FACTOR ANALYSIS

Introduction

- Factor Analysis is similar to PCA in that it is a technique for studying the interrelationships among variables.

- Both methods differ from regression in that they don’t have a dependent variable.

- A goal in PCA and Factor Analysis is to obtain a new set of distinct summary variables, which are fewer in number than the original number of variables.

- The goal of PCA is to select a new set of uncorrelated variables (principal components) that explain as much of the total variation as possible.

- In Factor Analysis the goal is to identify factors that explain the interrelationships among the original variable.

 - Our goal is to remove redundancy or duplication from a set of correlated variables.

- The assumption behind Factor Analysis is that there is a number of latent variables or factors that account for the correlations among the original variables, such that if the factors are held constant, the partial correlations among the observed variables all become zero.

- Therefore, the latent factors determine the values of the observed variables.

- Factor Analysis has been used in many of the same research areas as PCA (e.g. psychometrics, chemometrics, and econometrics).

- Overview of applications of Factor Analysis

 a. Identification of Underlying Factors

 i. Clusters variables into homogenous sets

 ii. Creates new variables (i.e. factors)

 b. Screening of variables

 i. Allows us to select one variable (factor) to represent many.
c. Clustering of objects

i. Allows us to put objects (people) into categories depending on their factor scores.

- Factor Analysis has been used less than PCA likely because it has many options during the analysis and the results may not be as straightforward as those for PCA.

“Perhaps the most widely used (and misused) multivariate [technique] is factor analysis. Few statisticians are neutral about this technique. Proponents feel that factor analysis is the greatest invention since the double bed, while its detractors feel it is a useless procedure that can be used to support nearly any desired interpretation of the data. The truth, as is usually the case, lies somewhere in between. Used properly, factor analysis can yield much useful information; when applied blindly, without regard for its limitations, it is about as useful and informative as Tarot cards. In particular, factor analysis can be used to explore the data for patterns, confirm our hypotheses, or reduce the Many variables to a more manageable number.”

--Norman Streiner, PDQ Statistics

http://ocw.jhsph.edu/courses/statisticspsychosocialresearch/pdfs/lecture8.pdf

Factor Analysis vs. Principal Component Analysis

- The variance of a variable consists of two components,
 - A *common* variance that is shared with other variables in the model, and
 - A *unique* variance that is specific to a variable and includes an error component.

- A *common factor* is an unobservable, hypothetical variable that contributes to the variance of at least two of the observed variables.

- A *unique factor* is an unobservable, hypothetical variable that contributes to the variance of only one observed variable.
Table 1. Differences between Principal Component Analysis and Factor Analysis.

<table>
<thead>
<tr>
<th></th>
<th>Principal component analysis</th>
<th>Factor analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance considered</td>
<td>Considers the total variance and makes no distinction between the common and unique variance</td>
<td>Considers only the common variance of the variables</td>
</tr>
<tr>
<td>Purpose of the method</td>
<td>1. To account for the maximum portion of the variance with a minimum number of new or composite variables called principal components.</td>
<td>1. To extract a smaller number of factors that account for the intercorrelations among the observed variables and 2. Identify the latent dimensions that explain why the observed variables are related.</td>
</tr>
<tr>
<td>When method is appropriate</td>
<td>Variables are measured with little error; thus, the error and specific variance represent a small portion of the total variance in the original variables.</td>
<td>Observed variables are only latent constructs to be measured or if the error variance makes up a significant portion of the total variance</td>
</tr>
</tbody>
</table>

Basic Concepts

- Suppose we have a set of variables X_1, X_2, \ldots, X_p
 - To simplify the description of these variables, we will subtract the mean of each dataset from each observation; thus,
 - $x_1 = (X_1 - \bar{X}_1), x_2 = (X_2 - \bar{X}_2), \ldots, x_p = (X_p - \bar{X}_p)$
 - The purpose of Factor Analysis is to represent each of these variables as a linear combination of a smaller set of common factors plus a factor unique to each of the response variables.
 - These linear combinations can be represented by:
 - $x_1 = l_{11}F_1 + l_{12}F_2 + \ldots + l_{1m}F_m + e_1$
 - $x_2 = l_{21}F_1 + l_{22}F_2 + \ldots + l_{2m}F_m + e_2$
 - .
 - .

\[
\begin{align*}
x_p &= l_{p1}F_1 + l_{p2}F_2 + \ldots + l_{pm}F_m + e_1
\end{align*}
\]

where:

1. \(m \) is the number of common factors, which is typically much smaller than the number of parameters \((P) \).
2. \(F_1, F_2, \ldots, F_m \) are the common variances.
3. \(l_{ij} \) is the coefficient of \(F_j \) in the linear combination describing \(x_i \). This term is referred to as the \textit{loading} of the \(i^{th} \) variable of the \(j^{th} \) factor.
4. \(e_1, e_2, \ldots, e_P \) are the \textit{unique factors}, each relating to one of the original variables.

Let’s assume \(x_1, x_2, x_3, x_4, \) and \(x_5 \) represent values on five different traits associated with malt quality of a line and \(m=2 \), the model would be:

\[
\begin{align*}
x_1 &= l_{11}F_1 + l_{12}F_2 + e_1 \\
x_2 &= l_{21}F_1 + l_{22}F_2 + e_2 \\
x_3 &= l_{31}F_1 + l_{32}F_2 + e_3 \\
x_4 &= l_{41}F_1 + l_{42}F_2 + e_4 \\
x_5 &= l_{51}F_1 + l_{52}F_2 + e_5
\end{align*}
\]

- Each of the five values consist of two parts
 - Part due to the common Factors \(F_1 \) and \(F_2 \)
 - Part due to the unique factors \(e_i \).

- The factor analysis is similar to the PCA in that each Principal Component is expressed as a linear combination of the variables. The number of principal components is equal to the number of variables.

- In Factor Analysis, we choose a number of factors that is smaller than the number of independent variables.
 - Often times we know the number of Factors \((m) \) variables before the analysis.
 - If you don’t know \(m \), there are ways to determine the number of factors.
In the models above we not only broke each independent variable into the common factors \((F_i)\) and unique factors \((e_i)\), we can break down the variance of \(x_i\) into two parts, the \textit{communality} \((h_i^2)\) and the \textit{specificity} \((u_i^2)\).

- **Communality**: Part of the variance that due to the common factors.
- **Specificity**: Part of the variance that is due to the unique factor.
- Thus, the variance of \(x_i = 1 = h_i^2 + u_i^2\)

The numerical answer we most often look for from Factor Analysis are:
- Estimates of the **Factor Loadings** \((l_{ij})\)
- Estimates of the **Communalities** \((h_i^2)\).

Assumptions of the Factor Analysis model

1. Measurement errors are homogenous and an average value of 0.

2. There is no association between the factor and the measurement’s error
 a. \(\text{Cov}(F, e_j) = 0\)

3. There are no associations between errors.
 a. \(\text{Cov}(e_i, e_j) = 0\)

4. Given the factor, there is no association between the observed variables.
 a. \(\text{Cov}(X_j, X_k | F) = 0\)

Performing the Factor Analysis

- Any Factor Analysis typically includes three main steps. Items highlighted in bold font will be the methods we discuss in class.

1. Initial extraction of Factors
 a. **Principal component method** (default method in SAS)
 b. Principal factor analysis (iterated approach)
 c. Maximum likelihood
2. Factor rotations
 a. Varimax rotation
 b. Oblique rotation
 c. Direct quartimin rotation

3. Assigning Factor Scores

Principal Component Analysis for Initial Extraction

- The basis of the use of PCA for initial extraction is to choose the first \(m \) principal components and modify them to fit the factor model.

- The reason for choosing the first \(m \) principal components is that they explain the most variation and are thus considered the “most” important.

- Remember from PCA that the principal components are:

 \[
 C_1 = a_{11}x_1 + a_{12}x_2 + \ldots + a_{1p}x_p \\
 C_2 = a_{21}x_1 + a_{22}x_2 + \ldots + a_{2p}x_p \\
 \vdots \\
 C_p = a_{1p}x_1 + a_{2p}x_2 + \ldots + a_{pp}x_p
 \]

- It can be shown mathematically that these equations can be inverted to express the \(x_i \)’s as functions of the principal components (\(C_j \)’s). The result is:

 \[
 x_1 = a_{11}C_1 + a_{21}C_2 + \ldots + a_{1p}C_p \\
 x_2 = a_{12}C_1 + a_{22}C_2 + \ldots + a_{2p}C_p \\
 \vdots \\
 x_p = a_{1p}C_1 + a_{2p}C_2 + \ldots + a_{pp}C_p
 \]
With a few additional mathematical functions, the each variable x_i can be expressed in the form:

$$x_i = l_{i1}F_1 + l_{i2}F_2 + \ldots + l_{im}F_{im} + e_i$$

Example of Results from the Initial Extraction Using the Principal Component Analysis

- We will assume that we have five variables ($x_1 - x_5$) and that previous research has determined that there are two factors (F_1 and F_2).

- A summary of that initial analysis is provided in the table below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor loadings</th>
<th>Communality</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0.470</td>
<td>0.759</td>
<td>0.241</td>
</tr>
<tr>
<td>x_2</td>
<td>0.510</td>
<td>0.756</td>
<td>0.244</td>
</tr>
<tr>
<td>x_3</td>
<td>0.481</td>
<td>-0.258</td>
<td>0.298</td>
</tr>
<tr>
<td>x_4</td>
<td>0.888</td>
<td>0.949</td>
<td>0.051</td>
</tr>
<tr>
<td>x_5</td>
<td>0.956</td>
<td>0.968</td>
<td>0.032</td>
</tr>
<tr>
<td>Variance explained</td>
<td>2.413</td>
<td>1.317</td>
<td>3.730</td>
</tr>
<tr>
<td>Percentage</td>
<td>48.3</td>
<td>26.3</td>
<td>74.6</td>
</tr>
</tbody>
</table>

- Based on these results, the **loading** of x_1 on F_1 is $l_{11} = 0.470$ and on F_2 is $l_{12} = 0.734$.

- The equation for the factor model for x_1 is $x_1 = 0.470F_1 + 0.734F_2 + e_1$.

- The total variance explained by each factor is 2.413 (48.3%) for F_1 and 1.317 (26.3%) for F_2.

- The communality value (h_i^2) shown for each variable shows the part of the variance of each variables explained by the **common factors**.

 - e.g. for x_1, $h_1^2 = 0.470^2 + 0.734^2 = 0.759$

- The specificity value (μ_i^2) shown for each variable is the part of the variance not explained by h_i^2.

 - $\mu_i^2 = 1 - h_i^2$
• A valuable tool for interpreting the output from Factor Analysis are the **Factor Diagrams**.

![Factor Diagram](image)

Factor Rotations

• Remember the purpose of factor analysis is to derive from the data “easily interpretable common factors.”

• However, the results from the initial analysis are difficult to interpret.

• More easily interpretable factors, call **Rotated Factors**, can be obtained through a process called factor ration.

• The goal of factor ration is to obtain some of the loadings that are very large (near ±1) and the remaining loadings are very small (near 0).

• Additionally, for any given variable we want it to have a high loading for only **one factor**.
• This will allow us to give each factor an interpretation that comes from the variables with which it is highly correlated.

• In class we will discuss only the most common method of factor ration, the **Varimax Rotation**.

• Any new rotation results in “new axes” that go through or near clusters of responses that represent the response variable.

• In the Varimax Rotation, the new axes must be perpendicular to each other. This makes axes orthogonal or independent of each other.

• The figure below shows the Varimax Rotation where the axis for Factor 1 was rotated down to be near the variables \(x_3, x_4, \) and \(x_5\); and Factor 2 was rotated to the right to be near variables \(x_1\) and \(x_2\).

• The results show that variable \(x_1\) and \(x_2\) have high loadings on rotated Factor 2 and variables \(x_3, x_4, \) and \(x_5\) have high loadings on rotated variable 1.
• The table below shows the new loadings based on the Varimax Rotation.

 o Note that the communality values before and after the rotation were not changed.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor loadings</th>
<th>Communality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F_1</td>
<td>F_2</td>
</tr>
<tr>
<td>x_1</td>
<td>0.063</td>
<td>0.869</td>
</tr>
<tr>
<td>x_2</td>
<td>0.112</td>
<td>0.862</td>
</tr>
<tr>
<td>x_3</td>
<td>0.546</td>
<td>0.003</td>
</tr>
<tr>
<td>x_4</td>
<td>0.972</td>
<td>0.070</td>
</tr>
<tr>
<td>x_5</td>
<td>0.951</td>
<td>0.251</td>
</tr>
</tbody>
</table>

Variance explained: 2.164
Percentage: 43.3

Assigning Factor Scores

• It may be a goal of your research to determine the value each individual has for each factor.

• The simplest was is to add together the loads of the respective.

 o For example, to determine the value for Factor 1 for each variable, you would add together the values for x_3, x_4, and x_5 = ($0.546 + 0.972 + 0.951$) = 2.469.

 o To determine the value for Factor 2 for each variable, you would add together the values for x_1 and x_2 = ($0.869 + 0.862$) = 1.731.

 o There are many more ways to assign factor scores than this simple method described above, including methods that involve regression. You should consult with a statistician if you want to consider a more complicated method of reporting factor scores.

SAS Example

• This example analyzes socioeconomic data from 12 different neighborhoods in the Los Angeles area. The five variables represent total population (Population), median school years (School), total employment (Employment), miscellaneous professional services (Services), and median house value (HouseValue). **Our goal in the factor analysis is to determine if like variables can be grouped into factors and to determine a name that describes the type of data in each factor.**
SAS Commands

```sas
data SocioEconomics;
  input Population School Employment Services HouseValue;
  datalines;
  5700 12.8 2500 270 25000
  1000 10.9 600 10 10000
  3400 8.8 1000 10 9000
  3800 13.6 1700 140 25000
  4000 12.8 1600 140 25000
  8200 8.3 2600 60 12000
  1200 11.4 400 10 16000
  9100 11.5 3300 60 14000
  9900 12.5 3400 180 18000
  9600 13.7 3600 390 25000
  9600 9.6 3300 80 12000
  9400 11.4 4000 100 13000
  ;
ods graphics on;
ods rtf file='factor.rtf';
proc corr;
title 'Simple Linear Correlation Results';
run;
proc factor data=SocioEconomics
  rotate=varimax
  outstat=fact_all
  plots=(scree initloadings preloadings loadings);
title 'Factor Analysis';
run;
ods graphics off;
ods rtf close;
```

Simple Linear Correlation Results

The CORR Procedure

5 Variables: Population School Employment Services HouseValue

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>12</td>
<td>6242</td>
<td>3440</td>
<td>74900</td>
<td>1000</td>
<td>9900</td>
</tr>
<tr>
<td>School</td>
<td>12</td>
<td>1144167</td>
<td>1.78654</td>
<td>137.30000</td>
<td>8.30000</td>
<td>13.70000</td>
</tr>
<tr>
<td>Employment</td>
<td>12</td>
<td>2333</td>
<td>1241</td>
<td>28000</td>
<td>400.00000</td>
<td>4000</td>
</tr>
<tr>
<td>Services</td>
<td>12</td>
<td>120.83333</td>
<td>114.92751</td>
<td>1450</td>
<td>10.00000</td>
<td>390.00000</td>
</tr>
<tr>
<td>HouseValue</td>
<td>12</td>
<td>17000</td>
<td>6368</td>
<td>204000</td>
<td>9000</td>
<td>25000</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 12
Prob > |r| under H0: Rho=0

<table>
<thead>
<tr>
<th></th>
<th>Population</th>
<th>School</th>
<th>Employment</th>
<th>Services</th>
<th>HouseValue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>1.00000</td>
<td>0.00975</td>
<td>0.9760</td>
<td>0.043887</td>
<td>0.02241</td>
</tr>
<tr>
<td>School</td>
<td>0.00975</td>
<td>1.00000</td>
<td>0.15428</td>
<td>0.69141</td>
<td>0.86307</td>
</tr>
<tr>
<td>Employment</td>
<td>0.97245</td>
<td>0.15428</td>
<td>1.00000</td>
<td>0.51472</td>
<td>0.12193</td>
</tr>
<tr>
<td>Services</td>
<td>0.43887</td>
<td>0.69141</td>
<td>0.51472</td>
<td>1.00000</td>
<td>0.77765</td>
</tr>
<tr>
<td>HouseValue</td>
<td>0.02241</td>
<td>0.86307</td>
<td>0.12193</td>
<td>0.77765</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

We will see in the Factor Analysis results that these two groups will be divided between the two Factors in a similar manner.
Example of Factor Analysis

The FACTOR Procedure

<table>
<thead>
<tr>
<th>Input Data Type</th>
<th>Raw Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Records Read</td>
<td>12</td>
</tr>
<tr>
<td>Number of Records Used</td>
<td>12</td>
</tr>
<tr>
<td>N for Significance Tests</td>
<td>12</td>
</tr>
</tbody>
</table>
Example of Factor Analysis

The FACTOR Procedure
Initial Factor Method: Principal Components

Prior Communalities Estimates: ONE

<table>
<thead>
<tr>
<th>Eigenvalue</th>
<th>Difference</th>
<th>Proportion</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2.87331359</td>
<td>1.07665350</td>
<td>0.5747</td>
<td>0.5747</td>
</tr>
<tr>
<td>2 1.79666009</td>
<td>1.58182321</td>
<td>0.3593</td>
<td>0.9340</td>
</tr>
<tr>
<td>3 0.21483689</td>
<td>0.11490283</td>
<td>0.0430</td>
<td>0.9770</td>
</tr>
<tr>
<td>4 0.09993405</td>
<td>0.08467868</td>
<td>0.0200</td>
<td>0.9969</td>
</tr>
<tr>
<td>5 0.01525537</td>
<td>0.0031</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

2 factors will be retained by the MINEIGEN criterion.

By default, SAS determined the number of factors (m) based on the number of Eigenvalues >1.0.

The results shown in the scree plot agree that the number of factors should be 2. There is a sharp dropoff stops between 2 and 3 factors; thus, m should be 2.
Example of Factor Analysis

The FACTOR Procedure

Initial Factor Method: Principal Components

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>0.58096</td>
<td>0.80642</td>
</tr>
<tr>
<td>School</td>
<td>0.76704</td>
<td>-0.54476</td>
</tr>
<tr>
<td>Employment</td>
<td>0.67243</td>
<td>0.72605</td>
</tr>
<tr>
<td>Services</td>
<td>0.93239</td>
<td>-0.10431</td>
</tr>
<tr>
<td>HouseValue</td>
<td>0.79116</td>
<td>-0.55818</td>
</tr>
</tbody>
</table>

The loading of the variable population on Factor 1 is 0.58096 and the loading of population on Factor 2 is 0.80642.

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2.8733136</td>
<td></td>
</tr>
<tr>
<td>School</td>
<td></td>
<td>1.7966601</td>
</tr>
</tbody>
</table>

Variance Explained by Each Factor

<table>
<thead>
<tr>
<th>Final Communality Estimates: Total = 4.669974</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>0.98782629</td>
</tr>
</tbody>
</table>

The sum of the Communality Estimates (4.669974) equals the sum of the variances explained by each factor.
Example of Factor Analysis

The FACTOR Procedure
Initial Factor Method: Principal Components

Initial Factor Pattern

Factor 1 (61.53%)

Factor 2 (38.47%)

Population
Employment
Services
School
HouseValue
Example of Factor Analysis

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.82069</td>
<td>0.57137</td>
</tr>
<tr>
<td>2</td>
<td>-0.57137</td>
<td>0.82069</td>
</tr>
</tbody>
</table>

Rotated Factor Pattern

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>0.01602</td>
<td>0.99377</td>
</tr>
<tr>
<td>School</td>
<td>0.94076</td>
<td>-0.00882</td>
</tr>
<tr>
<td>Employment</td>
<td>0.13702</td>
<td>0.98007</td>
</tr>
<tr>
<td>Services</td>
<td>0.82481</td>
<td>0.44714</td>
</tr>
<tr>
<td>HouseValue</td>
<td>0.96823</td>
<td>-0.00605</td>
</tr>
</tbody>
</table>

The loadings of School, Services, and Home Value approach 1.0 for Factor 1.
The loading of Population and Employment approach 1.0 for Factor 2.

Variance Explained by Each Factor

<table>
<thead>
<tr>
<th></th>
<th>Factor1</th>
<th>Factor2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5218278</td>
<td>2.1481459</td>
</tr>
</tbody>
</table>

Final Communality Estimates: Total = 4.669974

<table>
<thead>
<tr>
<th></th>
<th>Population</th>
<th>School</th>
<th>Employment</th>
<th>Services</th>
<th>HouseValue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.98782629</td>
<td>0.88510555</td>
<td>0.97930583</td>
<td>0.88023562</td>
<td>0.93750041</td>
</tr>
</tbody>
</table>
Example of Factor Analysis

The FACTOR Procedure
Rotation Method:
Varimax

In the Varimax Rotation, the axis for Factor 1 was rotated to be near the variables Home Value, School, and Services.

The axis for Factor 2 was rotated so it was near the variables Population and Employment.
SAS Example #2 – Malt Quality Dataset

- SAS commands

```sas
options pageno=1;
data malt;
input Plump Protein Extract amylase DP kolbach Solprot Color FAN Betagluc Viscosity Fructose Glucose Maltose Maltotriose;
datalines;
93.75 12.8 77.9 79.2 152.9 47.35 6.06 2.15 309.4 214.4 1.465 0.0945
1.05 4.105 0.99
95.1 12.7 76.95 78.95 142.4 50.15 6.36 2.4 380.95 261.95 1.465 0.21
1.08 3.895 0.97
95.75 13 77.35 76.95 152.7 48.15 6.24 2.4 318.75 202.05 1.45 0.127
1.04 3.765 0.955
94.2 12.55 78.25 59.65 143.05 45.1 5.665 2.35 361.1 187.6 1.45 0
0.965 3.97 0.92
92.8 11.75 78.6 67 136.9 52.5 6.16 2.9 323.55 173.75 1.455 0
1.18 4.005 0.97
93.45 11.8 78.25 67.95 146.25 40.6 4.835 2.25 281.5 165.4 1.495 0
1.165 4.13 0.95
95.3 12.45 77.35 71.4 176.2 45.75 5.685 2 291.8 256.35 1.515 0
0.975 4.26 0.905
```

```sas
ods graphics on;
ods rtf file="malt.rtf";
proc factor data=malt (drop=fan color fructose) nfactors=4
   rotate=varimax
   outstat=fact_all
   plots=(scree);
run;
ods graphics off;
ods rtf close;
```

From previous research I know there should be around 3-4 factors, so I set the number of factors in the problem using the statement `nfactors=4`.

In previous Factor Analyses not shown, I found that the variables fan, color, and fructose did not have suitably high loadings under any factor; thus, I decided to drop them from the analysis using the statement `drop=fan color fructose`.
Annotated Factor Analysis Results of Malt Quality

The FACTOR Procedure

Initial Factor Method: Principal Components

<table>
<thead>
<tr>
<th>Variable</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plump</td>
<td>0.07015</td>
<td>0.09034</td>
<td>0.75794</td>
<td>-0.02017</td>
</tr>
<tr>
<td>Protein</td>
<td>-0.14630</td>
<td>-0.12427</td>
<td>0.74034</td>
<td>-0.21885</td>
</tr>
<tr>
<td>Extract</td>
<td>-0.14320</td>
<td>0.07922</td>
<td>-0.19461</td>
<td>0.79213</td>
</tr>
<tr>
<td>amylase</td>
<td>0.26145</td>
<td>0.51283</td>
<td>0.41304</td>
<td>0.27047</td>
</tr>
<tr>
<td>DP</td>
<td>0.74436</td>
<td>-0.27137</td>
<td>0.23601</td>
<td>-0.05951</td>
</tr>
<tr>
<td>kolkabch</td>
<td>-0.19988</td>
<td>0.90558</td>
<td>-0.20511</td>
<td>0.00248</td>
</tr>
<tr>
<td>Solprot</td>
<td>-0.26440</td>
<td>0.85055</td>
<td>0.09226</td>
<td>-0.09086</td>
</tr>
<tr>
<td>Betagluc</td>
<td>0.24412</td>
<td>0.00193</td>
<td>0.39887</td>
<td>-0.63790</td>
</tr>
<tr>
<td>Viscosity</td>
<td>-0.18566</td>
<td>0.16246</td>
<td>-0.39213</td>
<td>-0.63018</td>
</tr>
<tr>
<td>Glucose</td>
<td>-0.46115</td>
<td>0.30579</td>
<td>0.01205</td>
<td>0.35885</td>
</tr>
<tr>
<td>Maltose</td>
<td>0.78462</td>
<td>0.01755</td>
<td>-0.30906</td>
<td>-0.03710</td>
</tr>
<tr>
<td>Maltotriose</td>
<td>-0.78335</td>
<td>0.09846</td>
<td>-0.10501</td>
<td>0.04035</td>
</tr>
</tbody>
</table>

The highlighted values represent the highest loads for each variable.

From previous work, I know the four Factors do represent general trait classifications.

Factor 1 = Traits associated with starch hydrolysis.

Factor 2 = Traits associated with protein modification.

Factor 3 = Traits associated with kernel plumpness.

Factor 4 = Traits associated with malt extract.
Precautions or Considerations When Using Factor Analysis

- The original sample should reflect the target population.

- Outliers should be screened for and linearity among the variables should be checked.

- Do not necessarily choose the default number of factors provided by the statistics program. Make sure that they make sense to you as classifying factors.

- Factor Analysis is an exploratory tool available to the researcher. Be careful that you don’t use Factor Analysis in place of sound theoretical arguments. The Factor Analysis should be used to corroborate theory, not replace it.