INTRODUCTION

IPLS: Introductory Physics for the Life Sciences

Physics courses designed for undergraduates with the intention of pursuing research in the life sciences, or of pursuing medicine and other health fields.1

→ ILPLS courses are intended to foster competency and understanding of relevant physics knowledge for life science students.

→ IPLS courses are distinct and better suited to this demographic than the standard of either calculus-based or algebra-based physics courses.

In contrast to traditional physics classes, IPLS courses have content that is immediately relevant to life science students.

Rubric Development:

Applications and are essential to a Table 1. Selection of topic emphasis in an IPLS course.

Table 1. Selection of topic relevant to life science that is immediately

<table>
<thead>
<tr>
<th>Topic</th>
<th>Emphasized</th>
<th>De-emphasized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Physics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebra-Based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics & Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus-Based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetism</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Selection of course topics.

For departments offering IPLS courses, there’s currently no standard for what constitutes an ideal course. Curriculum developers and instructors would be best served with a metric by which to compare the authentic biological material of their course with other IPLS courses.

Biological Authenticity

We’re interested biological authenticity—wherein solving physics problems contextualized to biology results in a deeper understanding of the biological system.

Research Question

To what extent can a rubric interpret the authenticity of content in an Introductory Physics for the Life Science course?

METHODS

Our rubric will identify biologically authentic content across multiple courses and determine the proportion of context-content agreement. The intention is to differentiate between superficial & authentic, not the best fit of IPLS course content.

Rubric Development:

→ Redish et al., established question categories2, but these alone were insufficient.

→ Inductive analysis was used to determine emergent categories, and then the coding rubric was used to differentiate between question context, type, and content.

→ Multiple coders from diverse backgrounds were used to determine IRR.

Course materials from two different universities were analyzed:

- Biomedical Physics, from Portland State University
- NEXUS Physics, from University of Maryland

RESULTS

"Biomed. Physics": IMLS Physics Course, PSU

"NEXUS": IMLS Physics Course, U.Md.

Graphs representing the context, cognitive task, and authenticity of material from the ‘Fluids’ module. Material analyzed consisted of pre-lecture questions, checkpoint questions, and homework questions; designed for flipped classroom.

DISCUSSION

The majority of the context for the analyzed sections were some sort of biology-based (78% Biomedical, 53% NEXUS).

Most questions were consistent between context and content (85% Biomedical, 80% NEXUS), with fewer questions being superficial (10% Biomedical, 8% NEXUS).

However, the proportion of questions that were physically valid and biologically relevant was low (5% Biomedical, 12% NEXUS). Ideally, an IPLS course would have a higher percentage of authentic questions – allowing students to use physics skills to make sense of biological phenomena.

The difficulty in creating a rubric to assess the authenticity of course context with content is compounded by the range of life science student backgrounds and course strategies.

FUTURE DIRECTIONS

→ Currently: Applying our rubric to Catherine Crouch’s IPLS course material, assessing the Fluid Dynamics module.

→ Planned: Apply our rubric to a variety of other IPLS courses from other instructors, incorporating modifications as needed.

Ultimate Goal: Robust rubric that can effectively capture the authentic content of IPLS courses and be utilized as a tool for researchers and curriculum developers.

ACKNOWLEDGEMENTS

Material based on work supported by NSF DUE 1560142. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.

REFERENCES

NEXUS Physics, University of Maryland

Focus: Cellular Biology – Atoms, Molecules, and Chemical Energy

Motivation: Students who complete this course will appreciate physics as relevant to their current academic studies, and to their future careers in research or medicine.

Course: Encourages the development of strong scientific skills, such as modeling, experimental design and analysis, and the representation of physical relationships in multiple forms.