Analyzing Student Reflection

By Alistair McInerny, Mila Kryjevskaia, and Andrew Boudreaux

Background:
Metacognition, or “thinking about thinking”, is a skill which has been shown to directly relate to expert learning. Reflective activities have been incorporated into the introductory physics labs at Western Washington University in an attempt to encourage the development of metacognitive skills in students. Analysis of both the existence and growth of these skills has provided insights into (1) the difficulties of the task itself, (2) possible approaches to alleviate these difficulties, and (3) the impact of the ongoing research efforts.

Getting Students to Reflect: The Narrative Reflection

- Introductory physics labs at WWU require students to complete a prelab (designed to expose students’ initial ideas), work through the lab, correct and annotate their prelab, complete a homework assignment, write a report about a challenging “synthesis” problem, and write a Narrative Reflection.
- The Narrative Reflection requires students to respond to a prompt which asks them to discuss what they learned in lab and why their thinking has changed, and to analyze why, when, and where, these changes occurred. The prompt for this activity might change from one quarter to the next, in an attempt to better help students improve their understanding.
- The kinematics labs prompt is very structured, to help students develop reflection technique, whereas in the E&M lab the prompt is much less structured, allowing students to adapt their technique into something more personal. Student prelabs and Narrative Reflections are scanned each week so they can be analyzed.
- Metacognitive Elements Rubric (MER) is used to analyze qualitative student work by cataloguing student responses as a quantitative list of metacognitive actions.

The Metacognitive Elements Rubric

- The current work involved analysis of a variety of interesting data sets. Data interpretation allowed us to assess strengths and weaknesses of the rubric and Narrative Reflection activity. Fig 2-5 represent a small fraction of the many different interpretations and uses that data of this form allows.

Proof of Concept

New Methodology

Application of MER & analysis of student performance on related post-test questions
- Research question: If a prelab question and final exam question are very similar, then how does a students’ performance on the prelab and lab annotation relate to their score on the final?
- 71 Students from 5 different lab sections were organized according to their performance on prelab, annotated prelab, homework, and final exam question

Conclusion & Future Work

The current work involved analysis of a variety of interesting data sets. Data interpretation allowed us to assess strengths and weaknesses of the rubric and Narrative Reflection activity. Fig 2-5 represent a small fraction of the many different interpretations and uses that data of this form allows.

• Mciner@students.wwu.edu
• Mila.Kryjevskaia@ndsud.edu
• Andrew.Boudreaux@wwu.edu

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Number of Codes Vs. FCI Gains

Data interpretation:
- Students who corrected their initial ideas (i.e., WCC) were more likely to answer the test question correctly than students who “knew” the material before the prelab (i.e., CCC)
- Students who were completely wrong on the prelab (WWW) were even more likely to answer the final correctly.
- Limitations: A large number of variable (e.g., lecture instruction) and small N for some categories (e.g., WWW)

Conclusion & Future Work

The current work involved analysis of a variety of interesting data sets. Data interpretation allowed us to assess strengths and weaknesses of the rubric and Narrative Reflection activity. Fig 2-5 represent a small fraction of the many different interpretations and uses that data of this form allows.

• Mciner@students.wwu.edu
• Mila.Kryjevskaia@ndsud.edu
• Andrew.Boudreaux@wwu.edu

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.