CREC update and agronomy research

Mike Ostlie – Director/Agronomist

Hardy White Sorghum Development

2021 results

Yield Yield Variety bu/a Variety bu/a 109.0 91.6 1 170404a 21 171245a 2 170404b 82.2 105.1 22 171245b 86.3 23 60 81.9 3 170503a 4 170503b 136.0 24 P2a 94.4 5 170503c 131.8 25 P2b 95.9 26 170803a 81.8 6 170503d 132.9 81.3 81.4 7 170504 27 170803b 93.1 28 171201a 98.9 8 170506a 87.2 9 170805a 29 171201b 108.2 **85**.4 10 171102a 82.5 30 47 87.3 11 171102b 100.9 31 170505 12 171209a 89.4 32 170506b 74.6 13 171209b 83.9 33 170805b 51.0 14 171220a 95.3 34 170805c 105.2 15 171120b 67.8 35 P5a 101.8 99.0 16 171230a 36 P5b 97.1 17 171230b 112.6 37 P5c 65.6 18 171230c 106.4 38 P5d 72.5 19 171230d 77.0 39 170102 70.3 20 171243 91.5 115.9 40 Border

Dryland corn VT was ~70 bu/a average

Hybrid Check

Rationale for dry bean cover crop by herbicide comparison

- Dry bean acres are very susceptible to wind erosion in the spring and fall.
- Short term cover crops offer many benefits
 - Winter rye might be the best option for erosion management, but intended dry bean acres are not always known in the fall, when rye is typically planted
 - Short term cover crops are used in other systems, such as sugar beets, to manage wind
 - Spring seeded cover crops allow more flexibility in cropping system with little risk to dry bean yields

Study

- In 2021 and 2022 studies were established at the CREC
 - Oats, barley, and spring-seeded winter rye were utilized
 - 6 PPI or PRE herbicides were used with each cover crop
 - All herbicides were incorporated mechanically
 - Dry beans were planted within a day of herbicide applications
 - Cover crops terminated at early POST herbicide timing with Select
 - No dry bean yield data in 2021 due to drought, but yield was collected in 2022.

2021 results

Cover Crop	Herbicide	Cereal Stand	Phytotoxicity	Green Foxtail Control
		pl/a	%	%
Oats	Check	809352	0.0	3.8
Oats	Sonalan	671747	26.3	52.5
Oats	Treflan	843690	3.8	20.0
Oats	Dual II	888079	1.3	25.0
Oats	Outlook	7989 <mark>95</mark>	5.0	25.0
Oats	Prowl H2O	767923	11.3	55.0
Oats	Spartan Elite	722054	0.0	18.8
Barley	Check	915885	0.0	50. 0
Barley	Sonalan	844863	3.8	90.0
Barley	Treflan	852261	0.0	61.3
Barley	Dual II	899609	2.5	63.8
Barley	Outlook	764963	5.0	65.0
Barley	Prowl H2O	775 <mark>321</mark>	0.0	55.0
Barley	Spartan Elite	837465	0.0	53.8
Rye	Check	726493	0.0	3.8
Rye	Sonalan	630318	15.0	75.0
Rye	Treflan	7930 76	0.0	11.3
Rye	Dual II	847822	10.0	10.0
Rye	Outlook	821189	5.0	18.8
Rye	Prowl H2O	781239	6.3	55.0
Rye	Spartan Elite	856700	8.8	17.5
LSD (0.05)		145990	8.3	14.0

2022 results

Cover Crop	Herbicide	Cereal Stand	Stand	Yield
		Plant/a	%	lb/a
Oats	Check	726493	0.0	2208
Oats	Sonalan (2pt)	482356	57.5	2193
Oats	Sonalan (3pt)	464601	63.8	250 ²
Oats	Dual II	<mark>5</mark> 17867	32.5	248 <mark>9</mark>
Oats	Outlook	449804	50.0	<mark>23</mark> 91
Oats	Prowl H2O	469039	50.0	2546
Oats	Spartan Elite	639196	17.5	2328
Barley	Check	733891	0.0	2208
Barley	Sonalan (2pt)	5918 48	<mark>36</mark> .3	2261
Barley	Sonalan (3pt)	5992 46	30.0	<mark>23</mark> 83
Barley	Dual II	643635	2 <mark>8.8</mark>	<mark>2</mark> 314
Barley	Outlook	611083	37.5	<mark>2</mark> 291
Barley	Prowl H2O	674707	10.0	2229
Barley	Spartan Elite	<mark>5888</mark> 89	20.0	2270
Rye	Check	656951	2.5	2041
Rye	Sonalan (2pt)	408375	53.8	246 1
Rye	Sonalan (3pt)	551898	47.5	<mark>2</mark> 317
Rye	Dual II	412814	66.3	2777
Rye	Outlook	466080	56.3	2629
Rye	Prowl H2O	5888 89	22.5	<mark>2</mark> 311
Rye	Spartan Elite	511948	56.3	2543
LSD (0.05)		248096	16.7	370

Summary

- Cover crop + PRE herbicide worked together to reduce weed pressure in some cases
- Barley was most effective at reducing weed populations and was the most tolerant to the herbicides used.
- Sonalan was the most injurious product to the cover crops
- There was no dry bean yield penalty to this strategy in 2022
- Most products could be applied POST to the cover crop but PRE to the dry beans (except Spartan Elite, and Sonalan)

Visuals of intercropping

Visuals again

Other advantages to intercropping

Multi-year data with gross return

		2020		2019		2018	
Canola Seeding Rate	Nitrogen Rate	Add Canola	Add Field Pea	Add Canola	Add Field Pea	Add Canola	Add Field Pea
% of standard rate	lb/a	\$/ha	\$/ha	\$/ha	\$/ha	\$/ha	\$/ha
0/100 (FP mono) 100/0 (canola mono) 66/66 33/66	120	-22.2 5.3	<u>695.3</u> 722.8	1232.5 1252.9	<u>135.9</u> 156.3		
50/50		-198.8	518.6	1180.4	83.8		
66/33		-192.7	5 24.8	1177.5	80.9		
33/100		45.8	763.2				
0/100 (FP mono) 100/0 (canola mono)							
66/66		147.6	545.0	1214.6	257.3	372.1	55.5
33/66	60	39.3	436.7	879.6	-77.6	208.7	-108.0
50/50		167.8	<u>56</u> 5.2	<u>10</u> 24.1	<u> </u>	282.1	-34.6
66/33		-2.3	395.1	973.0	15.8	462.2	145.5
33/100		101.4	498.8				
			8				
0/100 (FP mono)							
100/0 (canola mono)							
66/66	0	-328.2	388.6	941.8	-17.8		
33/66	0	-233.9	482.9	863.1	-96.6		
50/50		202.2	<u></u> ь14.6	923.7	-36.0		
66/33		-324.1	392.7	864.0	-95.7		
33/100		<u>-29.</u> 7	687.1	2422	0010	0407	0700
Mean yield (kg/ha)		1002	3384	3420	3216	2107	2796

Intercropping Field Day 2022

On farm engagement

Shade – Lentils – poor tolerance

Shade – Flax – poor tolerance

Shade – Rye – medium tolerant

Shade – Oats – medium or more tolerant

Shade – Crimson Clover – medium tolerant

Shade – Radish – medium tolerant

Shade– Turnip – medium or more tolerant

Water and pests

Treatment	Turnip	Radish	Rye	Oat	Lentil	Crimson Clover	Flax
Atrazine	HR	HR	LR	LR	MR	HR	LR
Dual II Magnum	LR	LR	LR	LR	LR	LR	LR
Callisto	HR	MR	LR	LR	HR	LR	LR
Atz + Dual +							
Callisto	HR	LR	LR	LR	HR	MR	LR
Status	LR	MR	LR	LR	HR	LR	LR
Armezon	HR	LR	LR	LR	LR	LR	LR
2,4-D	LR	LR	LR	LR	HR	LR	LR
Widematch	LR	LR	LR	LR	HR	HR	LR
Harness	LR	MR	LR	LR	MR	LR	LR
Laudis	LR	LR	LR	LR	LR	LR	LR

LR = Low Risk (0-20% injury) MR = Medium Risk (21-50% injury) HR = High Risk (51-100% injury)

Site-specific weed control in corn *An NDSU Precision Agriculture collaboration

Concept

- If your sprayer can use individual nozzle control, how can we make it spray only what we need with today's technology?
 - Start with an effective PRE program blanket application, reduce POST weed pressure
 - Map corn rows, identify areas that have weeds early post-emergence
 - Create grid map of individual nozzles, to spray only weed patches
 - Execute prescription map with POST herbicide of choice

Corn row and weed mapping

A STATE OF A STATE OF A STATE and a second A distant Di Bas Manite Constitution of the Lot of the sold Alder Million Desta A STATE A STATE AND AND AND A STATE AS AN And And Adres and an address of the Bar Water strated on Mary 1980, and the state As his Lange hangers and Al-hing CARLES AND A REAL PROPERTY AND A Fide an a state of the second and the as I de Canal and

Research design

- Plot size = 400 ft x 136.6 ft (boom width)
- Cell size = 5 ft wide x 10 ft long

Summary

- Disadvantages:
 - SSWC is not easily implemented yet several steps had to be custom designed (not a commercially available service)
 - This barrier is being reduced soon
 - Requires a drone flight prior to spraying
- Advantages include:
 - 25-70% savings on herbicide application over the course of 3 years
 - No end-of-season difference weed control detected between SSWC and blanket application
 - Compared to active sensors (See and Spray) this strategy allows you to know how much product you need

WEED CONTROL STARTS AT HARVEST

Redekop offers two Harvest Weed Seed Control solutions; our new Seed Control Unit (SCU) and the <u>EMAR Chaff Deck</u>, available in North America through Redekop Manufacturing.

SEED CONTROL UNIT (SCU)

The SCU's unique design provides combines with a flexible and cost-efficient solution to destroy up to 98% of the harvestable weeds in a single pass operation. Fully integrated into the combine residue, drive and display system, its optimized design is easy and safe to use, with low power requirements and running costs, and excellent residue distribution over the whole cutting width.

The SCU is available with the Redekop MAV straw chopper or can be integrated into the combine's factory straw chopper.

BUILD YOUR OWN

CONTACT US

English

AVAILABLE FOR YOUR

CREC update

- Legislative changes
 - Livestock improvements
 - Storage sheds
 - Oakes site
- Seedstocks
 - New buckwheat variety
 - ND Stanley durum
 - ND Thresher/Heron wheats
 - ND Treasure barley
- CREC Field days July 18th

CREC Position Updates Soils Precision Ag Forage and Organic Systems OIRS Agronomist

Thank you!