Research Experience for Teachers: Mitigating Natural Disasters

Lesson \#2 Center and Spread

Subject Area	Mathematics
Grade Level	$9-12$
Prior knowledge	None
Time required	2 class periods

Summary

Descriptive statistics requires the analyst to select the display and summary statistics that are appropriate for the data. In this lesson students will calculate summary statistics to describe a set of numbers. Students will learn that a single measure of center can be misleading. However, a measure of center paired with an appropriate measure of variability and display tells the story of the data.

Education Standard

NCTM Principals and Standards
Select and use appropriate statistical methods to analyze data

- Find, use, and interpret measures of center and spread, including mean and interquartile range.

I can statement

I can describe data using measures of center and spread.
I can display single variable data with a box plot.

Introduction
Dr. Nic's Math and Stats video: Understanding Summary statistics
https://creativemaths.net/videos/video-mean/

Notes and Examples
In addition to the shape of a set of numbers, descriptive statistics is concerned with location and spread.

A Measure of Central Tendency is a summary statistic that describes the location of the center or typical value of a set of numbers.

$$
\begin{aligned}
& \text { Mean - is the arithmetic average of a set of numbers. } \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n} \\
& \text { Median - is the middle number of a set of numbers } \\
& \text { Mode - is the response most often observed }
\end{aligned}
$$

The median is the middle value in a set of numbers. To find the median, arrange your data from smallest to largest and find the number that splits the data set in half.

In example A, the size of the data set is an odd number. The median in example A is 12 . There are six values less than 12 and six values greater than 12.

In example B, the size of the data set is an even number. The median is 28 , the average (mean) of the two middle numbers, 27 and 29.

The median is a robust measure of center. This means that it is not influenced by extreme values. In example C, the median is 46 . If you replace the largest four values with much larger values, the median is unchanged.
A.

Median Odd	
	23
	21
	18
	16
	15
	13
	12
	10
	9
	7
	6
	5
	2

B.

C.

Median	Median Fixed
69	112
56	93
54	89
52	82
47	47
46	46
46	46
45	45
43	43
36	36
35	35
34	34
31	31

Calculate the mean for the examples above:

A. $\bar{x}=$ \qquad
B. $\bar{x}=_28.214$ \qquad
C. $\bar{x}=$ \qquad

$$
\bar{x}=
$$

Notice that in example C, unlike the median, the mean value is sensitive to extreme values.

A measure of center is more meaningful when it is paired with a measure of spread. A Box Plot effectively displays the median and the range of a set of numbers.

An Outlier is an observation that is very different from the rest of the data. An observation may be considered an outlier if it is below the lower fence ($\mathrm{Q} 1-1.5 \bullet I \mathrm{QR}$) or above the upper fence (Q3 + 1.5•IQR).

In the space below, construct a box plot for the adjusted data in example C from above.

Formative assessment

Use the data in example B and subtract ten from the four smallest values. That is, replace 23 with 13,22 with 12,19 with 9 , and 17 with 7 . How will this change to the data effect the mean of the data?

$$
\text { Check your answer by calculating the mean of the adjusted data from example } B \text {. } \overline{\mathrm{x}}=
$$

Answers to Formative assessment

Use the data in example B and subtract ten from the four smallest values. That is, replace 23 with 13,22 with 12,19 with 9 , and 17 with 7 . How will this change to the data effect the mean of the data?

This will make the mean smaller. It will pull the mean to the left of the median.

Check your answer by calculating the mean of the adjusted data from example $B . \quad \bar{x}=25.357$

Author

Martha J. Nelson

Acknowledgements

This curriculum was developed under the National Science Foundation RET grant \#1953102.
However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Exercise \#2 Analyzing Single Variable Data

The Data:

The data in for this exercise was collected from a model of the intersection of Labeaux and County Road 18 in Albertville MN created using PTV VISSIM software. Videos of traffic simulation which generated the data:
0% AV saturation: https://www.youtube.com/watch? $\mathrm{v}=\mid \mathrm{kwW}$ WUVd-EAI
90\% AV saturation: https://www.youtube.com/watch?v=S3Czr_taMEO
3D view: https://www.youtube.com/watch?v=ylzQreGefgY

The Variables:

The software collected data on the following variables:
Average Vehicle Delay is the average number of seconds a vehicle is stopped at the intersection.
Average Queue Length is the average length in meters of the line of vehicles stopped.
Maximum Queue Length is the maximum length in meters of the line of vehicles stopped.
Number of Queue Stops is the number of stops made by all vehicles at the intersection.
These variables are measured at each entrance to the intersection:
Westbound (WB)
Southbound (SB)
Eastbound (EB)
Northbound (NB).

Each variable is measured for seven autonomous vehicle saturation rates:
0\% AV - all human driven cars
15\% AV - 85\% human driven cars
45\% AV - 55\% human driven cars
75\% AV - 25\% human driven cars
$\mathbf{3 0 \%}$ AV - $\mathbf{7 0 \%}$ human driven cars
60\% AV - 40\% human driven cars
90\% AV - 10\% human driven cars

Each simulation lasted 90 minutes (5400 seconds) with data collected every 15 minutes (900 seconds) and the first and last 15-minute intervals were discarded. Therefore, the data is collected for four time intervals for each run of the simulation:
$\mathbf{9 0 0}-1800$ seconds, $\mathbf{1 8 0 0} \mathbf{- 2 7 0 0}$ seconds, 2700-3600 seconds, 3600-4500 seconds
At each $A V$ saturation rate, the simulation was run ten times. As a result, at each variable at each $A V$ saturation rate there are 160 observations. One for each of the four directions at each of the four time intervals for each of the ten simulations.

At each saturation rate, the autonomous vehicles are tested using three different driving behaviors:

```
Cautious, Normal, Aggressive
```

	Queue stops									
	0% AV									
Ru n	TIMEINT		W		QSTOPS	B	QSTOPS	B	QSTOPS	B
Q QSTOPS										
1	$900-1800$		1	123	2	312	3	113	4	274
1	$1800-2700$		1	104	2	299	3	100	4	279
1	$2700-3600$		1	127	2	234	3	124	4	297
1	$3600-4500$		1	157	2	247	3	142	4	228
2	$900-1800$		1	139	2	258	3	173	4	274
2	$1800-2700$		1	184	2	258	3	116	4	269
2	$2700-3600$		1	152	2	285	3	119	4	263
2	$3600-4500$		1	141	2	303	3	102	4	208
3	$900-1800$		1	117	2	271	3	134	4	252
3	$1800-2700$		1	116	2	291	3	117	4	235
3	$2700-3600$		1	107	2	249	3	134	4	280
3	$3600-4500$		1	126	2	233	3	110	4	207
4	$900-1800$		1	105	2	228	3	103	4	274
4	$1800-2700$		1	135	2	273	3	120	4	271
4	$2700-3600$		1	110	2	289	3	141	4	297
4	$3600-4500$		1	131	2	329	3	121	4	257
5	$900-1800$		1	176	2	267	3	122	4	301
5	$1800-2700$		1	138	2	248	3	131	4	262
5	$2700-3600$		1	167	2	280	3	128	4	278
5	$3600-4500$		1	141	2	312	3	139	4	289
6	$900-1800$		1	128	2	254	3	117	4	237
6	$1800-2700$		1	104	2	243	3	102	4	294
6	$2700-3600$		1	145	2	301	3	95	4	249
6	$3600-4500$		1	157	2	246	3	124	4	294
7	$900-1800$		1	107	2	311	3	139	4	280
7	$1800-2700$		1	148	2	262	3	135	4	320
7	$2700-3600$		1	113	2	289	3	102	4	253
7	$3600-4500$		1	132	2	275	3	108	4	267
8	$900-1800$		1	148	2	238	3	120	4	285
8	$1800-2700$		1	130	2	252	3	165	4	294
8	$2700-3600$		1	143	2	306	3	129	4	250
8	$3600-4500$		1	122	2	285	3	158	4	255
9	$900-1800$		1	141	2	240	3	150	4	246
9	$1800-2700$		1	133	2	264	3	144	4	275
9	$2700-3600$		1	140	2	269	3	145	4	328
9	$3600-4500$		1	143	2	233	3	120	4	256
10	$900-1800$		1	125	2	244	3	165	4	257
10	$1800-2700$		1	135	2	278	3	144	4	258
10	$2700-3600$		1	132	2	265	3	122	4	289

\qquad

x10 cise\#2 Analyzing Single variable Data Answers

Using the queue stop data for $0 \% \mathrm{AV}$ at each intersection entrance direction:

1. Sort the data from smallest to largest.
2. Calculate the Median and the Mean.
3. Construct a Boxplot.
4. Report the Range and the Interquartile Range (IQR).

Westbound:

Southbound:

Eastbound:

Northbound:

Mean: 133.9

5-number summary: (104, 122.5, 133.5, 143, 184)
Range: 80
Median: 133.5

IQR: 20.5

Mean: 269.95
5-number summary: $(228,247.5,268,289,329)$
Range: 101
Median: 268
IQR: 41.5

Mean: 127.5
5-number summary: $(95,116.5,124,140,173)$
Range: 78
Median: 124

IQR: 23.5

Mean: 268.025
5-number summary: (207, 252.5, 270, 287, 328)
Range: 121
Median:270

IQR: 34

