Tissue Temperature Increase Using Immersion Therapeutic Ultrasound At 3MHz, 10 Minutes, 1.5 cm Depth, With Varying Intensities Of 1.0W/cm² and 1.5W/cm²

Keli Poirier, ATC, LAT*, Kara Gange, PhD, ATC, LAT*

*North Dakota State University Department of Health, Nutrition and Exercise Sciences, Fargo ND, USA

Abstract

- **Background:** The purpose of this study was to examine the thermal effects of both 1.0 watts per centimeter squared (W/cm²) and 1.5 W/cm² at a frequency of 3 megahertz (MHz) with continuous US while the triceps surae was immersed in 37°C water.

- **Methods:** Twenty college-students, 10 males and 10 females (M=23.45±1.986 years), participated in 2-sessions separated by a minimum 48hr. A thermocouple was inserted into the gastrocnemius, measuring intramuscular temperature during an immersion US treatment.

- **Results:** There was not a significant mean difference in intramuscular temperature increases between intensities at 0 minutes (M=0.1230, SE=0.5617), 5 minutes (M=0.3570, SE=0.5617), and 10 minutes (M=0.8889, SE=0.5691) The level of significance was set at p≤0.05.

- **Conclusion:** This study indicated no significant difference in tissue temperature increases between intensities 1.0W/cm² and 1.5W/cm² throughout a 10-minute treatment. In addition, the research showed no evidence of vigorous heating after 5 minutes of treatment.

- **Keywords:** water, thermocouples, immersion therapeutic ultrasound, intramuscular temperature.

Methods

Experimental Design: The study was a repeated measures design. Each subject received both interventions. The independent variable was intensity (1.0 W/cm² and 1.5 W/cm²), and the dependent variable was gastrocnemius intramuscular temperature.

Procedures:
- Subjects were positioned prone on a treatment table with their left gastrocnemius exposed.
- The treatment and insertion area were determined using a carpenters square with a level affixed on top.
- Diagnostic Ultrasound was used over the treatment and insertion area to measure adipose thickness and scan for any abnormalities.
- A 20 gauge 1.16 needle catheter was inserted into the gastrocnemius, then the needle was retracted (Figure 1).
- A thermocouple was inserted through the catheter to a depth of 1.5 cm, then the catheter was removed.
- The thermocouple was secured to the leg and the template (Figure 2) was attached using Powerflex.
- Subjects were positioned in a seated position with the left leg submerged in the prepared water bucket (Figure 3).
- The US treatment began with the following parameters: frequency, 3MHz; Time, 10 minutes; intensity 1.0 W/cm²; duty cycle, continuous US.
- During the second session the intensity was increased to 1.5 W/cm².
- The second session was within 10 days of the first session and at least 48-hours after the first.
- Subjects were returned to the prone position and the thermocouple was removed.
- The subject's leg was cleaned with an alcohol pad then covered the insertion site with a Band-Aid.

Statistical Design: A 2 x 3 Univariate Mixed Model Repeated Measures ANOVA was run to determine the differences in intramuscular tissue temperature at 0 minutes, 5 minutes, and 10 minutes, between the 2 intensities. The level of significance was set at p≤0.05.

Results

There was a significant effect on time F(2,113) = 72.31, p<0.001. There was no significant interaction between time and intensity F(2,113) = 0.588.

Research Questions

1. What is the overall tissue temperature increase with the parameters of 3 MHz, continuous US, 1.5 cm depth, treatment time of 10 minutes, 37°C water, at the intensity of 1.5 W/cm², using the Dynaton Solaris Therapeutic Ultrasound Machine?

2. What is the overall tissue temperature increase with the parameters of 3 MHz, continuous US, 1.5 cm depth, treatment time of 10 minutes, 37°C water, at the intensity of 1.5 W/cm², using the Dynaton Solaris Therapeutic Ultrasound Machine?

3. Is there a statistical difference in the overall tissue temperature increase with the parameters of 3 MHz, continuous US, 1.5 cm depth, a treatment time of 10 minutes, with 37°C water, with the intensities of 1.0W/cm² and 1.5 W/cm², using the Dynaton Solaris Therapeutic Ultrasound Machine?

Acknowledgements

We would like to extend a thank you to the MS Athletic Training Education Program for funding this research.

Conclusions and Clinical Significance

The primary conclusion drawn from the results of this study indicate that there was no significant difference in intramuscular temperature increases between 1.0 W/cm² and 1.5 W/cm² intensities with the following parameters: continuous US, 10 minutes, 3 MHz, 37°C water, and 1.5 cm depth immersion ultrasound treatment with the Dynatron Solaris® 700 Series Ultrasonic machine (Table 1). Increasing the intensity by 50%, as originally theorized, did not have any statistical or clinical significance. Clinically, the results of the research show that if 1.0 W/cm² or 1.5 W/cm² are used during an immersion US treatment the intramuscular temperature will increase at the same rate producing the same thermal effects. In addition, a longer treatment time than 5 minutes should be selected when vigorous heating effects are the treatment goal. A 4°C temperature increase was not reached by 5 minutes with either intensity (Table 2).

![Figure 1: 20 gauge 1.16 needle catheter insertion](Image 2)

![Figure 2: Template 1 cm thick](Image 3)

![Figure 3: Patient positioning and data collection](Image 4)

![Figure 4: Template 1 cm thick](Image 5)

![Figure 5: Patient positioning and data collection](Image 6)

![Table 1](Image 7)

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>Intensity (W/cm²)</th>
<th>Mean Tissue Temperature Increase (°C)</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>0.35</td>
<td>0.56</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>0.38</td>
<td>0.56</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.37</td>
<td>0.56</td>
</tr>
<tr>
<td>0</td>
<td>1.5</td>
<td>0.36</td>
<td>0.56</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.37</td>
<td>0.56</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>0.39</td>
<td>0.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (Minutes)</th>
<th>Intensity (W/cm²)</th>
<th>Mean Tissue Temperature Increase (°C)</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>0.36</td>
<td>0.56</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>0.37</td>
<td>0.56</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.36</td>
<td>0.56</td>
</tr>
<tr>
<td>0</td>
<td>1.5</td>
<td>0.36</td>
<td>0.56</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>0.37</td>
<td>0.56</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>0.36</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Future Research

- Future research should be conducted to examine intramuscular temperature increase with a 75% or 100% intensity increase during an immersion US treatment.
- Other US machines have been suggested to significantly raise tissue temperature more efficiently than the Dynatron Solaris® 700 Series Ultrasound machine. These parameters should be examined further on various US machines to determine if a 50% intensity increase would produce significant intramuscular temperature increases.
- Future studies may also wish to study the effect of such a treatment on damaged or injured tissue for which therapeutic ultrasound is most commonly used.

References

Table 1: Estimated mean intramuscular temperature increase from 0, 5, and 10 minutes for both 1.0W/cm² and 1.5W/cm² intensities.

Table 2: Estimated mean overall intramuscular temperature increase between 0, 5, and 10 minutes.