Introduction

- Develop Human Error Abstraction Training
- Evaluate participants ability to perform the most basic error abstraction (Planning vs. Execution errors)
- Improve training for error abstraction

Goals

- Develop Human Error Abstraction Training
- Evaluate participants ability to perform the most basic error abstraction (Planning vs. Execution errors)
- Improve training for error abstraction

Study Design

Participants

- 26 Graduate-Level Computer Science Students from North Dakota State University

Step 1 (Training) - Video Lesson on Human Error Abstraction

Step 2 (Pre-test) - Abstract Errors from 5 Real Software Faults [with feedback]

Step 3 (Post-test) - Abstract Errors from 15 Real Software Faults [no feedback]

Step 4 (Survey) - Feedback on Training and Error Abstraction Performance

Results

- Average subject performance on post-test was 58%, with a Standard Deviation of 11%
- Students’ performance on Pre-test is Positively Correlated (Coefficient of 0.201) with their performance during the post-test ($p = 0.162$).

Discussion

- Pre-test performance though correlated, can not be used to predict their performance on post-test
- While subjects exhibited 58% accuracy (lower than expected) during the error abstraction, they rated the training instrument effective (Mean = 5.769, Std. Dev = 0.815)
- Planning errors were harder to identify when compared to the execution errors especially during retrospective analysis (after-the-fact)
- The highest frequency of suggestions to improve the training were to increase the number of examples in the training
- Participants also highly rated their understanding of human errors (Mean = 5.731, Std. Dev = 0.827)
- The accuracy between error types was 55% for planning errors; 64% for execution errors. This result is similar to findings in psychology literature
- This study is an exploratory one, and further research should be done to explore different tangents of training that may have and effect
- We plan to add more examples and practice faults in the training video, as well as evaluate improvements in future studies

References

Acknowledgements

- Material based on work supported by NSF DUE 1560142 and DUE 1852045. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF.
- Thank you to the CiDER REU Faculty and Cohort!