Introduction

Visual literacy - the ability to comprehend and communicate using images is one of the vital skills needed to become a good scientist or researcher. There are national calls for instructors to explicitly teach visualization skills to help students develop their visual literacy.¹

Hypothesis: We predict that if Bloom's taxonomy is indeed hierarchical, students who perform well on HOCs questions will perform equally well on LOCS questions.

Methods

1. Bloomed and organized into visualization types
2. Student performance data for each visualization question
3. Analyzed in Excel

Variable	**Definition**
AvgHOCs | Total points on (overall, unit 2 and unit 3) HOCs visualization questions divided by the total points possible on all HOCs visualization questions
AvgLOCS | Total points on (overall, unit 2 and unit 3) LOCS visualization questions divided by the total points possible on all LOCS visualization questions

Relevant Performance Variables

Results

- BIOC 460 assesses at all Bloom's levels, but predominately at the lower three levels.
- Majority of visualization-based assessment items make use of symbolic and schematic representations.
- Analysis level visualization items mainly utilize graphs.

Discussion and Further Directions

- Future work will be done to further examine whether Bloom's taxonomy is a useful framework for assessing visualization skills.

Select References

Acknowledgements

Funding for this project was provided by the National Science Foundation (NSF-091156974) and NSF-DRFP (NSF-OCE-1016639). We thank Shannon Anderson and Andrew Calascione for their advice and feedback.

1. The University of North Carolina at Greensboro; ²Dept. of Chemistry & Biochemistry, NDSU; ³Dept. of Biological Sciences, NDSU