1. The structure of synapses is best viewed with a(n):
 __ A. electron microscope.
 __ B. light microscope.
 __ C. confocal microscope.
 __ D. nissle-stained microscopic procedure.

 Rationale: p.155

2. Electron microscopy is a useful tool in the study of synaptic morphology. The resolution of an electron microscope is much greater than that of a light microscope because:
 __ A. smaller electron waves scatter less than light waves.
 __ B. light waves scatter less than electron waves.
 __ C. larger electron waves scatter more than light waves.
 __ D. larger light waves scatter in similar patterns as electron waves.

 Rationale: p.155

3. The contents of a synaptic vesicle include:
 __ A. neurotransmitters.
 __ B. structural proteins.
 __ C. DNA.
 __ D. all of the above.

 Rationale: p.157

4. Which of the following are characteristic of the postsynaptic membrane?
 __ A. thickened appearance
 __ B. receptor proteins
 __ C. synaptic vesicles
 __ D. all of the above
 __ E. a and b

 Rationale: p.157
5. Precursor chemicals that form the building blocks for neurotransmitters are absorbed from the:
 __ A. mitochondria.
 __ B. blood.
 __ C. cell nucleus.
 __ D. Golgi apparatus.

Rationale:
p.158

6. Which of the following would not be found at the axon terminals?
 __ A. mitochondria
 __ B. cell membrane
 __ C. synaptic vesicles
 __ D. axon hillock

Rationale:
p.158

7. Voltage-gated calcium ion channels that function in neurotransmission are primarily found on the:
 __ A. postsynaptic membrane.
 __ B. presynaptic membrane.
 __ C. synaptic vesicles.
 __ D. dendrites.

Rationale:
p.159

8. Immediately before neurotransmission, calcium ions entering the presynaptic membrane bind to:
 __ A. calcitonin.
 __ B. calmodulin.
 __ C. calretenin.
 __ D. calpactin.

Rationale:
p.159

9. Synaptic vesicles release neurotransmitters through the process of:
 __ A. endocytosis.
 __ B. pinocytosis.
 __ C. exocytosis.
 __ D. phagocytosis.

Rationale:
p.159
10. When a neurotransmitter diffuses across the synaptic cleft and binds to a transmitter-activated receptor, which of the following occurs in the postsynaptic cell?
 __ A. membrane depolarization
 __ B. membrane hyperpolarization
 __ C. initiation of chemical reactions
 __ D. all of the above
 __ E. a and b only

Rationale: p.160

11. For an action potential to be elicited:
 __ A. one quantum of neurotransmitter must be released from the presynaptic cell.
 __ B. multiple quanta of neurotransmitter must be released from the presynaptic cell.
 __ C. calcium ions must enter the postsynaptic cell.
 __ D. a and c.

Rationale: p.160

12. How is a neurotransmitter removed from the synaptic cleft?
 __ A. diffusion
 __ B. enzymatic degradation
 __ C. uptake by surrounding glial cells
 __ D. all of the above
 __ E. a and b

Rationale: p.160

13. Hormones are diffusely released to the rest of the body via:
 __ A. axodendritic synapses.
 __ B. axosomatic synapses.
 __ C. axosecretory synapses.
 __ D. axoaxonic synapses.

Rationale: p.161
14. Which of the following best characterizes type I and/or type II synapses?
 __ A. Type I synapses are excitatory and have round synaptic vesicles.
 __ B. Type II synapses are inhibitory and have a greater postsynaptic density than type I synapses.
 __ C. Type I synapses are inhibitory and have larger active zones than type II synapses.
 __ D. Type II synapses are excitatory and have flattened synaptic vesicles.

Rationale: p.162

15. Which of the following is not a classification type of neurotransmitters?
 __ A. small-molecule
 __ B. nucleic-acid
 __ C. gas
 __ D. peptide

Rationale: p.165

16. Small-molecule neurotransmitters are:
 __ A. synthesized in the soma and packaged in the terminals.
 __ B. synthesized in the terminals and packaged in the soma.
 __ C. synthesized in the soma and packaged in the soma.
 __ D. synthesized in the terminals and packaged in the terminals.

Rationale: p.165

17. Which of the following is not part of the amine subtype of small-molecule neurotransmitters?
 __ A. dopamine
 __ B. glycine
 __ C. serotonin
 __ D. norepinephrine

Rationale: p.166

18. Which of the following is not an amino acid neurotransmitter?
 __ A. dopamine
 __ B. glutamate
 __ C. histamine
 __ D. GABA

Rationale: p.166
19. Which two neurotransmitters are synthesized from the same precursor molecule?
 __ A. glycine and dopamine
 __ B. glutamate and GABA
 __ C. histamine and serotonin
 __ D. acetylcholine and glycine

Rationale:
 p.166

20. What is the predominant inhibitory neurotransmitter in the spinal cord?
 __ A. GABA
 __ B. glutamate
 __ C. glycine
 __ D. histamine

Rationale:
 p.166

21. Which of the following shows the correct sequence of a biochemical pathway in tyrosine-based neurotransmitters?
 __ A. tyrosine, l-dopa, DA, NE, EP
 __ B. tyrosine, NE, EP, l-dopa, DA
 __ C. tyrosine, EP, NE, l-dopa, DA
 __ D. tyrosine, l-dopa, DA, EP, NE

Rationale:
 p.166

22. Type I synapses are found on the ________, while type II synapses are found on the ________.
 __ A. spines and dendritic shafts of the neuron; neuron cell body
 __ B. neuron cell body; spines and dendritic shafts of the neuron
 __ C. axons and axon terminals; neuron cell body
 __ D. neuron cell body; axons and axon terminals

Rationale:
 p.162
23. Which of the following presynaptic events are in correct chronological order?
 __ A. calcium ion influx, action potential reaches axon terminal, vesicle fuses with membrane, diffusion of neurotransmitter
 __ B. action potential reaches axon terminal, calcium ion channels open, exocytosis, diffusion of neurotransmitter
 __ C. exocytosis, calcium ion influx, action potential reaches axon terminal, membrane depolarization
 __ D. action potential reaches axon terminal, calcium ion channels open, neurotransmitter diffusion, exocytosis

 Rationale:
 p.159

24. The active zone on type I synapses is ________ when compared to the active zone on type II synapses.
 __ A. smaller
 __ B. larger
 __ C. the same size
 __ D. of varying size

 Rationale:
 p.162

25. Which of the following criteria are used to determine if a substance is a neurotransmitter?
 I. The chemical must be synthesized in the neuron.
 II. When the neuron is active, the chemical is released and produces a response.
 III. Injection of the chemical mimics the effects of neuronal stimulation.
 IV. Mechanisms exist for the removal of the chemical.

 __ A. II, III, IV
 __ B. I, II, III, IV
 __ C. II and IV only
 __ D. I, II, III

 Rationale:
 pp.163-164

26. A chemical that has not yet met all the conditions that constitute a neurotransmitter is referred to as a(n):

 __ A. chemical signaler.
 __ B. secondary messenger.
 __ C. putative neurotransmitter.
 __ D. unclassified neurotransmitter.

 Rationale:
 p.164
27. A neurotransmitter is a chemical that is involved with:
 __ A. synaptic transmission.
 __ B. inducing changes to synaptic structure.
 __ C. affecting the voltage on the postsynaptic cell.
 __ D. all of the above.
 __ E. a and c.

 Rationale: pp.164-165

28. In the nervous system peptides play a role in:
 __ A. regulating feeding and drinking behavior.
 __ B. hormonal functions.
 __ C. pain and pleasure regulation.
 __ D. all of the above.
 __ E. a and b.

 Rationale: p.167

29. Which one of the following synthesizes acetylcholine from its component molecules?
 __ A. acetylcholinesterase
 __ B. choline acetyl transferase
 __ C. coenzyme A
 __ D. acetate and choline

 Rationale: pp.165-166

30. Met-enkephalin, leu-enkephalin, and beta-endorphin are endogenous neuropeptides whose function is mimicked by:
 __ A. opium.
 __ B. dopamine.
 __ C. morphine.
 __ D. all of the above.
 __ E. a and c.

 Rationale: p.167
31. Unlike small-molecule neurotransmitters, peptide transmitters:
 __ A. do not bind directly to ion channels.
 __ B. directly alter the voltage of the postsynaptic cell.
 __ C. indirectly influence cell structure and function.
 __ D. all of the above.
 __ E. a and c.

 Rationale: p.167

32. Nitric oxide (NO) is a gas neurotransmitter which:
 __ A. is stored in synaptic vesicles.
 __ B. is synthesized in the soma.
 __ C. dilates blood vessels in active areas.
 __ D. is degraded by digestive enzymes.

 Rationale: p.167

33. Ionotropic receptors:
 __ A. change in shape when neurotransmitters bind to them.
 __ B. have no openings for ion diffusion.
 __ C. activate second messenger systems.
 __ D. are more metabolically expensive than metabotropic receptors.

 Rationale: pp.167-169

34. Metabotropic receptors consist of:
 __ A. complex units of membrane-spanning proteins.
 __ B. a single membrane-spanning protein.
 __ C. a single, non-membrane-spanning protein.
 __ D. complex units of non-membrane-spanning proteins.

 Rationale: p.169

35. Ionotropic receptors consist of:
 __ A. a binding site.
 __ B. a pore.
 __ C. G proteins.
 __ D. all of the above.
 __ E. a and b.

 Rationale: p.167
36. A second messenger system can:
 __ A. alter ion flow through the membrane channels.
 __ B. cause a series of reactions that result in the formation of new membrane ion channels.
 __ C. initiate the production of new proteins.
 __ D. all of the above.
 __ E. a and c.

Rationale:
 p.170

37. What chemical represents the "first messenger"?
 __ A. G proteins
 __ B. alpha subunits
 __ C. neurotransmitters
 __ D. sodium ions

Rationale:
 p.170

38. The thought that an individual neuron releases only one type of neurotransmitter is known as ______ and is _______.
 __ A. Dale's law; true
 __ B. Dale's law; false
 __ C. Hebb's law; true
 __ D. Hebb's law; false

Rationale:
 p.170

39. Within a synapse, it is possible to find:
 __ A. a classical neurotransmitter and a neuropeptide.
 __ B. two types of classical neurotransmitters.
 __ C. only one type of classical neurotransmitter.
 __ D. all of the above.
 __ E. a and c.

Rationale:
 pp.166-167
40. Acetylcholine is the classical neurotransmitter for:
 __ A. all skeletal motor synapses.
 __ B. 95 percent of skeletal motor synapses.
 __ C. half of skeletal motor synapses.
 __ D. no skeletal motor synapses.

Rationale:
 p.171

41. The nicotinic acetylcholine receptor (nAChr) is:
 __ A. ionotropic.
 __ B. found in all skeletal motor synapses.
 __ C. permissive to the diffusion of both sodium ions and potassium ions.
 __ D. all of the above.
 __ E. a and b.

Rationale:
 p.171

42. Sympathetic neurons are _______ while parasympathetic neurons are ________.
 __ A. only cholinergic; cholinergic and adrenergic
 __ B. cholinergic and adrenergic; only cholinergic
 __ C. adrenergic; cholinergic
 __ D. cholinergic; adrenergic

Rationale:
 p.172

43. Whether a neurotransmitter has an excitatory or inhibitory effect depends on:
 __ A. the particular neurotransmitter.
 __ B. the postsynaptic receptors.
 __ C. if it's a fight or flight response.
 __ D. the organism's current state of arousal.

Rationale:
 p.172

44. NMDA receptors are:
 __ A. reversibly blocked with a magnesium ion.
 __ B. involved with long-term enhancement (LTE).
 __ C. "doubly gated channels."
 __ D. all of the above.
 __ E. b and c.

Rationale:
 pp.181-182
45. Regarding structural changes in sensory neurons, habituation results in ______ with the motor neuron, and sensitization results in ______ with the motor neuron.

 __ A. an increased number of synapses; a decreased number of synapses
 __ B. no change in number of synapses; a decreased number of synapses
 __ C. a decreased number of synapses; an increased number of synapses
 __ D. a decreased or increased number of synapses; no change in the number of synapses

Rationale:
pp.178-180