Bromate formation control by enhanced ozonation: A critical review

Ruchi Joshi, Thunyalux Ratpukdi, Kristofer Knutson, Amit Bhatnagar & Eakalak Khan

To cite this article: Ruchi Joshi, Thunyalux Ratpukdi, Kristofer Knutson, Amit Bhatnagar & Eakalak Khan (2020): Bromate formation control by enhanced ozonation: A critical review, Critical Reviews in Environmental Science and Technology, DOI: 10.1080/10643389.2020.1850169

To link to this article: https://doi.org/10.1080/10643389.2020.1850169

Published online: 30 Nov 2020.
Bromate formation control by enhanced ozonation: A critical review

Ruchi Joshi, Thunyalux Ratpukdi, Kristofer Knutson, Amit Bhatnagar, and Eakalak Khan

Environmental and Conservation Sciences Program, North Dakota State University, Fargo, North Dakota, USA; Department of Environmental Engineering and Research Center for Environmental and Hazardous Substance Management, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand; Apex Engineering Group, Inc, Fargo, North Dakota, USA; Department of Separation Science, LUT School of Engineering Science, LUT University, Mikkeli, Finland; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Nevada, USA

ABSTRACT

In the past two decades, ozone-based advanced oxidation processes, known as enhanced ozonation processes (EOPs), have been extensively investigated for the removal of emerging organic contaminants in water, such as pesticides, endocrine-disrupting compounds, and pharmaceuticals. EOPs offer an advantage by producing highly oxidizing radicals, such as hydroxyl radicals, to oxidize recalcitrant organic compounds. Although the EOPs are able to effectively remove emerging contaminants, several studies reported the formation of bromate, which has drawn significant attention because of its potential carcinogenicity. This issue becomes challenging for the utilization of EOPs on bromide containing water. Therefore, this work critically reviews and summarizes the mechanisms, influencing factors, advantages and disadvantages, and control strategies for bromate formation by four EOPs, i.e., peroxone and e-peroxone, photolytic ozonation, heterogeneous ozonation, and sonolytic ozonation. Various economic and technical characteristics of EOPs were also compared. Mathematical modeling, pilot and full-scale data, and secondary pollutant potential (toxic metals leaching from catalyst) have been identified as knowledge gaps, and future research should seek to address these issues.

Abbreviations:

AMT: amitrole; Br⁻: bromide; Br⁺: bromine radical; BrO: bromine oxide; BrO⁻: hypobromite ion; BrO⁺: bromine oxide radical; BrO₂⁻: bromite; BrO₃⁻: bromate; BrO₅⁻: bromium dioxide; Br₂O: dibromine monoxide; BZA: benzotriazole; CaCO₃: calcium carbonate; Ce(NO₃)₃: cerium nitrate; CeO₂: cerium dioxide; CeₓZr₁₋ₓO₂: cerium-zirconium mixed oxide; Ce-MCM-48: cerium integrated MCM-48 (mobil composition of matter); CD: catalyst dose; DBPs: disinfection by-products; DOC: dissolved organic carbon; DP: diphenyldiamine; e-peroxide: electro-peroxide; Fe(II): ferrous ions; Fe(0): zerolvalent iron; FeOOH: iron (III) oxide-hydroxide; α-FeOOH: goethite; β-FeOOH: akaganeite; γ-FeOOH: lepidocrocite; Fe₂O₃: ferric oxide; GAC: granular activated carbon; HEEB: high-energy electron beam; HA: humic acid; HAAs: haloacetic acids; HBr: hypobromous acid; H₂O₂: hydrogen peroxide; O₃/H₂O₂: peroxone; H₂O₂/UV: hydrogen peroxide/
ultraviolet irradiation; LaFeO$_3$: lanthanum ferric hydroxide; LaCoO$_3$: lanthanum cobalt hydroxide; LDH: layered double hydroxide; MCL: maximum contaminant level; MCM: mobil composition of matter; MIB: methylisoborneol; MnO$_x$/Al$_2$O$_3$: manganese oxide supported on alumina; Mn-MCM-41: MCM-41 modified with manganese; MTBE: methyl tert-butyl ether; nano-TiO$_2$: nano-titanium dioxide; nano-SnO$_2$: nano-tin dioxide; NOM: natural organic matter; NH$_3$-N: ammonium; *OH: hydroxyl radical; O$_3$: ozone; O$_2$: oxygen; OH$^-$/CO$_3^{2-}$: hydroxide; O$_3$/CeO$_2$: ozonation in the presence of cerium dioxide; O$_3$/MgO: ozonation in the presence of magnesium oxide; O$_3$/FeOOH: ozonation in the presence of iron (III) oxide-hydroxide; PMS: peroxymonosulfate; O$_3$/PMS: ozonation in the presence of peroxymonosulfate; PZ: phenazone; Ru(IV): ruthenium; Si/Ce: silica/cerium; SO$_3^{2-}$: sulfite ions; SO$_4^{2-}$: sulfate ion; THMs: trihalomethanes; TOC: total organic carbon; UV: ultraviolet; US: ultrasound; O$_3$/US: sonozone; O$_3$/UV: photolytic ozonation; USEPA: United States Environmental Protection Agency; VUV: vacuum ultraviolet; WHO: World Health Organization; XRD: X-ray powder diffraction; Zr: zirconium; ZrOCl$_2$: zirconyl chloride; 2,4-D: 2,4-dichlorophenoxyacetic acid

KEYWORDS Hydroxyl radical; metal oxides; perozone process

1. Introduction

The ozonation process has long been employed in drinking water treatment facilities. Besides its use for disinfection, ozone (O$_3$) is also applied to remove taste- and odor-causing compounds, and organic and inorganic contaminants. However, for conventional ozonation, due to low hydroxyl radical (*OH) yields from O$_3$ decomposition in water plus the scavenging of *OH by background constituents such as dissolved organic matter and carbonates, relatively high specific O$_3$ doses (≥ 1 mg O$_3$/mg dissolved organic carbon (DOC)) are required to produce sufficient *OH to gain acceptable treatment performance. The high specific O$_3$ doses increase not only the energy demand for water treatment, but also the risk of significant bromate (BrO$_3^-$) formation if the water contains bromide (> 50 μg L$^{-1}$) (Yao et al., 2017).

In addition to the higher O$_3$ dosage requirement and risk involved, the increasing number of emerging contaminants, such as pesticides, endocrine-disrupting compounds, and pharmaceuticals, found in raw water sources has led water utilities and researchers to seek alternative technologies to address this issue. In the past two decades, applications of ozone-based advanced oxidation processes (AOPs) or enhanced ozonation processes (EOPs) for the removal of emerging contaminants have been investigated extensively (Ghanbari et al., 2020; Khan et al., 2020; Wang et al., 2020). EOPs include combinations of ozone with another oxidant (e.g. perozone, O$_3$/H$_2$O$_2$ or O$_3$ + persulfates), light irradiation (e.g. O$_3$/ultraviolet (UV)), ultrasound (US) (e.g. sonozone, O$_3$/US), or catalysts (e.g. catalytic ozonation, O$_3$/solid catalyst) (Lu et al., 2015; Nie et al., 2015; Wang et al., 2014; Wen et al., 2018; Zhao et al., 2013). These processes generate
hydroxyl radicals, and sulfate radicals (generated from O$_3$ + persulfate), which are active oxidative species that are more powerful than molecular ozone (Matilainen & Sillanpää, 2010; Sharma et al., 2018; Wang & Chen, 2020). EOPs have gained significant attention because of their ability to oxidize or completely mineralize recalcitrant organic contaminants, which is not achievable via ozonation alone. Moreover, the potential of retrofitting existing ozonation processes at water treatment facilities makes the use of EOPs a feasible option.

Although EOPs are efficient for the degradation of organic contaminants, undesired by-products are produced, particularly bromate (BrO$_3^-$) from the oxidation processes, thus limiting their applications (von Gunten, 2018). Bromate is a well-known by-product of ozone and ozone-based EOPs. Bromate concentrations ranging from 0.4 to 60 μg L$^{-1}$ were reported in ozonated bromide-containing water (Butler et al., 2005). Since bromate is categorized as a suspected human carcinogenic compound, the maximum contaminant level (MCL) for bromate in drinking water is 10 μg L$^{-1}$ in several countries (Jin et al., 2006; European Economic Commission, 1998; Health Canada, 2016; US EPA, 2006). Therefore, bromate formation is an important aspect to be considered when applying EOPs.

Although several studies have reported the contaminant degradation efficiencies of EOPs, along with inhibition of BrO$_3^-$ formation (Chen et al., 2018; Ikehata, 2019; Khan et al., 2020; Wang et al., 2020; Wang & Bai, 2017; Zhang et al., 2018), there have been studies that were dedicated to investigating BrO$_3^-$ formation under different EOPs (Huang et al., 2016; Li, Lu et al., 2015; Li, Shen et al., 2015; Nie et al., 2013, 2014, 2015; Wang et al., 2016; Wen et al., 2018; Wu et al., 2014; Yang, Dong, Jiang, Wang et al., 2019). A recent peer-reviewed article summarized the occurrence, mechanism, influencing factors, risk assessment, and control strategies in four oxidation processes (ozone, chlorine, sulfate and ferrate-based) involved in BrO$_3^-$ formation (Yang, Dong, Jiang, Wang et al., 2019). However, the bromate formation and control strategies under EOPs including O$_3$/H$_2$O$_2$, O$_3$/UV, and O$_3$/US were only briefly touched on (Yang, Dong, Jiang, Wang et al., 2019). According to the knowledge of the authors, so far no peer-reviewed publication has comprehensively reviewed the inhibition of BrO$_3^-$ formation under the following EOPs:

1. Chemical oxidation (Peroxone or e-peroxone: O$_3$/H$_2$O$_2$, and combined peroxymonosulfate (PMS) and ozone: O$_3$/PMS),
2. Photochemical oxidation (Photolytic ozonation: O$_3$/UV),
3. Heterogeneous catalysis (O$_3$/Solid catalysts), and
This article provides a critical review of different established and emerging EOPs based on data compiled during an extensive literature study. The review aims to derive an understanding of how these different oxidation processes catalyze the prevention of BrO$_3^-$ formation in drinking water. The review summarizes the mechanisms and factors known to influence the inhibition of BrO$_3^-$ formation under different EOPs. Additionally, the efficiencies of EOPs, versus ozonation alone, in controlling the BrO$_3^-$ formation are compared, followed by conclusions and future perspectives.

2. Bromate formation

BrO$_3^-$ can be formed by ozonation and EOPs via different pathways. Typically, bromide (Br$^-$) in water gets oxidized by O$_3$ or •OH and is eventually transformed to BrO$_3^-$ following different pathways (Figure 1) (Galey et al., 2001; Song et al., 1997; Symons & Zheng, 1997). In the past, BrO$_3^-$ formation was proposed to occur via three major pathways: direct, direct-indirect, and indirect-direct (Figure 1). In the first pathway, the direct ozonation pathway, O$_3$ consecutively oxidizes Br$^-$ to aqueous bromine (HOBr/OBr$^-$) and then to BrO$_3^-$. Bromate formation is more favorable at a high pH because of more abundant OBr$^-$ (pK$_a$ HOBr/OBr$^-$ = 8.8-9.0) (von Gunten, 2003b). Additionally, ozone reacts with OBr$^-$ more readily (100 M$^{-1}$ s$^{-1}$) compared to HOBr (0.013 M$^{-1}$ s$^{-1}$). In the second pathway, the direct–indirect pathway, O$_3$ oxidizes Br$^-$ to HOBr/OBr$^-$ followed by •OH oxidation of HOBr/OBr$^-$ to BrO•, which disproportionates to bromite (BrO$_2^-$). Bromite is then oxidized by O$_3$ to form BrO$_3^-$. In the third BrO$_3^-$ formation pathway, the indirect–direct pathway, Br$^-$ is first oxidized by •OH to form Br•, which is further oxidized by molecular O$_3$ to form BrO•. BrO• then disproportionates to BrO$_2^-$, followed by O$_3$ oxidation to BrO$_3^-$(Song et al., 1997). For the direct-indirect and indirect-direct pathways, hydroxyl radicals contribute more extensively than O$_3$ toward BrO$_3^-$ formation (Moslemi et al., 2014). The rates of OBr$^-$ and HOBr oxidation (to BrO$_3^-$) by •OH, 4.5 × 109 M$^{-1}$ s$^{-1}$ and 2 × 109 M$^{-1}$ s$^{-1}$, respectively, are much faster than O$_3$ reaction rates with HOBr/OBr$^-$ (von Gunten & Hoigné, 1994). Hence, additional BrO$_3^-$ might be generated if •OH is formed in excess during the EOP (Gottschalk et al., 2009).

A new pathway for BrO$_3^-$ formation has quite recently been unveiled, as shown in Figure 1 (Fischbacher et al., 2015). Unlike the major pathways, which utilize oxygen transfer (O$_3$ to O$_2$) to convert BrO$_2^-$ to BrO$_3^-$, the newly suggested pathway utilizes electron transfer (O$_3$ to O$_3$) for the same conversion. During the electron transfer process, intermediates are formed before BrO$_3^-$ production: BrO$_2^-$ → BrO$_2^•$ → Br$_2$O$_4$ → BrO$_3^-$(Fischbacher et al., 2015). The pathway has been reviewed and verified by several studies.
Bromate formation during ozonation significantly depends on ozone doses and source water characteristics. These characteristics include initial Br⁻/C₀ concentration, solution pH, the concentration of bicarbonate, the presence of co-existing ions (such as phosphate, chloride, sulfate, silicate) and the presence of natural organic matter (NOM) (Yang, Dong, Jiang, Liu et al., 2019). Table 1 summarizes the factors influencing BrO₃⁻ formation. Among these factors, Br⁻/C₀ concentration and ozone dose are the two main factors. Typically, BrO₃⁻ becomes problematic for water containing greater than 50 μg L⁻¹ of Br⁻. In addition, ozone dose needs to be kept in a certain range. For example, at an ozone dose of two standard liters per minute, or ozone concentration × contact time (CT) between 0.31 and 2.85 mg-min L⁻¹, BrO₃⁻ concentration did not exceed the MCL (Wert et al., 2017).

As mentioned earlier, the pH of the water determines HOBr/OBr⁻ ratio and availability of •OH to oxidize bromine species along each pathway involving indirect oxidation. Lower pH may shift the HOBr/OBr⁻ equilibrium toward HOBr and decrease the molar ratio of •OH to O₃, thus directly reducing the BrO₃⁻ formation (Pinkernell & von Gunten, 2001). Lower pH was reported to assist HOBr and brominated organic formations, whereas higher pH assisted OBr⁻ and BrO₃⁻ formations (Glaze et al., 1993). Natural organic matter also influences BrO₃⁻ formation. It decreases the BrO₃⁻ formation by scavenging •OH more aggressively than HOBr/OBr⁻ (Westerhoff et al., 1998). Legube et al. (1993) reported that O₃ reacts with Br⁻ and OBr⁻ slower than with NOM. Hence, when ozonated, waters...
Table 1. Factors affecting BrO₃⁻ formation.

<table>
<thead>
<tr>
<th></th>
<th>Ozone dose</th>
<th>Bromide concentration</th>
<th>Solution pH</th>
<th>Alkalinity</th>
<th>Ammonia</th>
<th>Natural organic matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrO₃⁻ yield</td>
<td>Increases with increase in oxidant dosage</td>
<td>Decreases with increasing Br⁻ levels if oxidants are insufficient</td>
<td>Increases with increase in pH</td>
<td>Decreases with increase in bicarbonate</td>
<td>May decrease the BrO₃⁻ formation</td>
<td>Decreases BrO₃⁻ formation and results in the formation of organic brominated byproducts</td>
</tr>
<tr>
<td>Operating conditions and water quality *</td>
<td>O₃: 0–0.5 mg L⁻¹ O₃: 1 mg mg⁻¹ DOC</td>
<td>Br⁻ < 50 μg L⁻¹</td>
<td>pH < 6–7</td>
<td>Alkalinity > 50 mg L⁻¹</td>
<td>NH₃–N: 0.03–0.14 mg L⁻¹</td>
<td>Br⁻: DOC ratio: 0.05</td>
</tr>
<tr>
<td>Mechanism</td>
<td>In the course of BrO₂⁻ formation, the oxidants are involved in multistep reactions, including the oxidation of Br⁻ Br and BrO₂⁻, respectively.</td>
<td>Increase in the initial Br⁻ level inhibits further oxidation of HOBr/OBr to BrO₃⁻ in the presence of insufficient oxidants.</td>
<td>Higher pH enhances the reactions of O₃ with *OH and other unprotonated species to generate *OH, which favors the formation of BrO₃⁻.</td>
<td>Bicarbonate is demonstrated to be a scavenger for *OH. Hydroxyl radicals serve as an essential oxidant for BrO₂⁻ formation during ozonation. Thus, bicarbonate typically plays an inhibiting role in the oxidation of Br⁻ or bromine by *OH, and thus decreases the formed BrO₃⁻ during ozonation.</td>
<td>Ammonia interferes with the BrO₃⁻ formation chain by reacting with HOBr, the decisive intermediate of the BrO₃⁻ formation mechanism, thereby inhibiting BrO₃⁻.</td>
<td>In the presence of NOM, BrO₃⁻ is mainly formed via the radical-involved pathways. The electrophilic compounds in NOM can react with O₃, leading to a reduction in O₃ exposure, hence decreasing BrO₃⁻. Most of the NOM can scavenge *OH, inhibiting its role in BrO₃⁻ formation. Also, HOBr/OBr can also be scavenged by some of the NOM to form organic brominated byproducts and reduce BrO₃⁻ formation.</td>
</tr>
</tbody>
</table>

References
- Ratpukdi et al. (2011); Liu et al. (2012)
- von Gunten (2003b); Aljundi (2011)
- Lu et al. (2015); Yang et al. (2017)
- Hofmann and Andrews (2006); Li et al. (2011)
- Hofmann and Andrews (2001); Wert et al. (2007)
- Audenaert et al. (2010); Heeb et al. (2014)
containing higher organic carbon concentrations have less BrO₃⁻ formation (Legube et al., 1993).

Several BrO₃⁻ control techniques, before and after its formation, have been investigated. Table 2 briefly compares the advantages and disadvantages associated with various methods employed in BrO₃⁻ abatement before and after formation. Although BrO₃⁻ removal technologies exist (ion exchange, membrane separation, biological reduction to bromide, and chemical reduction to bromide), these methods require additional treatment units, which would increase the cost substantially (Yang, Dong, Jiang, Wang et al., 2019). In practice, preventing BrO₃⁻ formation in the first place makes more sense and is widely accepted by water utilities. Therefore, these BrO₃⁻ control strategies must focus on minimizing the concentrations of critical reactants (i.e. O₃, •OH, and HOBr/BrO⁻) in the water being treated (Elovitz & von Gunten, 1999; Song et al., 1997).

Among BrO₃⁻ control strategies, it was reported that only pH suppression and ammonia addition are feasible for water treatment and can reduce up to 50% of bromate formation (von Gunten, 2003b). Ammonia interferes with the BrO₃⁻ formation chain by converting HOBr to Br⁻, thereby inhibiting BrO₃⁻. However, there are chemical costs associated with these practices. Furthermore, ammonia addition may affect ozone demand, and its residual may promote nitrification in the distribution system (Hofmann & Andrews, 2007). Tables 1 and 2 provide additional information on how ammonia addition affects BrO₃⁻ formation.

3. Bromate formation mitigation

3.1. Bromate formation mitigation by peroxone (O₃/H₂O₂) and combined peroxymonosulfate and ozone (O₃/PMS)

The addition of hydrogen peroxide (H₂O₂) during ozonation (the peroxone process) has been identified as an appealing practice because H₂O₂ can reduce HOBr/BrO⁻ to Br⁻, thus minimizing the BrO₃⁻ formation (Katsoyiannis et al., 2011; von Gunten, 2003b; von Gunten & Hoigné, 1994). Moreover, the reaction between H₂O₂ and O₃ produces •OH, which can oxidize most organics rapidly (Acero et al., 2001; Katsoyiannis et al., 2011). Hence, enhanced pollutant degradation occurs during the ozonation of water in the presence of H₂O₂ by producing more •OH compared to ozonation alone (Arvai et al., 2012; Gerrity et al., 2011; Katsoyiannis et al., 2011; Ozekin et al., 1998; von Gunten & Hoigné, 1994; Wang et al., 2014). On the other hand, production of •OH from the reaction between H₂O₂ and O₃ can also enhance the formation of BrO₃⁻ via the indirect/direct and direct/indirect pathways (Hofmann & Andrews, 2006; Song et al., 1997).
Table 2. Advantages and disadvantages associated with different methods employed in the abatement of BrO₃⁻.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrO₃⁻ abatement before formation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH suppression: (pH < 7 prior to ozonation)</td>
<td>- When pH is reduced to 7 or below, OBr₂ reduces, followed by BrO₃⁻ concentration reduction (Haag & Hoigné, 1983).</td>
<td>- Lowering the pH retards the •OH production, which eventually reduces the rate of pollutant degradation (Siddiqui & Amy, 1993).</td>
</tr>
<tr>
<td></td>
<td>- Hydroxyl radical production decreases with a reduction in pH, thus limiting the BrO₃⁻ production via the •OH pathway (Elovitz et al., 2000).</td>
<td>- Depressed pH forms HOB₃, which on reacting with NOM produces brominated organics such as cyanogen bromide (Siddiqui & Amy, 1993).</td>
</tr>
<tr>
<td></td>
<td>- Ozone, besides being more stable at lower pH, requires reduced dosages of O₃ to achieve disinfection (Kruithof et al., 1993).</td>
<td>- Problems such as corrosion and DBP formation may arise from techniques employed in reducing the pH for controlling the BrO₃⁻ formation (Pinkernell & von Gunten, 2001).</td>
</tr>
<tr>
<td>Ammonia addition</td>
<td>- BrO₃⁻ formation is inhibited when ammonia reacts with HOB₃, a critical intermediate in the BrO₃⁻ formation process (von Gunten, 2003a).</td>
<td>- The addition of ammonia can inhibit only a limited amount of BrO₃⁻ effectively. Excess dosage of ammonia does not enhance inhibition efficiency (Pinkernell & von Gunten, 2001).</td>
</tr>
<tr>
<td></td>
<td>- Bromate formation inhibition efficiency fluctuated between 0-30% with the addition of ammonia and resulted in inconsistent BrO₃⁻ reduction (Siddiqui et al., 1995).</td>
<td>- Bromamines in the presence of O₃ produce nitrate and Br⁻, which catalyze the oxidation of ammonia (Haag et al., 1984).</td>
</tr>
<tr>
<td></td>
<td>- Ammonia can get nitrified to nitrate, whereas Br⁻ released from bromamines may react with O₃ or •OH again, to produce BrO₃⁻. Both nitrate and BrO₃⁻ formation affect water quality (Gillogly, 2001).</td>
<td>- Ammonia can get nitrified to nitrate, whereas Br⁻ released from bromamines may react with O₃ or •OH again, to produce BrO₃⁻. Both nitrate and BrO₃⁻ formation affect water quality (Gillogly, 2001).</td>
</tr>
<tr>
<td></td>
<td>- Disinfection efficiency was affected when ammonia was added during ozonation to inhibit BrO₃⁻ formation (Ozekin et al., 1998; Siddiqui & Amy, 1993).</td>
<td>- Effective BrO₃⁻ removal was reported with virgin granular activated carbon (GAC) only (Lefebvre et al., 1995; Legube, 1996).</td>
</tr>
<tr>
<td>BrO₃⁻ abatement after formation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated carbon filtration</td>
<td>- Significant removal of BrO₃⁻ was reported on increasing the activated carbon dosage. Different kinds of carbon reduce BrO₃⁻ concentration via different adsorption-reduction ability (Siddiqui, Amy, Ozekin et al., 1994).</td>
<td>- Several factors affected the efficiency of GAC, including carbon-specific surface, solution pH, NOM presence, and other anions, as well as competition for active sites (Bao et al., 1999; Kirisits et al., 2001; Siddiqui, Amy, Ozekin et al., 1994).</td>
</tr>
<tr>
<td></td>
<td>- About 50% of BrO₃⁻ concentration was reduced in a span of 10 and 20 min via activated carbon filtration, without adding any external electron donor (Kirisits et al., 2001).</td>
<td>- Denitrification reactors are unsuitable for achieving BrO₃⁻ reduction because they require long retention times for the reactions to occur. To achieve drinking water</td>
</tr>
</tbody>
</table>

(continued)
The formation of \cdotOH by peroxone is much faster than the formation of BrO$_3^-$ by direct oxidation with O$_3$ (Knol et al., 2015). Bromate formation can ideally be constrained by fast O$_3$ decomposition and increasing the

<table>
<thead>
<tr>
<th>Methods</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV irradiation</td>
<td>- UV irradiation under a wavelength range of 180-300 nm produces a large number of free radicals and species in the excited state (Mills et al., 1996).</td>
<td>- In the presence of NOM, free radicals are readily consumed by organic matter, thus reducing the efficiency of BrO$_3^-$ removal by UV irradiation (Siddiqui, Amy, Ozekin et al., 1994).</td>
</tr>
<tr>
<td>High-energy electron beam (HEEB) irradiation</td>
<td>- Bromate can be reduced to Br$^-$ when the water is irradiated with HEEB because it produces reducing and oxidizing species. The oxidizing species such as \cdotOH assist in the BrO$_3^-$ abatement process (Siddiqui, Amy, Ozekin et al., 1994). - The powdered form of Ru(IV) oxide suspended in water act as microelectrodes, wherein redox reactions occur readily, such as BrO$_3^-$ becoming reduced to Br$^-$ and water becoming oxidized to oxygen (Mills & Meadows, 1995).</td>
<td>- HEEB irradiation is an expensive technique, which makes it a non-lucrative method when focusing on BrO$_3^-$ removal only. It will be economical if more contaminants can be removed via the HEEB irradiation method.</td>
</tr>
<tr>
<td>Ru(IV) oxide</td>
<td>- The powdered form of Ru(IV) oxide suspended in water act as microelectrodes, wherein redox reactions occur readily, such as BrO$_3^-$ becoming reduced to Br$^-$ and water becoming oxidized to oxygen (Mills & Meadows, 1995).</td>
<td>- Investigated only at the lab scale so far (Mills & Meadows, 1995).</td>
</tr>
<tr>
<td>Chemical reducing agents: [sulfite ions (SO$_3^{2-}$), ferrous ions (Fe(II)), zerovalent iron (Fe(0))]</td>
<td>- Ferrous ions, while being oxidized, reduced BrO$_3^-$ to Br$^-$; however, the dosage of ferrous ions and solution pH strongly affected the degree of BrO$_3^-$ reduction (Gordon et al., 2002; Siddiqui, Amy, Zhai et al., 1994). - Zerova lent iron was investigated under multiple conditions and successfully reduced BrO$_3^-$ to Br$^-$ (Xie & Shang, 2007). Besides being efficient, it may be an economical method for BrO$_3^-$ reduction, as well (Westerhoff & Johnson, 2001).</td>
<td>- The addition of sulfite ions was ineffective at reducing BrO$_3^-$ formation and may contribute to biological growth in the distribution system (Gordon et al., 2002). - Dissolved oxygen and BrO$_3^-$ compete with available ferrous ions, which leads to an inefficient reduction of BrO$_3^-$ (von Gunten, 2003b). - Clarification and filtration processes may be affected due to the presence of oxidized ferric hydroxide particles (Henderson et al., 2001).</td>
</tr>
</tbody>
</table>

The formation of \cdotOH by peroxone is much faster than the formation of BrO$_3^-$ by direct oxidation with O$_3$ (Knol et al., 2015). Bromate formation can ideally be constrained by fast O$_3$ decomposition and increasing the
ratio between H$_2$O$_2$ and O$_3$. Since H$_2$O$_2$ decreases the O$_3$ exposure and quenches the intermediate for BrO$_3^-$ formation (e.g., HOBr/BrO$^-$) via the direct pathway (Figure 1), the peroxone process can effectively alleviate BrO$_3^-$ formation (von Gunten, 2018). During the peroxone process, the residual concentration of H$_2$O$_2$ in the treated water should be maintained at or below 0.5 mg L$^{-1}$ in order to stay in compliance with the United States Environmental Protection Agency’s standards (Chromostat et al., 1993; Paillard, 1994). If excessive H$_2$O$_2$ is used for the peroxone process in drinking water systems, biologically activated carbon filters need to be installed to quench the H$_2$O$_2$ to below 0.5 mg L$^{-1}$ (Dotson et al., 2010; Liu et al., 2003; Urfé & Huck, 1997). The efficiency of the peroxone process in oxidizing organic compounds can be affected by the solution pH, temperature, and contaminant type, as well as reactions that consume *OH, and the lower solubility of O$_3$ in water (Buxton et al., 1988; Hernandez et al., 2002). Table 3 presents a comparison of BrO$_3^-$ control by O$_3$ and the peroxone process for different source waters.

Wang et al. (2014) highlighted a possibility to control the formation of BrO$_3^-$ while enhancing the removal of odorants (dimethyl trisulfide and 2-methylisoborneol) by adding H$_2$O$_2$ to an ozonation process. They were able to suppress BrO$_3^-$ formation (< 2 µg L$^{-1}$) and achieved complete removal of odor by dosing 2.0 mg L$^{-1}$ of O$_3$, while maintaining the O$_3$/H$_2$O$_2$ at a ratio of 0.5 (w/w). Their study suggested that a suitable H$_2$O$_2$ dose should be determined according to the raw water quality and O$_3$ dose (Wang et al., 2014). von Gunten et al. (1996) found that the peroxone process provided better removal of contaminants, such as atrazine, than O$_3$ alone in a full-scale water treatment plant. At the same O$_3$ dosage range (0.8–1.5 mg L$^{-1}$), less BrO$_3^-$ formation was observed in the peroxone process compared to O$_3$ alone. The removal of atrazine was 75% and 42% by O$_3$/H$_2$O$_2$ (0.5 mg/1.6 mg) and O$_3$ alone, respectively (von Gunten et al., 1996). Bromate in water treated by O$_3$/H$_2$O$_2$ was 4 µg L$^{-1}$, while it was 19 µg L$^{-1}$ for O$_3$ alone. It was suggested that this was due to the reduction of HOBr by H$_2$O$_2$/HO$_2^-$ to Br$^-$. In addition, the shorter lifetime of O$_3$ in the presence of H$_2$O$_2$ hinders the formation of BrO* through the reaction of Br* with O$_3$ (von Gunten et al., 1996). Liang et al. (1999) investigated the oxidation of methyl-t-butyl ether (MTBE) by peroxone and reported that by increasing the O$_3$ and H$_2$O$_2$ doses from 0.7 and 2.0 mg L$^{-1}$ to 1.3 and 4.0 mg L$^{-1}$, respectively, MTBE removal increased from 54% to 87%; however, the BrO$_3^-$ concentration increased from 8 to 83 µg L$^{-1}$.

It is important to note that several studies employing O$_3$/H$_2$O$_2$ reported mixed results of BrO$_3^-$ formation. A few studies reported that the addition of H$_2$O$_2$ amplified BrO$_3^-$ formation (Croué et al., 1996; Myllykangas et al., 2000; Siddiqui & Amy, 1993), while others have observed reductions in
BrO$_3^-$ formation (Daniel et al., 1993; von Gunten & Oliveras, 1998). These mixed results could be due to differences in water quality. Typically, high Br$^-$ (> 100 µg L$^{-1}$), H$_2$O$_2$/O$_3$ ratios (> 0.2 mg mg$^{-1}$), pH (> 9.0), and temperatures (>20°C) increase BrO$_3^-$ formation, whereas increasing alkalinity tends to decrease BrO$_3^-$ formation (for example, alkalinities of 0.3, 0.8, and 1.4 mmol L$^{-1}$ corresponding to BrO$_3^-$ of 13, 11, and 9.4 µg L$^{-1}$, respectively) (Myllykangas et al., 2000). Researchers acknowledged that BrO$_3^-$ formation can be inhibited by the presence of H$_2$O$_2$, which stimulates the reduction of HOBr/BrO$^-$ to Br$^-$. Therefore, the inhibition of BrO$_3^-$ formation can be influenced by the O$_3$ decomposition rate, *OH concentration, and HOBr/BrO$^-$ concentration (Croué et al., 1996; Siddiqui et al., 1995; von Gunten & Oliveras, 1998).

Qi et al. (2016) assessed the contributions of BrO$_3^-$ formation by the three different pathways (direct, direct-indirect, and indirect-direct) in O$_3$ and O$_3$/H$_2$O$_2$ systems. Bromate formation was mainly from the indirect-direct pathway during the peroxonation of a surface water sample (Yellow River, China). The Yellow River sample contained 140 µg L$^{-1}$ Br$^-$, 3.4 mg L$^{-1}$ dissolved organic carbon (DOC), 0.04 cm$^{-1}$ UV absorbance at 254 nm, 746 µS cm$^{-1}$ electrical conductivity, 98 mg L$^{-1}$ Cl$^-$, 240 mg L$^{-1}$ as CaCO$_3$ hardness, and 125.3 mg L$^{-1}$ as CaCO$_3$ alkalinity. On increasing the H$_2$O$_2$ dosage during the peroxone process, unlike the indirect-direct pathway wherein increased formation of BrO$_3^-$ was observed, the direct and direct-indirect pathways reduced the BrO$_3^-$ formation. The transformation of Br$^-$ to BrO$_3^-$ initially increased and eventually decreased to its minimum (5.1%) when the peroxone (O$_3$/H$_2$O$_2$) ratio was at 1.5. At the same ratio, the highest fraction of Br$^-$ was converted to BrO$_3^-$ (64.0%) via the indirect-direct pathway, suggesting that *OH scavengers were useful for controlling BrO$_3^-$ formation. Based on the characteristics of water, a specific ratio of O$_3$:H$_2$O$_2$ is desired to control BrO$_3^-$ formation.

Another method for BrO$_3^-$ formation control, by limiting O$_3$ exposure (O$_3$ dose x CT) as a linear relationship between the exposure and bromate formation, was identified (Guo et al., 2020). Compared to other techniques discussed in this review, the O$_3$/H$_2$O$_2$ process is the most investigated and implemented. Hence, the use of the O$_3$/H$_2$O$_2$ process has regulatory acceptance and a history of proven full-scale operation.

The electro-peroxone process or e-peroxone process is similar to peroxonation except that H$_2$O$_2$ is generated in situ from cathodic O$_2$ reduction (Figure 2). During this process, O$_2$ is converted to H$_2$O$_2$ electrochemically, which further generates *OH by reacting with O$_3$ (peroxone process). Since the e-peroxone process can be automated, it allows the process to be monitored and controlled via a supervisory control and data acquisition system, saving the time and energy needed in a manual process operation. Existing
Table 3. Comparison of bromate control by ozone and perozone.

<table>
<thead>
<tr>
<th>Water sources and tested conditions</th>
<th>O₃ or O₃/H₂O₂ dosage (mg L⁻¹)</th>
<th>BrO₃⁻ formation (µgL⁻¹)</th>
<th>Micropollutants oxidized</th>
<th>Removal Efficiency (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado River Water</td>
<td>4</td>
<td>68</td>
<td>MTBE</td>
<td>33</td>
<td>Liang et al. (1999)</td>
</tr>
<tr>
<td>pH = 6.5, DOC = 116.6 mgL⁻¹, alkalinity = 312 mgL⁻¹ as CaCO₃, Br⁻ = 90 µg L⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Zurich water (Zurich, Switzerland)</td>
<td>2</td>
<td>15.1</td>
<td>MTBE</td>
<td>39</td>
<td>Acero et al. (2001)</td>
</tr>
<tr>
<td>pH = 7, DOC = 1.4 mg L⁻¹, alkalinity = 205 mg L⁻¹ as CaCO₃, Br⁻ = 50 µg L⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well water Porrentrui (Porrentrui, Switzerland)</td>
<td>2</td>
<td>20.7</td>
<td>MTBE</td>
<td>28</td>
<td>Arvai et al. (2012)</td>
</tr>
<tr>
<td>pH = 7, DOC = 0.8 mg L⁻¹, alkalinity = 410 mg L⁻¹ as CaCO₃, Br⁻ = 50 µg L⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Murten (Murten, Switzerland)</td>
<td>2</td>
<td>25</td>
<td>MTBE</td>
<td>33</td>
<td>Arvai et al. (2012)</td>
</tr>
<tr>
<td>pH = 7, DOC = 2.7 mg L⁻¹, alkalinity = 311 mg L⁻¹ as CaCO₃, Br⁻ = 17.6 µg L⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-treated Meuse River (Berghambacht, Netherlands)</td>
<td>1.5/6</td>
<td>0.41</td>
<td>Bentzone</td>
<td>>95%</td>
<td>Knol et al. (2015)</td>
</tr>
<tr>
<td>pH = 7.97, DOC = 4.26 mg L⁻¹, NH₃ = < 0.02 mg NH₃·L⁻¹, DOC = 4.23 mg L⁻¹, alkalinity = 143.44 mg L⁻¹ as CaCO₃, Br⁻ = 119 µg L⁻¹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
peroxone process in treatment plants can be modified into e-peroxone process. In situ generation of H₂O₂ avoids the risks associated with the transportation and storage of H₂O₂. The cost of H₂O₂ generation by electricity was lower than the cost of H₂O₂ stocks (Yao et al., 2018). Unlike other catalytic processes, no chemicals and catalysts are required for e-peroxone. Furthermore, the use of nontoxic and stable carbon-based electrodes can eliminate the issue of secondary pollutants, such as toxic metal ions from catalysts (Guo et al., 2020).

Although e-peroxone can effectively inhibit BrO₃⁻ formation, it reduces the O₃ concentration in the solution. This may reduce the disinfection benefit of O₃ that is observed in the conventional peroxone process (von Gunten, 2003b). It is possible to set up the system to perform ozonation first for disinfection, followed by the e-peroxone process, but more research would be needed to identify the optimal working conditions to achieve both disinfection and BrO₃⁻ formation inhibition (Li, Shen et al., 2015). Previous studies on the e-peroxone process were conducted on laboratory and pilot scales (Li, Shen et al., 2015; Wang et al., 2018). Therefore, scaling-up the process to provide sufficient amounts of H₂O₂ for full-scale water treatment plants could be a challenge (Wang et al., 2018). Other issues, such as requirements for additional infrastructure, as well as energy consumption for H₂O₂ production, need to be considered for practical application.

Li, Shen et al. (2015) studied BrO₃⁻ formation inhibition by the e-peroxone process in comparison with ozonation. Their results indicated that for ozonation alone, the water sample containing Br⁻ (150 μg L⁻¹) produced
significant amounts of BrO$_3^-$ (~60-120 µg L$^{-1}$) in the effluent. However, by applying a small current (60–100 mA) to electrochemically generate H$_2$O$_2$ from O$_2$, the e-peroxone process decreased the BrO$_3^-$ concentration to < 10 µg L$^{-1}$ and removed NOM significantly (DOC reduction from 2.5 to 1.0 mg L$^{-1}$). Thus, with the potential to control BrO$_3^-$ formation and reduce NOM concentration during water treatment, the e-peroxone process can potentially be an effective way to improve the existing ozonation process (Li, Shen et al., 2015).

Another study (Yao et al., 2017) compared the abatement of taste- and odor-causing micropollutants (methylisoborneol and geosmin) and BrO$_3^-$ formation between conventional ozonation and e-peroxonation of bromide containing surface waters. E-peroxone reduced methylisoborneol (MIB) and geosmin with significantly lower BrO$_3^-$ formation than conventional ozonation (0.5–1.0 mg O$_3$ mg DOC$^{-1}$), which could not effectively reduce MIB and geosmin. Upon increasing the O$_3$ dose (1.0–2.5 mg O$_3$ mg DOC$^{-1}$) in conventional ozonation, although MIB and geosmin decreased, BrO$_3^-$ formation was significant. Upon increasing the applied current (from 20 to 40 mA) during the e-peroxone process, the BrO$_3^-$ formation dropped below the regulatory limit; however, the residual H$_2$O$_2$ needed to be removed. Thus, considering the high ozone dose requirement for reducing MIB and geosmin during accidental spills or seasonal events, e-peroxone can be employed as a contingency plan to conventional ozonation (Yao et al., 2017).

Sulfate radical-based (SO$_4^{*-}$) EOPs are promising alternatives to *OH based EOPs. Sulfate radicals are more selective to organic pollutants and less selective to water matrices than *OH (Buxton et al., 1988; Neta et al., 1988). Peroxymonosulfate (PMS) has been applied along with ozone to generate SO$_4^{*-}$ (Tan et al., 2020; Wen et al., 2018; Yang, Dong, Jiang, Wang et al., 2019). Recent studies reported that the O$_3$/PMS process forms both *OH and SO$_4^{*-}$ simultaneously (Equations 1–4), which enhance the removal of micro-pollutants (Tan et al., 2020; Wu et al., 2019).

$$\text{O}_3\text{SOO}^- + \text{O}_3 \rightarrow \cdot\text{O}_3\text{SO}_5^- \quad (1)$$
$$\cdot\text{O}_3\text{SO}_5^- \rightarrow \text{SO}_5^{*-} + \text{O}_3^{*-} \quad (2)$$
$$2\text{SO}_5^{*-} \rightarrow 2\text{SO}_4^{*-} + \text{O}_2 \quad (3)$$
$$\text{O}_3^{*-} + \text{H}_2\text{O} \rightarrow \cdot\text{OH} + \text{OH}^- + \text{O}_2 \quad (4)$$

These two oxidative species (*OH and SO$_4^{*-}$) not only play roles in the degradation of target contaminants, but also contribute to BrO$_3^-$ formation by the O$_3$/PMS process (when treating bromide containing water). Figure 3 presents the reaction scheme for BrO$_3^-$ formation by SO$_4^{*-}$ and HSO$_5^-$/SO$_5^{2-}$. Bromide can be directly oxidized to HOBr/OBr$^-$ by HSO$_5^-$/SO$_5^{2-}$ through oxygen atom transfer reactions (Equations 5 and 6). SO$_4^{*-}$ can
readily oxidize Br$^-$ to Br$^\circ$ (Equation 7) and HOBr/OBr$^-$ to BrO$^\circ$, leading to BrO$_3^-$ formation (Yang, Dong, Jiang, Wang et al., 2019) (Figure 3). The rate constant of SO$_4^{\circ\circ}$ with Br$^-$ is 10 orders of magnitude higher than that of HSO$_5^-$/SO$_5^{2\circ}$. Thus, the major pathway for BrO$_3^-$ formation is from reaction with SO$_4^{\circ\circ}$.

$$\text{HSO}_5^- + \text{Br}^- \rightarrow \text{HOBr} + \text{SO}_4^{2^-}, \quad k = 0.7 \text{ M}^{-1}\text{s}^{-1} \quad (5)$$

$$\text{SO}_5^{2^-} + \text{Br}^- \rightarrow \text{OBr}^- + \text{SO}_4^{2^-}, \quad k = 0.17 \text{ M}^{-1}\text{s}^{-1} \quad (6)$$

$$\text{SO}_4^{\circ\circ} + \text{Br}^- \rightarrow \text{Br}^\circ + \text{SO}_4^{2^-}, \quad k = 3.5 \times 10^9\text{M}^{-1}\text{s}^{-1} \quad (7)$$

The formation of BrO$_3^-$ by the O$_3$/PMS process strongly depends on PMS concentration, solution pH, and bromine species (HOBr/OBr$^-\circ$). Wen et al. (2018) investigated the formation of BrO$_3^-$ by O$_3$/PMS and ozone alone in distilled and real water samples. In distilled water, O$_3$/PMS yielded higher BrO$_3^-$ formation compared to O$_3$ alone. BrO$_3^-$ increased substantially from 3.97 to 10.57 μM as the PMS dose increased from 0 to 100 μM. At 200 and 300 μM of PMS, the BrO$_3^-$ formation appeared to slowly increase to 11.74 and 12.60 μM, respectively. Wen et al. (2018) reported that the enhanced BrO$_3^-$ formation with increasing the PMS dose was analogous to ozone utilization efficiencies, which were 19.8, 25.8, 27.8, 30.4, 30.7, and 34.5% at PMS dosages of 0, 5, 50, 100, 200, and 300 μM, respectively. The higher ozone utilization efficiency promoted the production of oxidative species (\(^\circ\)OH and SO$_4^{\circ\circ}$), which were responsible for BrO$_3^-$ formation. The radical scavenging experiments (using methanol for quenching SO$_4^{\circ\circ}$ and \(^\circ\)OH and tertiary-butanol for quenching \(^\circ\)OH) confirmed that both \(^\circ\)OH and SO$_4^{\circ\circ}$ were involved in BrO$_3^-$ formation (Wen et al., 2018). At low pH (pH 4), BrO$_3^-$ formation was limited regardless of the concentration of PMS. This was due to low ozone decomposition to \(^\circ\)OH, low production of SO$_4^{\circ\circ}$, and high abundance of HOBr (pK$_a$ = 8.8). An increase of pH also resulted in an increase of BrO$_3^-$ formation by O$_3$/PMS. The higher proportion of \(^\circ\)OH and OBr$^-\circ$ at high pH, along with PMS species (HSO$_5^-$/SO$_5^{2\circ}$, pK$_a$ = 9.4) contributed by the generation of SO$_4^{\circ\circ}$, promotes BrO$_3^-$ formation. At pH > 10, PMS species is in a dianionic form (SO$_5^{2\circ}$). Yang et al. (2015) suspected that mostly the dianionic form (SO$_5^{2\circ}$), rather than the monoanionic form (HSO$_5^-$), reacted with ozone to produce SO$_4^{\circ\circ}$ (Equations 1–3).

Figure 3. The reaction scheme for BrO$_3^-$ formation via the O$_3$/PMS process (Adapted from Guan et al., 2020).
For a real water sample, BrO₃⁻ formation by O₃/PMS was 5 to 9% less than for distilled water (Wen et al., 2018). This was due to the presence of radical scavengers, such as NOM and carbonate species. Similar to the case of O₃ alone, the addition of NH₄⁺ reduced BrO₃⁻ formation in the real water sample treated by O₃/PMS. Wen et al. (2018) reported that an increase of NH₄⁺ concentration reduced BrO₃⁻ formation. NH₄⁺ at 400 µg L⁻¹ was enough to inhibit the formation of bromate in the real water sample. Another approach for BrO₃⁻ inhibition for the O₃/PMS process is by adding low doses of carbon materials. Wen et al. (2020) investigated the application of low dosages (5-60 mg L⁻¹) of powdered activated carbon (PAC), carbon nanotubes (CNT), and graphene oxide (GO) for the inhibition of BrO₃⁻ formation and the improvement of oxalic acid degradation by O₃/PMS. Among the three carbon materials, GO provided the best result for BrO₃⁻ inhibition and organic compound degradation. For 10 mg L⁻¹ of PAC, CNT, and GO, the bromate conversion efficiency (25.1%) was reduced to 15.9%, 14.1%, and 8.8%, respectively at pH = 7.0 and 50 µM of PMS. These carbon materials were found to reduce HOBr/OBr⁻ to Br⁻ (Wen et al., 2020), and therefore inhibited BrO₃⁻ formation. The highest performance by GO might be due to its higher specific surface area and mesopore volume, which provide more reaction sites. It was assumed that the defects (zigzag/armchair edges) and carbonyl and carboxyl functional groups in GO were the active sites for HOBr/OBr⁻ reduction (Wen et al., 2020).

3.2. Bromate formation mitigation by photolytic ozonation (O₃/UV)

Several studies have investigated the mitigation of BrO₃⁻ formation under different UV irradiation conditions (Peldszus et al., 2004; Phillip et al., 2006; Ratpukdi et al., 2011; Siddiqui et al., 1996; Zhao et al., 2013). Photolytic ozonation produces •OH via H₂O₂/UV, O₃/H₂O₂, and O₃/OH⁻ (high pH) reaction routes, as shown in Figure 4. Photolytic ozonation with UV forms H₂O₂, a precursor for the production of •OH. Although the degradation of O₃ leads to the production of •OH, both pathways, direct (involving O₃) and indirect (involving •OH), contribute to BrO₃⁻ formation. In the O₃/UV process, the photolytic consumption of dissolved O₃ by UV leads to a lower residual O₃ concentration, and in turn less BrO₃⁻ formation. In addition, BrO₃⁻ can partially be reduced to BrO₂⁻, then BrO⁻, and eventually Br⁻ by absorbing photons from UV irradiation (Equations 8-10) (Siddiqui et al., 1996).

\[
\begin{align*}
2\text{BrO}_3^- + \text{hv} &\rightarrow 2\text{BrO}_3^- + \text{O}_2 \\
2\text{BrO}_2^- + \text{hv} &\rightarrow 2\text{BrO}^- + \text{O}_2 \\
2\text{BrO}^- + \text{hv} &\rightarrow \text{Br}^- + \text{O}_2
\end{align*}
\] (Equations 8–10)

The efficiency of the O₃/UV process in mitigating BrO₃⁻ formation is influenced by several parameters (UV intensity, O₃ dosage, pH, wavelength, UV dose, types of UV lamps, and organic matter), as discussed in detail below.
Ratpukdi et al. (2011) studied the effects of UV intensity, O$_3$ dosage, and pH on the BrO$_3^-$ formation of coagulated surface water. Their study compared the formation of BrO$_3^-$ among O$_3$, O$_3$-UV, and O$_3$-vacuum-UV (VUV) processes. Among the three processes, O$_3$-VUV (185 nm + 254 nm) produced the least amount of BrO$_3^-$ compared to O$_3$ and O$_3$-UV (254 nm), which produced four and six times more BrO$_3^-$, respectively. Ozone dosage played an important role in the BrO$_3^-$ formation by the O$_3$-VUV process. When raising the O$_3$ dosage from 1 to 2 and 4 mg O$_3$ mg DOC$^{-1}$ with 120 W of VUV power at pH 7, an increase of around 64 and 213% in BrO$_3^-$ concentration was observed. Additionally, increases in VUV power and pH amplified the BrO$_3^-$ formation due to more abundant *OH (from water homolysis by VUV) and more OBr$^-$, respectively. The purpose of the O$_3$-VUV process was to remove organic matter from the water. Their study suggested that achieving both the drinking water requirements for BrO$_3^-$ concentration and mineralization of organic matter could be challenging (Ratpukdi et al., 2011).

Previous studies indicated that the presence of organic matter led to UV absorption and eventually reduced the removal efficiency of BrO$_3^-$ (Phillip et al., 2006; Siddiqui et al., 1996). However, Zhao et al. (2013) reported that for O$_3$/UV, BrO$_3^-$ formation decreased with increasing the humic acid (HA) concentration. Ozone preferentially reacted with HA over Br$^-$, due to its higher reaction rate constant, thus inhibiting BrO$_3^-$ formation. Bromate formation by O$_3$ + UV irradiation from a low-pressure mercury lamp (emitting 254 nm and 185 nm) in the presence and absence of HA was studied by Zhao et al. (2013). A low O$_3$ dose of 2 mg L$^{-1}$ was generated by the UV irradiation, whereas O$_3$ doses higher than 2 mg L$^{-1}$ were generated by an ozone generator (silent electric discharge). In the absence of HA, BrO$_3^-$ concentrations during the O$_3$/UV process (17.1–77.6 μg L$^{-1}$) were 2.1–2.9 times more than the concentrations generated by the O$_3$ process (8.0–33.8 μg L$^{-1}$), when O$_3$ doses ranging from 2 to 21 mg L$^{-1}$ were continuously applied. In the presence of HA, 2 mg L$^{-1}$ of O$_3$ (generated by
the UV irradiation) reduced BrO$_3^-$ to less than 10μg L$^{-1}$ (at 4 mg L$^{-1}$ DOC, 1.4μg L$^{-1}$ BrO$_3^-$ was formed). The study also reported that BrO$_3^-$ formation increased in both O$_3$/UV and O$_3$ processes when the Br$^-$ concentration was raised; however, the increase in BrO$_3^-$ formation at higher pH was observed with the O$_3$ process only.

UV/VUV radiation, when used in small doses in the presence of O$_3$, reduces the formation of BrO$_3^-$. Less BrO$_3^-$ formation is observed with VUV (compared to UV), at low pH and low O$_3$ dosages (Ratpukdi et al., 2011). Supplementing UV reduces the requirement of O$_3$. An increase in the O$_3$ dose can increase the production of free \cdotOH, thereby increasing the BrO$_3^-$ formation. Therefore, the O$_3$ dosing must be monitored regularly. Although organic matter (NOM, HA) consumes O$_3$, and in turn limits BrO$_3^-$ formation, it absorbs UV, thus reducing BrO$_3^-$ removal efficiency by UV. Overall, O$_3$/UV is not widely applied in practice because it is too costly.

3.3. Bromate formation mitigation by heterogeneous catalytic ozonation

Enhanced ozonation by metals can be categorized as homogeneous or heterogeneous based on the type of metal (catalyst). Dissolved metal ions activate O$_3$ in a homogeneous catalytic ozonation process, whereas solid catalysts (metals/metal oxides) are responsible for activating the O$_3$ during a heterogeneous catalytic ozonation process (Kasprzyk-Hordern et al., 2003). There has been more research on heterogeneous catalytic ozonation compared to homogeneous catalytic ozonation, particularly in relation to BrO$_3^-$ formation inhibition. In addition, the recovery of metal ions (as homogeneous catalysts) in the water treatment process can be challenging. Hence, this section focuses exclusively on heterogeneous catalytic ozonation. Some of the solid catalysts include metal oxides (MnO$_2$, TiO$_2$, Al$_2$O$_3$), and metals or metal oxides on metal oxide supports (e.g. Cu/Al$_2$O$_3$, Cu/TiO$_2$, Ru/CeO$_2$, TiO$_2$/Al$_2$O$_3$, Fe$_2$O$_3$/Al$_2$O$_3$) (Huang et al., 2005). Heterogeneous catalytic ozonation is a potential method to reduce BrO$_3^-$ formation with limited chemical additions (because catalysts are retrievable and reusable after reactions) and lower energy requirements (no external source of energy is required for employing the catalyst, unlike other enhanced techniques such as O$_3$-UV, sonozone, and electroperoxide processes).

Although catalytic ozonation by several heterogeneous catalysts is effective for the degradation of organic contaminants and inhibition of BrO$_3^-$ formation, the technology lacks full-scale applications for several reasons. Wang and Chen (2020) and Nawrocki and Kasprzyk-Hordern (2010) comprehensively reviewed several shortcomings of heterogeneous catalytic
ozonation, including how and why the technology did not progress beyond laboratory-scale. One of the main reasons is that a dominant mechanism governing the catalytic process has not been elucidated. Whether O$_3$ decomposition to form surface-bound or free radicals, or the adsorption of organics on a catalyst surface plays a superior role on the catalytic process is unclear. Several other questions that remain unanswered include but are not limited to: How is O$_3$ oxidized (directly or indirectly) on the catalyst surface? What are the roles of different chemical components in water (such as carbonates, bicarbonates, sulfates, phosphates, and fluorides) on catalytic activity? What factors influence the catalytic performance? (Nawrocki & Kasprzyk-Hordern, 2010). In addition, issues such as catalyst separation and recycling, reactor design, and proper mixing, along with the leaching of dissolved metal from the catalyst into the aqueous solution, add to challenges associated with the heterogeneous catalytic ozonation technology (Wang & Chen, 2020).

There are three possible mechanisms for catalytic ozonation in heterogeneous systems: 1) the chemisorption of O$_3$ on the catalyst surface, causing the production of active species, which react with organic compounds adsorbed on the surface; 2) the chemisorption of organic compounds on the catalyst surface, which react with the O$_3$ present in aqueous or gaseous form; and/or 3) the chemisorption of both O$_3$ and organic compounds on the catalyst surface, followed by reactions between the two adsorbed species (Kasprzyk-Hordern et al., 2003). The surface properties of the catalyst and the pH of the solution dictate the efficiency of the heterogeneous catalytic ozonation process. These factors influence the properties of surface active sites, as well as the O$_3$ decomposition reactions (Kasprzyk-Hordern et al., 2003).

For heterogeneous catalytic ozonation, the selected catalyst must be analyzed for its chemical and physical characteristics, such as its purity, surface area, porosity, density, mechanical strength, pore size distribution, and pore volume. These variables are important in understanding the adsorption ability of a catalyst, as this is one of the important stages in the heterogeneous catalytic ozonation process. In addition, adsorption of inorganic ions can permanently block the active surface sites of the catalysts, thus reducing the catalytic activity. Therefore, these characteristics are important for evaluating the efficiency of a catalyst. Chemical properties include the occurrence of active surface sites, e.g., Lewis acid sites, which are accountable for catalytic reactions and chemical stability. During ozonation, certain solid catalysts function better (for both contaminant degradation and BrO$_3^-$ inhibition) in the presence of another catalyst that acts as a support, such as alumina (Nie et al., 2013; 2014; 2015). Therefore, the review of heterogeneous catalytic ozonation below is categorized into two major groups: solid catalyst and solid catalyst with support (Figure 5).
3.3.1. Solid catalyst

3.3.1.1. Metal oxides. Metal oxide catalysts that are commonly used can be pure, mixed, or doped. BrO₃⁻ formation mitigation during ozonation can be achieved by adding zeolite or cerium dioxide (CeO₂) (Sagehashi et al., 2005; Zhang et al., 2008, 2011). Four metal oxides, α-FeOOH, γ-FeOOH, α-Fe₂O₃, and CeO₂ were tested for their effects on BrO₃⁻ formation potential during the ozonation of Br⁻/O₃-containing water (Zhang et al., 2008). Catalytic ozonation with α-Fe₂O₃ was reported to generate BrO₃⁻, whereas CeO₂ minimized the BrO₃⁻ formation better than the other two metal oxides (α-FeOOH, γ-FeOOH). The minimization of BrO₃⁻ formation during ozonation in the presence of CeO₂ (O₃/CeO₂) showed better results for Br⁻ concentration less than or equal to 1.0 mg L⁻¹ and at pH < 7, compared with ozonation alone.

Based on the BrO₃⁻ formation that involves direct ozonation, along with the •OH oxidation of Br⁻ or HOBr/OBr⁻ species, Wang et al. (2016) suggested four potential pathways for BrO₃⁻ inhibition by O₃/CeO₂ as follows: 1) the adsorption of Br⁻ or BrO₃⁻ on the CeO₂ surface; 2) the reduction of BrO₃⁻ or HOBr/OBr⁻ to Br⁻ by CeO₂; 3) blocking of the route from Br⁻ to HOBr/OBr⁻ by CeO₂; and (4) blocking of the oxidation of HOBr/OBr⁻ to BrO•. However, the first pathway was ruled out since no adsorption of Br⁻ or BrO₃⁻ was found on the CeO₂ catalyst (Zhang et al., 2008, 2011). The Br⁻ concentration in the O₃/CeO₂ process was similar to that in the ozone alone process, and the HOBr/OBr⁻ concentration in O₃/CeO₂ process was higher than that in the ozone alone process. This indicated no blocking for the oxidation of Br⁻ to HOBr/OBr⁻ and no reduction of
HOBr/OBr\(^{-}\) to Br\(^{-}\), and consequently the second and third pathways were ruled out. It was deduced that the fourth pathway, blocking the oxidation of HOBr/OBr\(^{-}\) to BrO\(^{•}\), was responsible for BrO\(_3\)^\(-\) formation inhibition.

Ozone decomposition also produces \(^{•}\)OH, which promotes BrO\(_3\)^\(-\) formation (Figure 1). For the O\(_3\)/CeO\(_2\) process, less \(^{•}\)OH formation is expected, and this led to a decreasing oxidation rate of HOBr/BrO\(^{-}\) to BrO\(^{•}\). Wang et al. (2016) investigated the role of \(^{•}\)OH using para-chlorobenzoic acid as an \(^{•}\)OH probe compound. They reported the lowest formation of \(^{•}\)OH and BrO\(_3\)^\(-\) under ozonation with CeO\(_2\) compared to magnesium oxide (MgO) and synthetic goethite (FeOOH). It was suggested that O\(_3\) adsorbed on the active sites of the CeO\(_2\) and was decomposed to active oxygen species (e.g., superoxide, ozonide, and surface oxygen atom) rather than \(^{•}\)OH (Bulanin et al., 1998). Table 4 presents case studies of bromate control by various catalytic ozonation processes and other EOPs.

Another possibility for mitigating BrO\(_3\)^\(-\) formation is by introducing ferrate(VI) during the ozonation process (O\(_3\)/[FeO\(_4\)]\(^{2-}\)), as reported by Han et al. (2013). A dosage of 2.0 mg L\(^{-1}\) of ferrate(VI) was required to completely inhibit the BrO\(_3\)^\(-\) formation when the initial Br\(^{-}\) concentration was from 100 to 200 \(\mu\)g L\(^{-1}\), with pH 3.0 to 9.0, and temperatures of 5 to 40 °C, while keeping the O\(_3\) dosage between 1.5 and 2.5 mg L\(^{-1}\). In addition, under the same conditions, when the Br\(^{-}\) concentration was increased from 200 to 500 \(\mu\)g L\(^{-1}\), a higher ferrate(VI) dosage of 5.0 mg L\(^{-1}\) was used, wherein the BrO\(_3\)^\(-\) concentration increased, but was still below the MCL (Han et al., 2013). Huang et al. (2016) found that the production of BrO\(_3\)^\(-\) exceeded the MCL when Br\(^{-}\) was oxidized by ferrate(VI) in the absence of phosphate and under a moderately weak acidic condition. They reported that in the presence of phosphate, more H\(_2\)O\(_2\) was generated, which could reduce HOBr (produced from reaction between Fe(VI) and Br\(^{-}\)), thus inhibiting the BrO\(_3\)^\(-\) formation. More research data would be helpful in determining the optimum value of ferrate as a catalyst for BrO\(_3\)^\(-\) control, as well as the associated costs.

BrO\(_3\)^\(-\) can be inhibited completely with ferrate(VI) addition to ozonation. Compared to other methods that could inhibit BrO\(_3\)^\(-\) formation, ferrate(VI) is advantageous because low dosages are required, and it is less sensitive to water characteristics. However, the catalyst performance has only been confirmed with batch studies so far (Han et al., 2013; Huang et al., 2016). Besides, ferrate(VI), BrO\(_3\)^\(-\) formation can be significantly inhibited by CeO\(_2\) due to the surface reduction of BrO\(^{•}\) to HOBr/OBr\(^{-}\). However, the active sites on CeO\(_2\) surface require restoration of the lost catalytic activity after use (Wang et al., 2016; Zhang et al., 2008). As the synthesis cost for the CeO\(_2\) catalyst is high, this technique is not considered cost effective.
Table 4. Recent case studies on bromate control using enhanced ozonation techniques.

<table>
<thead>
<tr>
<th>Enhanced ozonation techniques</th>
<th>Test conditions</th>
<th>BrO₃⁻ formation with O₃ (µg L⁻¹)</th>
<th>BrO₃⁻ formation with Enhanced ozonation (µg L⁻¹)</th>
<th>Enhanced ozonation BrO₃⁻ removal efficiency (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photolysis</td>
<td>Br⁻ = 100 µg L⁻¹, pH = 7, O₃ = 2 mg L⁻¹, t = 60 min</td>
<td>7.6</td>
<td>2.1</td>
<td>61.6</td>
<td>Zhao et al. (2013)</td>
</tr>
<tr>
<td>Mixed metal oxides</td>
<td>Br⁻ = 290 µg L⁻¹, pH = 8.1, catalyst dose (CD) = 100 mg L⁻¹, t = 10 min</td>
<td>>40</td>
<td>~20</td>
<td>53</td>
<td>Yang et al. (2011)</td>
</tr>
<tr>
<td>Manganese oxide/Alumina</td>
<td>Br⁻ = 100 µg L⁻¹, pH = 6.5, CD = 0.25 g L⁻¹, O₃ = 2 mg L⁻¹, t = 60 min</td>
<td>2.25</td>
<td>0.5</td>
<td>>90</td>
<td>Nie et al. (2013)</td>
</tr>
<tr>
<td>Iron oxide hydroxide/Alumina</td>
<td>Br⁻ = 125 µg L⁻¹, pH = 6.0, CD = 0.25 g L⁻¹, O₃ = 2 mg L⁻¹, t = 40 min</td>
<td>21.5</td>
<td>0</td>
<td>~100</td>
<td>Nie et al. (2014)</td>
</tr>
<tr>
<td>Layered double hydroxide/Alumina</td>
<td>Br⁻ = 125 µg L⁻¹, pH = 8.0, CD = 0.25 g L⁻¹, O₃ = 2.0 mg L⁻¹, t = 60 min</td>
<td>76.74</td>
<td><12.79</td>
<td>~100</td>
<td>Nie et al. (2015)</td>
</tr>
<tr>
<td>MCM-Modified (Ceₓ-MCM-48)</td>
<td>Br⁻ = 1000 µg L⁻¹, pH = 7.5, CD = 0.5 g L⁻¹, O₃ = 2.0 ± 0.1 mg L⁻¹, t = 30 min</td>
<td><200</td>
<td>432.5</td>
<td>Ce₆₆-MCM-48 ≤ 20</td>
<td>Li, Lu et al. (2015)</td>
</tr>
<tr>
<td>MCM-41</td>
<td>Br⁻ = 1000 µg L⁻¹, pH = 7.5, CD = 0.5 g L⁻¹, O₃ = 2.0 ± 0.1 mg L⁻¹, T = 25 ± 1 °C, t = 60 min</td>
<td>81.93</td>
<td>TiO₂ = 21.22</td>
<td>TiO₂ = 74.1</td>
<td>Wu et al. (2014)</td>
</tr>
<tr>
<td>Nano metal oxides</td>
<td>Br⁻ = 1000 µg L⁻¹, pH = 6.0, O₃ = 3.38 mg L⁻¹, T = 26 °C, t = 15 min, CD = 0.1 g L⁻¹</td>
<td>300</td>
<td>150</td>
<td>50</td>
<td>Lu et al. (2015)</td>
</tr>
<tr>
<td>Ferrate (FeO₄²⁻)</td>
<td>Br⁻ = 200 µg L⁻¹, pH = 7.0, O₃ = 2.5 mg L⁻¹, T = 25 °C, CD = 2 mg L⁻¹</td>
<td>36.3</td>
<td>0</td>
<td>100</td>
<td>Han et al. (2013)</td>
</tr>
</tbody>
</table>

References:
- Zhao et al. (2013)
- Yang et al. (2011)
- Nie et al. (2013)
- Nie et al. (2014)
- Nie et al. (2015)
- Li, Lu et al. (2015)
- Chen et al. (2018)
- Wu et al. (2014)
- Lu et al. (2015)
- Han et al. (2013)
3.3.1.2. Mixed metal oxides. Cerium-zirconium mixed oxides (Ce$_x$Zr$_{1-x}$O$_2$) have been explored as catalysts for the inhibition of BrO$_3^-$ formation using a batch reactor (Yang et al., 2011). Ce$_x$Zr$_{1-x}$O$_2$ showed a promising performance in suppressing BrO$_3^-$ formation and reducing organic matter. Compared to pure CeO$_2$, Ce$_x$Zr$_{1-x}$O$_2$ demonstrated more efficiency in reducing BrO$_3^-$ formation during the ozonation process. In a study by Yang et al. (2011), Ce$_x$Zr$_{1-x}$O$_2$ was developed by a co-precipitation method, wherein different molar ratios of Ce(NO$_3$)$_3$ and ZrOCl$_2$ were added to the ammonia solution. The surface area of Ce$_x$Zr$_{1-x}$O$_2$ was more (157.1 m2 g$^{-1}$) than pure CeO$_2$ (133.6 m2 g$^{-1}$) and increased with increasing Zr in the oxides (157.1 m2 g$^{-1}$ (Zr$_{0.1}$), 187.8 m2 g$^{-1}$ (Zr$_{0.25}$), 300.4 m2 g$^{-1}$ (Zr$_{0.5}$), and 368.5 m2 g$^{-1}$ (Zr$_{0.84}$)). Zr effectively limited the increase of CeO$_2$ crystallites. Yang et al. (2011) prepared different compositions of the mixed metal catalyst (Ce$_{0.9}$Zr$_{0.1}$O$_2$, Ce$_{0.75}$Zr$_{0.25}$O$_2$, Ce$_{0.5}$Zr$_{0.5}$O$_2$ and Ce$_{0.16}$Zr$_{0.84}$O$_2$) and compared their efficiencies. Ce$_{0.75}$Zr$_{0.25}$O$_2$ was found to be the most efficient catalyst in inhibiting the BrO$_3^-$ formation because it reduced around 53% BrO$_3^-$ formation after 20 min reaction, compared to Ce$_{0.9}$Zr$_{0.1}$O$_2$, Ce$_{0.16}$Zr$_{0.84}$O$_2$ and Ce$_{0.5}$Zr$_{0.5}$O$_2$ which reduced 44, 38, and 18% BrO$_3^-$ formation, respectively.

The formation of BrO$_3^-$ was restricted as the decomposition of O$_3$ was enhanced in the presence of the Ce$_x$Zr$_{1-x}$O$_2$. In addition, the formation of *OH was promoted by the catalyst, which allowed the *OH to react rapidly with Br$^-$ and other organics present in the solution. Since the oxidizing rate of *OH is higher for organic compounds than for Br$^-$, Ce$_x$Zr$_{1-x}$O$_2$ could block the oxidation of Br$^-$ by O$_3$ decomposition, allowing the enhanced removal of organic compounds by *OH, while controlling the BrO$_3^-$ formation. The adsorption of Br$^-$ and BrO$_3^-$ on the Ce$_x$Zr$_{1-x}$O$_2$ surface was measured during the ozonation reaction, and no adsorption was observed, based on relatively constant Br$^-$ and BrO$_3^-$ concentrations in the water phase. Moreover, no metal ions were detected in the solution. Although Ce$_x$Zr$_{1-x}$O$_2$ is a more effective catalyst for reducing BrO$_3^-$ formation during ozonation than CeO$_2$, it is unclear why different ratios of Ce and Zr provided different BrO$_3^-$ formation. In addition, the mechanism for the involvement of HOBr/OBr$^-$ in BrO$_3^-$ formation requires future research.

Another group of catalysts, perovskite oxides (LaFeO$_3$, and LaCoO$_3$), was investigated for BrO$_3^-$ formation inhibition under benzotriazole (BZA) degradation by ozone (Zhang et al., 2018). The experimental conditions were an initial Br$^-$ concentration of 100 µg L$^{-1}$, pH of 6.4, O$_3$ dose of 2 mg L$^{-1}$, BZA dose of 10 mg L$^{-1}$ and catalyst dose of 0.5 g L$^{-1}$, reaction time of 120 min, and room temperature. LaFeO$_3$ inhibited 73% BrO$_3^-$ formation without BZA degradation, whereas LaCoO$_3$ inhibited 71% BrO$_3^-$ formation.
formation with complete degradation of BZA. These two catalysts inhibited
BrO$_3^-$ formation differently. Although LaFeO$_3$ did not catalytically
enhance O$_3$ decomposition to generate reactive oxygen species for BZA degradation,
it reduced BrO$_3^-$ efficiently. [Fe-H$_2$O$_2$],$_3$ generated from surface hydroxyl
groups of LaFeO$_3$, and H$_2$O$_2$ (formed from BZA degradation) was respon-
sible for reducing BrO$_3^-$ to HOBr/OBr$^-$ (Zhang et al., 2018). This finding
suggested that adding an LaFeO$_3$ catalyst to ozonation might only benefit
BrO$_3^-$ reduction, but not micro-pollutant removal. On the other hand,
LaCoO$_3$ has higher lattice oxygen species on its surface (O2/-OH ratio =
0.58) than LaFeO$_3$ (O2/-OH ratio = 0.31), resulting stronger ozone
decomposition and superior catalytic activity compared to LaFeO$_3$. Surface
hydroxyl groups on LaCoO$_3$ promoted O$_3$ decomposition readily, subse-
quently generating more radicals, especially *OH, which degraded BZA and
generated more H$_2$O$_2$. Finally, BrO$_3^-$ was reduced to HOBr/OBr$^-$ by H$_2$O$_2$
formed from BZA degradation.

BrO$_3^-$ formation through ozonation is reduced greatly by the addition of
Ce$_x$Zr$_{1-x}$O$_2$ mixed metal oxides, compared to a single metal oxide. Maximum efficiency of Ce$_x$Zr$_{1-x}$O$_2$ is achieved at a specific element ratio
(Yang et al., 2011). However, certain factors, such as the catalyst synthesis
cost, installation setup, and catalyst regeneration rate, have not been inves-
tigated. More research on both technical and commercial aspects is needed
before the process can be applied practically.

3.3.1.3. Mobil composition of matter

Mobil composition of matter (MCM) is a
silica based mesoporous adsorbent, which can be modified by integrating transi-
tional metals such as Fe and Mn (Schumacher et al., 1999). The integration
enhances the catalytic ability of MCM (Gómez et al., 2005; Zhao et al., 2001).
A team of researchers (Li, Lu et al., 2015) investigated the inhibition of BrO$_3^-$
formation by employing catalytic ozonation using cerium integrated MCM-48
or Ce-MCM-48 as a catalyst. This catalyst was prepared hydrothermally by
integrating different ratios (30-200) of Si/Ce with MCM-48. The Si/Ce ratio of
66 (Ce$_{66}$-MCM-48) was reported as the most optimal ratio for the inhibition
of BrO$_3^-$ formation (76-91%) at a pH range of 6.3 to 9.5 and 15-30 $^\circ$C, based
on the initial Br$^-$ concentration of 1.0 mg L$^{-1}$, O$_3$ dose of 1.1 ± 0.1 mg L$^{-1}$,
catalyst dose of 0.5 g L$^{-1}$, and reaction time of 20 min. Ce$_{66}$-MCM-48 stimu-
lated the O$_3$ decomposition to produce *OH, which further generated H$_2$O$_2$.
The reactions involving the oxidation of Br$^-$ and HOBr/BrO$^-$ by O$_3$ and
*OH were inhibited, thus reducing the BrO$_3^-$ formation. During the catalytic
ozonation process, refractory organics were also degraded via indirect oxida-
tion of *OH. The catalytic capacity of Ce$_{66}$-MCM-48 was regenerated with
continuous circulation of reactions between Ce(III) and Ce(IV) on its surface
(Li, Lu et al., 2015).
Chen et al. (2018) investigated the performance of a MCM-41 catalyst modified with metal(s) in inhibiting BrO$_3^-$ formation and degrading diclofenac (DCF) during catalytic ozonation. They compared the performance of O$_3$ alone and O$_3$ with the modified MCM-41, which included O$_3$/Fe-MCM-41, O$_3$/Cu-MCM-41, and O$_3$/Fe-Cu-MCM-41. During the experiment, 1,000 µg L$^{-1}$ of Br$^-$ solution (pH 5) and 20 mg L$^{-1}$ of DCF solution (pH 7) were exposed to a catalyst dosage of 1 g L$^{-1}$ at 298 K. Although BrO$_3^-$ formation was inhibited by all types of O$_3$/MCM-41 tested, the efficiencies differed. Compared with BrO$_3^-$ production by O$_3$ alone, the maximum BrO$_3^-$ formation inhibition (93%) was observed with O$_3$/Cu-MCM-41 and O$_3$/Fe-MCM-41 followed by O$_3$/Fe-Cu-MCM-41 (71%), corresponding to the following BrO$_3^-$ concentrations in treated water: 28.8 µg L$^{-1}$ for O$_3$/Cu-MCM-41, 31.5 µg L$^{-1}$ for O$_3$/Fe-MCM-41, 124.5 µg L$^{-1}$ for O$_3$/Fe-Cu-MCM-41, and 432.5 µg L$^{-1}$ for O$_3$ alone. Less BrO$_3^-$ was generated during the catalytic ozonation process compared to ozonation alone because the catalyst consumed the ozone, thus leaving less ozone for BrO$_3^-$ formation (Li, Lu et al., 2015).

MCM-41 was modified with manganese (Mn-MCM-41), and the effect of increasing temperature rate (0.5, 1 and 2 K min$^{-1}$) during calcination on BrO$_3^-$ inhibition was investigated (Xue et al., 2018). Out of the three rates investigated, the catalyst produced at 1 K min$^{-1}$ offered the highest BrO$_3^-$ inhibition efficiency (96.7%), followed by those produced at 0.5 K min$^{-1}$ (~80%) and 2 K min$^{-1}$ (~75%). The different heating rates changed the dispersion of Mn species and the oxidation state of Mn, which is related to oxygen vacancies and active sites. The Mn-MCM-41 produced at 1 K min$^{-1}$ had more oxygen vacancies, which could adsorb H$_2$O and dissociate to surface species, than the other two catalysts. O$_3$ easily reacted with the surface species and less O$_3$ exposure resulted in reduced BrO$_3^-$ formation.

A cerium integrated mesoporous adsorbent (Ce$_{66}$-MCM-48) in combination with O$_3$ is highly efficient for BrO$_3^-$ inhibition. Moreover, its large pore volume, strong thermal stability and high surface area increase its efficiency for BrO$_3^-$ inhibition. Ce$_{66}$-MCM-48 is a cost-effective catalyst for the ozonation process. Its catalytic capability is enhanced via circulating reactions on its surface between Ce(III) and Ce(IV). The efficiency of the catalysts could be deteriorated if the specific ratio of Ce and Si is disturbed, blocking the active sites of the catalyst, and thus damaging the structure of the catalyst (Li, Lu et al., 2015).

Qiang et al. (2013) reported that O$_3$ catalyzed by powdered Ce-MCM-48 substantially inhibited BrO$_3^-$ formation (> 95% inhibition efficiency compared to O$_3$ alone) based on a bench-scale experiment. However, separating the powdered Ce-MCM-48 in full-scale water treatment can be very challenging. This led the authors to use a granular form of Ce-MCM-48 instead
of the powdered form. A 33-day continuous pilot scale experiment demonstrated high BrO₃⁻ inhibition efficiency of the Ce₆₆-MCM-48 catalyst (75% average, initial Br⁻: ∼220 µgL⁻¹) (Qiang et al., 2013). O₃/Mn-MCM-41 also inhibits BrO₃⁻ formation, but the performance fluctuates with solution pH (6.5, 7.5, and 9.5), calcination temperature rate (0.5, 1, and 2 K min⁻¹), and Mn content (Mnx-MCM-41, x = 40, 80, 100, and 120) in the catalyst (Xue et al., 2018). The calcination temperature rate affects the valence states of active Mn species, the dispersion of Mn on the catalyst, and the formation of oxygen vacancies, which could increase surface hydroxyl groups on the catalyst and accelerate O₃ degradation, resulting in less BrO₃⁻ formation.

Although metals or metal-oxides are commonly used during heterogeneous catalytic processes, using them without support can lead to issues, such as restricted specific surface area and inadequate active sites. Therefore, these catalysts are typically supported by meso- or micro-porous structures, such as alumina, zeolite, and activated carbon, in order to enhance mass transfer. One-dimensional, mesoporous silicates such as MCM-41 (large surface area and high porosity) were reported to significantly enhance the mineralization performance during catalytic ozonation (Chen et al., 2018). MCM-48 is a three-dimensional mesoporous silicate that has an interconnected cubic pore structure. It can facilitate dispersion of both reactants and products in an aqueous solution due to its pore structure, which is less likely to be blocked compared to MCM-41 (Li et al., 2018). However, more work is needed to gain a better perspective on the catalytic mechanism and catalyst regeneration methods, as well as the treatment capacity of MCM based catalysts, leaching of potential toxic elements, and analysis of economic feasibility of the process at water treatment plants.

3.3.1.4. Nano metal oxides. Wu et al. (2014) investigated the performance of nano-metal oxides, nano-titanium dioxide, (nano-TiO₂) and nano-tin dioxide (nano-SnO₂), as catalysts during ozonation on BrO₃⁻ formation, along with their catalytic mechanisms. Both nano-SnO₂ and nano-TiO₂ had the potential to reduce the formation of BrO₃⁻ in the presence of ozone (Table 4). O₃/Nano-TiO₂ performance on the BrO₃⁻ formation inhibition improved with increasing nano-TiO₂ dosage (0 to 100 mg L⁻¹) and decreasing O₃ concentration (4.62 to 2.0 mg L⁻¹), with an initial Br⁻ concentration (1.2 to 0.4 mg L⁻¹), and solution pH (8.0 to 6.0). The oxidation of Br⁻ by *OH prevailed during the catalytic ozonation process. The generation of *OH amplified with the disintegration of O₃ by the nano-metal oxides. The presence of *OH led to the production of H₂O₂, which reduced HOBr/BrO⁻ to Br⁻, thus inhibiting the BrO₃⁻ formation. The nano-metal oxides reduced BrO₃⁻ formation only
at high dosages of both \(\text{O}_3 \) (4.62 mg L\(^{-1} \)) and catalyst (100 mg L\(^{-1} \)), making the technique expensive (Wu et al., 2014).

The application of nanoparticles in water treatment can be challenging because they have to be removed. Recent studies have used TiO\(_2\) nanoparticles embedded on textile or fabric, or nano-composite polymers with UV to degrade different organic compounds (Ahmari et al., 2016, 2018a, 2018b; Shakouri et al., 2016). These techniques could also be applied for ozonation with nano-metal oxide catalysts. Since very few studies have been published, more research is required to determine methods for regeneration of the catalyst and to identify other possible mechanisms behind the inhibition of \(\text{BrO}_3^- \) by nano-metal oxides.

3.3.2. Solid catalyst with support (Alumina)

3.3.2.1. Metal oxides.

There has only been one published study on the mitigation of \(\text{BrO}_3^- \) using metal oxides as support (Nie et al., 2013). In the study, manganese oxide, supported on mesoporous Al\(_2\)O\(_3\) (MnO\(_x\)/Al\(_2\)O\(_3\)), was applied as a catalyst to investigate the inhibition of \(\text{BrO}_3^- \) formation and the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of ozone. The results showed that MnO\(_x\)/Al\(_2\)O\(_3\) in the presence of \(\text{O}_3 \) could significantly control the formation of \(\text{BrO}_3^- \).

The combination of \(\text{O}_3 \) and MnO\(_x\)/Al\(_2\)O\(_3\) inhibited the \(\text{BrO}_3^- \) formation due to the redox reactions on the catalyst surface involving adsorption and decomposition of \(\text{O}_3 \). In the presence of MnO\(_x\)/Al\(_2\)O\(_3\) via interfacial electron transfer, \(\text{BrO}_3^- \) was reduced to \(\text{Br}^- \), thus inhibiting the formation of \(\text{BrO}_3^- \). A relative UV-visible (UV-vis) absorption spectrum of MnO\(_x\) showed multivalent oxidation states of Mn (Mn\(^{2+}\), Mn\(^{3+}\), and Mn\(^{4+}\)). A comparison of the UV-vis absorption spectra of MnO\(_x\) and MnO\(_x\)/Al\(_2\)O\(_3\) highlighted that the Mn\(^{2+}\) within the catalyst was responsible for the inhibition of \(\text{BrO}_3^- \) formation (Equations 15 and 16). Catalytic ozonation in the presence of MnO\(_x\)/Al\(_2\)O\(_3\) generated 77% less \(\text{BrO}_3^- \) compared to ozonation alone, suggesting that Mn\(^{2+}\) could reduce both \(\text{BrO}_3^- \) and \(\text{HOBr}/\text{BrO}^- \) to \(\text{Br}^- \). The following reactions pertaining to \(\text{BrO}_3^- \) inhibition were proposed by Nie et al. (2013):

\[
\begin{align*}
\text{O}_3 + \text{OH}^- & \rightarrow \text{HO}_2^- + \text{O}_2 \quad (11) \\
\text{O}_3 + \text{HO}_2 & \rightarrow \text{O}_2\cdot^- + \text{OH} + \text{O}_2 \quad (12) \\
\text{Mn}^{4+} + \text{O}_2\cdot^- & \rightarrow \text{Mn}^{3+} + \text{O}_2 \quad (13) \\
\text{Mn}^{3+} + \text{O}_2\cdot^- & \rightarrow \text{Mn}^{2+} + \text{O}_2 \quad (14) \\
\text{BrO}_3^- + \text{Mn}^{2+} & \rightarrow \text{Br}^- + \text{Mn}^{3+}/\text{Mn}^{4+} \quad (15) \\
\text{HBrO}/\text{BrO}^- + \text{Mn}^{2+} & \rightarrow \text{Br}^- + \text{Mn}^{3+}/\text{Mn}^{4+} \quad (16) \\
\text{HO}_2^- + \text{HO}_2^- & \rightarrow \text{O}_2 + \text{H}_2\text{O}_2 \quad (17)
\end{align*}
\]
Compared to ozonation alone, the \(\text{H}_2\text{O}_2 \) concentration in the \(\text{MnO}_x/\text{Al}_2\text{O}_3-\text{O}_3 \) system was lower. For TOC (associated with 2,4-D) removal under the absence and presence of influent \(\text{Br}^- \) (100 \(\mu \text{g L}^{-1} \)), the catalytic ozonation was more efficient than ozonation alone, \(\sim 70 \) and \(\sim 55\% \) versus 26 and 7\%, respectively. The \(\text{BrO}_3^- \) formation could be reduced by almost 75\% by ozonation with the \(\text{MnO}_x/\text{Al}_2\text{O}_3-\text{O}_3 \) catalyst. During the treatment, no specific ratio of manganese oxide/alumina and \(\text{O}_3 \) is required, which makes it easier for operation and monitoring (Nie et al., 2013). However, the \(\text{O}_3 \) dosage varies with the flow and chemical characteristics of the water to be treated, and hence must be calculated and monitored regularly. Similar to the mixed metal oxides, the costs for manufacturing the catalyst and its regeneration have not been investigated. Therefore, the catalyst cannot be commercially used until these attributes are fully explored.

3.3.2.2. Metal hydroxide/oxide.

Compared to other ions present in water (\(\text{Cl}^- \), \(\text{OH}^- \)), \(\text{BrO}_3^- \) showed higher adsorption and selectivity in the presence of iron (III) oxide-hydroxide or akaganeite (\(\beta \)-FeOOH) (Chitrakar et al., 2008; Xu et al., 2012). \(\beta \)-FeOOH/\(\text{Al}_2\text{O}_3 \) was employed as a catalyst for the inhibition of \(\text{BrO}_3^- \) formation during ozonation (Nie et al., 2014). In the absence of \(\text{O}_3 \), around 68\% of \(\text{BrO}_3^- \) adsorbed on the \(\beta \)-FeOOH/\(\text{Al}_2\text{O}_3 \), whereas complete inhibition of \(\text{BrO}_3^- \) was observed in the presence of \(\text{O}_3 \). During the catalytic ozonation, \(\text{BrO}_3^- \) was transformed to \(\text{Br}^- \). The surface \(\text{Fe}(\text{II}) \) of \(\beta \)-FeOOH/\(\text{Al}_2\text{O}_3 \) was accountable for the \(\text{BrO}_3^- \) formation inhibition according to the in-situ diffuse reflection UV-vis spectra. Ozone degradation in the presence of the catalyst (\(\beta \)-FeOOH/\(\text{Al}_2\text{O}_3 \)) produced \(\text{HO}_2^-/\text{O}_2^- \), which reacted with surface \(\text{Fe}(\text{III}) \) to generate \(\text{Fe}(\text{II}) \). This finding was confirmed by Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. In addition to the inhibition of \(\text{BrO}_3^- \) formation, TOC was also reduced by \(\beta \)-FeOOH/\(\text{Al}_2\text{O}_3 \) catalyzed ozonation when amitrole (AMT), diphenhydramine (DP), phenazone (PZ) or 2,4-D was present (Nie et al., 2014).

Layered double hydroxides (LDHs) are synthetic materials composed of positively charged layers of mixed metal hydroxides (Nalawade et al., 2009). LDHs have been popularly used as anion exchangers to adsorb contaminants (arsenate, nitrate, phosphate, and bromide) from aqueous solutions (Chitrakar et al., 2008; Goh et al., 2008; Palmer et al., 2009; Prasanna & Kamath, 2009; Rives, 2001). To examine the effect of organic pollutants with different structures (PZ, AMT and 2,4-D) on \(\text{BrO}_3^- \) formation mitigation during catalytic ozonation, Nie et al. (2015) employed Fe-Al layered double hydroxides (Fe-Al LDHs, the molar ratio of \(\text{Fe}(\text{II}) \) to \(\text{Fe}(\text{III}) \) of 1:10), which was supported and dispersed on mesoporous \(\text{Al}_2\text{O}_3 \). Unlike ozonation alone, Fe-Al LDHs/\(\text{Al}_2\text{O}_3 \) efficiently inhibited \(\text{BrO}_3^- \) formation.
and simultaneously removed organic pollutants. Surface Fe(II) reactive species were found to be responsible for mitigating BrO$_3^-$ formation during catalytic ozonation. Similar to β-FeOOH/Al$_2$O$_3$, Fe-Al LDHs/Al$_2$O$_3$ also inhibited BrO$_3^-$ formation efficiently in the presence of organics during the catalytic ozonation. The three organic pollutants investigated reduced BrO$_3^-$ formation in the following order: AMT < PZ < 2,4-D. The reaction between surface Fe(III) with HO$_2^-$ (contributed by organics) produced Fe(III) intermediate complex during the catalytic ozonation, which increased the generation of the Fe(II) species responsible for reducing BrO$_3^-$. Different rates of BrO$_3^-$ inhibition occurred over Fe-Al LDH/Al$_2$O$_3$ when different amounts of oxygen-containing functional groups were produced during catalytic ozonation of organics. Fe-Al LDHs/Al$_2$O$_3$ was reported to be effective for BrO$_3^-$ formation inhibition and organic removal during the catalytic ozonation (Nie et al., 2015).

Complete removal of BrO$_3^-$ can be achieved via the surface adsorption of akaganeite, even in the presence of organic compounds. Akaganeite can degrade organic pollutants via surface adsorption, wherein the oxygen-containing functional groups of the organic pollutants react with surface Fe(III) of the catalyst generating Fe(II) and reduce the organic pollutants (Nie et al., 2014). No specific ratio is required for the use of the catalyst with O$_3$, thus reducing operational and monitoring efforts. However, the costs and challenges involved in the synthesis of akaganeite make this catalyst less attractive. Moreover, the catalyst needs to be replenished, due to active sites being blocked after the adsorption of BrO$_3^-$. A summary of the mechanisms involved in BrO$_3^-$ inhibition by the reviewed heterogeneous catalytic ozonation processes is presented in Table 5. In addition to the BrO$_3^-$ inhibition mechanisms, Table 5 shows the efficiency of each catalyst in removing different types of organic compounds while inhibiting BrO$_3^-$ formation. The information in Table 5 is helpful in determining which catalyst to best use, based on the contaminants present in water.

3.4. Bromate formation mitigation by sonozone

Ultrasound in the presence of O$_3$, also known as sonozone (O$_3$/US), stimulates a combined effect, which makes it more effective than the individual effects of ozone or US. During sonozone, the transfer of O$_3$ to aqueous solution is enhanced by ultrasonic radiation through increasing the volumetric mass transfer coefficient. Sonication with pulses creates a vibrational disturbance in the solution that increases the specific surface area of bubbles and reduces the liquid film thickness (Zhang et al., 2007). Additionally, sonication can enhance the O$_3$ decomposition process, which
Table 5. Mechanisms for bromate control by heterogeneous catalytic ozonation in the presence of other organic compounds.

<table>
<thead>
<tr>
<th>Ozone/Catalyst</th>
<th>Removal of compounds</th>
<th>BrO$_3^-$ inhibition (%)</th>
<th>BrO$_3^-$ inhibition mechanisms</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>O$_3$/CeO$_2$ (Metal oxide)</td>
<td>Organic hydrocarbons and para-chloronitrobenzene (37.3-40.8%)</td>
<td>Variable up to 90±.</td>
<td>Inhibition of *OH formation prevented BrO$_3^-$ formation via adsorption of O$_3$ and O$_2$ on active Ce (IV) sites. Fe intermediates could partially consume the O$_3$, and H$_2$O$_2$ could reduce HBrO/BrO$^-$ to Br$^-$. A combination of low valent Fe intermediates and H$_2$O$_2$ production was responsible for BrO$_3^-$ inhibition.</td>
<td>Zhang et al. (2008)</td>
</tr>
<tr>
<td>O$_3$/Ce3Zr${1-x}$O$_2$ (Mixed metal oxide)</td>
<td>UV absorbing organic compounds at 64.8%</td>
<td>53</td>
<td>Ce3Zr${1-x}$O$_2$ promoted the O$_3$ decomposition in the ozonation reaction, thus limiting the BrO$_3^-$ formation pathway involving O$_3$ oxidation. Also, the catalyst promoted the formation of *OH. Ce3Zr${1-x}$O$_2$ effectively reduced BrO$_3^-$ formation and amplified the removal of organics because they are oxidized faster than Br$^-$.</td>
<td>Yang et al. (2011)</td>
</tr>
<tr>
<td>O$_3$/Al$_2$O$_3$/MnO$_x$ (Mixed metal oxide)</td>
<td>2,4-D (55–60%)</td>
<td>90</td>
<td>Multivalent oxidation states of Mn reduced the BrO$_3^-$ formation to Br$^-$ via interfacial electron transfer process.</td>
<td>Nie et al. (2013)</td>
</tr>
<tr>
<td>O$_3$/Fe-Cu-MCM-41</td>
<td>Diclofenac (77.6%)</td>
<td>88</td>
<td>Lewis acid sites and Cu content increased Fe-Cu-MCM-41 catalytic activity, generating more *OH, leading to higher accumulation of BrO$_3^-$.</td>
<td>Chen et al. (2018)</td>
</tr>
<tr>
<td>O$_3$/Fe-FeOOH/Al$_2$O$_3$ (Metal hydroxide)</td>
<td>2,4-D (64%), phenazone (33%), diphenhydramine (30%), and amitrole (14%)</td>
<td>~100 with 2,4-D</td>
<td>BrO$_3^-$ was adsorbed on the catalyst surface and reduced by surface Fe(II). Organic compounds contributed functional groups containing oxygen, which reacted with the surface Fe(III) generating more surface Fe(II).</td>
<td>Nie et al. (2014)</td>
</tr>
<tr>
<td>O$_3$/Fe-Al LDH/Al$_2$O$_3$ (Metal hydroxide)</td>
<td>2,4-D > phenazone > amitrole. Increased TOC removal (82%) with catalytic ozonation compared to ozonation alone (28%)</td>
<td>~100</td>
<td>During the phenazone degradation process, BrO$_3^-$ was partially reduced to Br$^-$, while a part was adsorbed by Fe(II) on the surface of a layered double hydroxide.</td>
<td>Nie et al. (2015)</td>
</tr>
<tr>
<td>O$_3$/SnO$_2$, O$_3$/TiO$_2$ (Nano metal oxide)</td>
<td>No data (BrO$_3^-$ only)</td>
<td>46, 74</td>
<td>Nano metal oxide promoted the formation of *OH generating H$_2$O$_2$, which reduced BrO$_3^-$ via partial HOBr reduction.</td>
<td>Wu et al. (2014)</td>
</tr>
</tbody>
</table>
further leads to the production of reactive \(\cdot OH \) (Destaillets et al., 2000). Compared to ozonation alone, sonozone provides stronger oxidation, as two \(\cdot OH \) are formed per \(O_3 \) molecule consumed, as shown in the following equations (Adewuyi, 2005):

\[
O_3 + \text{US} \rightarrow O_2 + O \quad (18)
\]

\[
O + H_2O \rightarrow 2\cdot OH \quad (19)
\]

where \(\text{US} \) refers to ultrasonic irradiation.

Researchers attributed the enhanced removal of pollutants by \(O_3/US \) to the elevated \(\cdot OH \) concentration, similar to the \(O_3/H_2O_2 \) system (Ji et al., 2012; Park et al., 2012). A study by Lu et al. (2015) investigated the formation of \(BrO_3^- \) under sonolytic ozonation using batch experiments. Factors influencing \(BrO_3^- \) formation include US power, \(O_3 \) dose, \(O_3 \) flow rate, contact time, and solution pH. Increasing \(O_3 \) doses (0.5, 1.5 and 2.8 mg L\(^{-1}\)), along with increasing US power, synergized more \(BrO_3^- \) formation. \(BrO_3^- \) concentrations at all \(O_3 \) dosages increased until 66 W of the US, and then remained constant up to 100 W. This effect was more pronounced at the highest ozone dose (2.8 mg L\(^{-1}\)). For \(O_3/US \), \(BrO_3^- \) concentrations below MCL were only observed at \(O_3 \) of 0.5 mg L\(^{-1}\) with US of 0-100 W and \(O_3 \) of 1.5 mg L\(^{-1}\) for US < 66 W. Increasing the \(O_3 \) flow rate (0.03 to 0.2 L min\(^{-1}\)) led to more \(BrO_3^- \) formation. \(O_3/US \) was found to produce higher \(BrO_3^- \) concentrations than \(O_3 \) alone (except at \(O_3 \) flow rate of 0.03 L min\(^{-1}\)). Increasing the duration (within a range of 0 to 15 min) of \(O_3/US \) treatment resulted in more \(BrO_3^- \) formation, which remained constant beyond 15 min. \(BrO_3^- \) formation increased with solution pH (based on pH 5.5, 7.0, and 9.2) for both \(O_3 \) alone and \(O_3/US \).

Sonozone reduced \(BrO_3^- \) formation substantially in the presence of ethanol, a radical scavenger. This was because scavenging \(\cdot OH \) inhibited the \(BrO_3^- \) formation pathway at \(HOBr^- \) (as explained in detail in the introduction section of this review). Lu et al. (2015) further reported that bromine and its intermediates (\(HOBr/BrO^- \)) played an important role in \(BrO_3^- \) formation. In the presence of \(HOBr/BrO^- \), the oxidation process is described as:

\[
\cdot OH + HOBr/BrO^- \rightarrow BrO^- \rightarrow \ldots \rightarrow BrO_3^- \quad (20)
\]

During sonozone, US transformed \(HOBr^-/BrO^- \) to \(Br^- \) via the production of \(H_2O_2 \), as expressed below:

\[
US \rightarrow \cdot OH \text{ (bulk, aq)} \rightarrow H_2O_2 \leftrightarrow HO_2^- + H^+ \quad (21)
\]

\[
HOBr/BrO^- + H_2O_2/HO_2^- \rightarrow Br^- \quad (22)
\]

As shown in Equations 21 and 22, the increase of the \(H_2O_2 \) formation via the recombination of \(\cdot OH \) limited the \(HOBr/BrO^- \) conversion to
BrO$_3^-$). This explains less BrO$_3^-$ formation under O$_3$/US compared to O$_3$ at low O$_3$ doses.

With very limited published research related to sonozone and BrO$_3^-$ formation (Lu et al., 2015), there is not enough information to highlight and compare the pros and cons of the technique. Although sonozone can enhance the degradation of target pollutants, more studies are needed to investigate the specific O$_3$ flowrate, US power, and treatment period for the BrO$_3^-$ inhibition, with varying water quality parameters. The costs of sonicator and US production, and the reliability and detailed conditions of the process to reduce BrO$_3^-$ formation have yet to be investigated.

4. Future outlook and direction

The presence of Br$^-$ in both surface water and groundwater brings a potential risk of generating the undesired by-product, BrO$_3^-$, during ozone-based water treatment. For more than two decades, BrO$_3^-$ mitigation, along with the degradation of contaminants by EOPs, have been investigated. The most effective method to control BrO$_3^-$ is to inhibit its formation during the ozonation process (von Gunten, 2003b). This paper consolidates and critically reviews the published literature on EOPs. Based on the reviewed information, more work is required before some of these technologies can be put in practice, and the following suggestions for future studies can help move them toward commercialization:

1. The perozone process is a well-understood technique and hence, there is almost no room for improvement for this technology. The presence of O$_3$, H$_2$O$_2$, and $^\cdot$OH have different effects during the process of the e-peroxone process; therefore, it is important to methodically investigate the best-operating conditions for an e-peroxone process for different water characteristics. Moreover, it is important to verify that both the inhibition of BrO$_3^-$ and oxidation of organics occur. The superiority of the PMS/O$_3$ system is the production of SO$_4$$^\cdot$, a radical that is more powerful than $^\cdot$OH. The main disadvantage of the system as a control method for BrO$_3^-$ is its infancy, with only one existing research study. Therefore, the system will require much more research on the BrO$_3^-$ formation mechanism, as well as the effect of water matrices, before the technology can be put to use. Since carbon materials, such as reduced graphene oxide, showed promising results in inhibiting BrO$_3^-$ formation during ozonation, future work can involve creating carbon-based and other cost-effective and environmentally friendly materials, with higher reduction and adsorption capacities, to control BrO$_3^-$ formation during SO$_4$$^\cdot$ based EOPs.
<table>
<thead>
<tr>
<th>Techniques (full/pilot/bench-scale)</th>
<th>Cost-effective</th>
<th>Chemical cost and handling</th>
<th>Extra power required</th>
<th>Specific ratio needed</th>
<th>Automation</th>
<th>BrO₃⁻ formation reduced by organics</th>
<th>O₃ dose increases BrO₃⁻ formation</th>
<th>Regeneration</th>
<th>Catalyst Doping</th>
<th>If initial Br⁻ conc. increases, then</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxone (full scale)</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>BrO₃⁻++</td>
<td>Liquid</td>
</tr>
<tr>
<td>Electro- perozone (pilot scale)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>BrO₃⁻++</td>
<td>Liquid</td>
</tr>
<tr>
<td>Photolytic ozonation (pilot scale)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>BrO₃⁻++</td>
<td>Liquid/radiation</td>
</tr>
<tr>
<td>Mixed oxides (bench-scale)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>BrO₃⁻++</td>
<td>Solid</td>
</tr>
<tr>
<td>Mixed metal oxides (bench-scale)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>BrO₃⁻++</td>
<td>Solid</td>
</tr>
<tr>
<td>Ce-MCM (pilot scale)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>BrO₃⁻++</td>
<td>Solid</td>
</tr>
<tr>
<td>Nano metal oxides (bench-scale)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Varies</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>BrO₃⁻++</td>
<td>Solid</td>
</tr>
<tr>
<td>Layered double hydroxide (bench-scale)</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NC</td>
<td>Solid</td>
</tr>
<tr>
<td>Iron oxide hydroxide (bench-scale)</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NC</td>
<td>Solid</td>
</tr>
<tr>
<td>Manganese oxide (bench-scale)</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NC</td>
<td>Solid</td>
</tr>
<tr>
<td>Sonozone (bench-scale)</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>NA</td>
<td>Yes</td>
<td>N/A</td>
<td>N/A</td>
<td>BrO₃⁻++</td>
<td>Liquid/radiation</td>
</tr>
</tbody>
</table>

Note: NA is Not available, N/A Not applicable, variable means changes randomly, ++ means increases, NC is no change.
2. Photolytic ozonation was found to inhibit BrO₃⁻ formation, but its efficiency reduces in the presence of HA and/or NOM, which absorb UV radiation, thereby reducing the potential of this technique. Hence, there is a need to find ways to increase the efficiency of O₃/UV in the presence of NOM or HA. One suggestion is to increase the UV intensity or use a UV lamp emitting a wavelength below 200 nm. More research is needed to comprehend the detailed mechanisms of BrO₃⁻ mitigation by O₃-VUV. For example, the occurrence of bromine species during the O₃-VUV process and formation of H₂O₂ should be examined.

3. The addition of ferrate(VI) in water reduces BrO₃⁻ to a non-detectable concentration in the presence of phosphate. However, research is needed to investigate the role of phosphate in inhibiting BrO₃⁻ formation in the ferrate(VI)-O₃ system. Exploring the cost involved in using ferrate as a catalyst would be useful.

4. Layered double hydroxides and metal hydroxides reduced BrO₃⁻ formation almost completely, but the catalyst surface became saturated after a while as Fe²⁺ was converted to Fe³⁺. Mn-MCM-41 reduced 96.7% BrO₃⁻ formation at pH 6.5, whereas Ce-MCM-48 removed BrO₃⁻ up to 91% with efficient micro-pollutant removal and was reusable as a catalyst, as opposed to non-reusable layered double hydroxides and metal hydroxides. Therefore, enhancing the regeneration or achieving a decrease in surface saturation of hydroxide catalysts is a topic worth investigating.

5. Suggested broad research topics for BrO₃⁻ mitigation include: the mechanisms of O₃ reaction with reduced metals; quantification of other ozonation by-products (e.g., epoxides, haloacetamides, multifunctional carbonyl-containing compounds, and peroxides) in the solution and at the catalyst surface; effects of solution pH, temperature, and radical scavengers on catalytic ozonation; leaching of metals from the catalyst; and identification of the catalyst service life.

6. Albeit sonozone was found to inhibit BrO₃⁻ formation under specific conditions, considering the limited amount of published literature, research on the effects of ozone CT and US power on the effectiveness of BrO₃⁻ reduction for water with different chemical characteristics (NOM, HA, and Br⁻ concentrations) is needed. Future studies should also identify the formation and effects of any sonozone by-products.

7. No mathematical models have been developed on BrO₃⁻ removal or formation inhibition using EOPs. Therefore, the modeling of BrO₃⁻ control by EOPs should be explored in future studies.

8. The technical and economic feasibility of a technology makes it viable for being employed in the industry. Table 6 briefly overviews the economic and technical characteristics of different enhanced ozonation
processes for BrO$_3^-$ control. Additionally, Table 6 specifies the different scales (full, pilot or bench scale) at which the techniques have been explored so far. Based on the literature reviewed, most of the enhanced ozonation techniques (except perozone) for the abatement of BrO$_3^-$ formation have been achievable at bench scales; however, there is a dearth of comprehensive studies targeting the economic feasibility of the discussed techniques in a full-scale capacity.

9. Future research should evaluate the costs of BrO$_3^-$ control by EOPs. The capital costs (reactor, piping, valves, site work, and contractor operations and procedures) and operating and maintenance costs (part replacement, labor, analytical work, chemical, and electrical) for each process should be evaluated with respect to water quality, flow rate, influent Br$^-$ concentration, and required removal efficiency. These cost evaluations must be executable under similar conditions/constraints to allow a direct and fair comparison of different EOPs.

5. Conclusions

This paper reviews BrO$_3^-$ formation mechanisms, along with inhibition and removal performances by enhanced ozonation techniques, in comparison with ozonation alone. Additionally, the paper highlights the advantages and disadvantages associated with each enhanced ozonation technique. Among the techniques reviewed and discussed, the perozone process is the most explored technique with successful BrO$_3^-$ control, whereas e-peroxone is an emerging process with the same performance. Catalytic ozonation is a promising technique to limit BrO$_3^-$ formation. Ozonation with catalysts (akaganeite, layered double hydroxide, ferrate, and Ce-MCM) showed > 91% efficiency in BrO$_3^-$ formation inhibition. However, only Ce-MCM can be regenerated. With the current information, sonozone emerges as the least efficient technique. Nano-metal oxides look promising for BrO$_3^-$ reduction efficiencies but require further research since limited data were found on BrO$_3^-$ mitigation by these catalysts.

It will be useful for water utilities to employ a technique that will reduce both BrO$_3^-$ formation and carcinogenic risk (due to the formation of other DBPs) in treated water. Before implementing an enhanced ozonation technique, the utility must understand the limitations of the technique, including the level of both regulated (BrO$_3^-$) and unregulated (aldehydes, ketones, and carboxyl acids) DBPs that high O$_3$ dosages may produce. Considering these technologies, utilities employing ozonation must consider catalyst costs (synthesis, installation, maintenance, and replacement), energy consumption, personnel training requirements, and DBP identification before implementation.
Acknowledgments

The authors would like to express their sincere gratitude to the Moorhead Water Treatment Plant, Minnesota, for hiring the first author (R. Joshi) as an intern. The internship at the plant greatly helped her in understanding of different treatment processes, and allowed her to gain hands-on experience with different analytical and operational techniques. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Moorhead Water Treatment Plant.

ORCID

Amit Bhatnagar 0000-0002-3565-9943
Eakalak Khan 0000-0002-6729-2170

References

Xu, C., Shi, J., Zhou, W., Gao, B., Yue, Q., & Wang, X. (2012). Bromate removal from aqueous solutions by nano crystalline akaganeite (β-FeOOH)-coated quartz sand

