

EXTENSION