A local ring has only finitely many semidualizing modules up to isomorphism

Saeed Nasseh Sean Sather-Wagstaff

Department of Mathematics North Dakota State University

31 March 2012 2012 Spring AMS Central Section Meeting University of Kansas Special Session on Singularities in Commutative Algebra and Algebraic Geometry

Assumption

 (R, \mathfrak{m}, k) is a local ring

Assumption

 (R, \mathfrak{m}, k) is a local ring

Definition (Foxby '72, Vasconcelos '74)

A finitely generated *R*-module is semidualizing if $R \cong \operatorname{Hom}_{R}(C, C)$ and $\operatorname{Ext}_{R}^{i}(C, C) = 0$ for all $i \ge 1$.

Assumption

 (R, \mathfrak{m}, k) is a local ring

Definition (Foxby '72, Vasconcelos '74)

A finitely generated *R*-module is semidualizing if $R \cong \operatorname{Hom}_{R}(C, C)$ and $\operatorname{Ext}_{R}^{i}(C, C) = 0$ for all $i \ge 1$.

Example

• *R* is a semidualizing *R*-module.

Assumption

 (R, \mathfrak{m}, k) is a local ring

Definition (Foxby '72, Vasconcelos '74)

A finitely generated *R*-module is semidualizing if $R \cong \operatorname{Hom}_{R}(C, C)$ and $\operatorname{Ext}_{R}^{i}(C, C) = 0$ for all $i \ge 1$.

Example

- R is a semidualizing *R*-module.
- ② D is dualizing for R if and only if it is semidualizing for R and id_R(D) < ∞.</p>

Assumption

 (R, \mathfrak{m}, k) is a local ring

Definition (Foxby '72, Vasconcelos '74)

A finitely generated *R*-module is semidualizing if $R \cong \operatorname{Hom}_{R}(C, C)$ and $\operatorname{Ext}_{R}^{i}(C, C) = 0$ for all $i \ge 1$.

Example

R is a semidualizing *R*-module.

② D is dualizing for R if and only if it is semidualizing for R and id_R(D) < ∞.</p>

Notation

 $\mathfrak{S}(R) = \{\text{isomorphism classes of semidualizing } R \text{-modules}\}.$

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos '74)

If *R* is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos '74)

If *R* is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff '08)

If R is Cohen-Macaulay and contains a field, then $\mathfrak{S}(R)$ is finite.

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos '74)

If *R* is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff '08)

If R is Cohen-Macaulay and contains a field, then $\mathfrak{S}(R)$ is finite.

Outline of Proof.

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$.

Saeed Nasseh, Sean Sather-Wagstaff A local ring has only finitely many semidualizing modules

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos '74)

If *R* is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff '08)

If R is Cohen-Macaulay and contains a field, then $\mathfrak{S}(R)$ is finite.

Outline of Proof.

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$. Let $\mathbf{x} \in \mathfrak{m}R'$ be a maximal R'-sequence.

Saeed Nasseh, Sean Sather-Wagstaff A local ring has only finitely many semidualizing modules

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos '74)

If *R* is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff '08)

If R is Cohen-Macaulay and contains a field, then $\mathfrak{S}(R)$ is finite.

Outline of Proof.

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$. Let $\mathbf{x} \in \mathfrak{m}R'$ be a maximal R'-sequence. Then $R'/(\mathbf{x})$ is artinian and $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(R') \hookrightarrow \mathfrak{S}(R'/(\mathbf{x}))$.

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos '74)

If *R* is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff '08)

If R is Cohen-Macaulay and contains a field, then $\mathfrak{S}(R)$ is finite.

Outline of Proof.

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$. Let $\mathbf{x} \in \mathfrak{m}R'$ be a maximal R'-sequence. Then $R'/(\mathbf{x})$ is artinian and $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(R') \hookrightarrow \mathfrak{S}(R'/(\mathbf{x}))$. A result of Happel essentially shows that $\mathfrak{S}(R'/(\mathbf{x}))$ is finite.

Definition

A commutative differential graded (DG) R-algebra is

Definition

A commutative differential graded (DG) *R*-algebra is

• a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with

Definition

A commutative differential graded (DG) *R*-algebra is

- a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
- **a differential**, i.e., a sequence of *R*-linear maps $\partial_i^A : A_i \to A_{i-1}$ such that $\partial_i^A \partial_{i+1}^A = 0$ for all *i*, such that

Definition

A commutative differential graded (DG) *R*-algebra is

- a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
- **a differential**, i.e., a sequence of *R*-linear maps $\partial_i^A : A_i \to A_{i-1}$ such that $\partial_i^A \partial_{i+1}^A = 0$ for all *i*, such that
- ∂^{A} satisfies the Leibniz Rule: for all $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$ $\partial^{A}_{i+j}(a_{i}a_{j}) = \partial^{A}_{i}(a_{i})a_{j} + (-1)^{i}a_{i}\partial^{A}_{j}(a_{j}).$

Definition

A commutative differential graded (DG) *R*-algebra is

- a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
- **2** a differential, i.e., a sequence of *R*-linear maps $\partial_i^A : A_i \to A_{i-1}$ such that $\partial_i^A \partial_{i+1}^A = 0$ for all *i*, such that
- ∂^{A} satisfies the Leibniz Rule: for all $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$ $\partial^{A}_{i+j}(a_{i}a_{j}) = \partial^{A}_{i}(a_{i})a_{j} + (-1)^{i}a_{i}\partial^{A}_{j}(a_{j}).$

Example (The ground ring)

R is a DG R-algebra

Definition

A commutative differential graded (DG) *R*-algebra is

- a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
- ② a differential, i.e., a sequence of *R*-linear maps ∂_i^A : $A_i \rightarrow A_{i-1}$ such that $\partial_i^A \partial_{i+1}^A = 0$ for all *i*, such that
- ∂^{A} satisfies the Leibniz Rule: for all $a_{i} \in A_{i}$ and $a_{j} \in A_{j}$ $\partial^{A}_{i+j}(a_{i}a_{j}) = \partial^{A}_{i}(a_{i})a_{j} + (-1)^{i}a_{i}\partial^{A}_{j}(a_{j}).$

Example (The ground ring)

R is a DG R-algebra

Example (The Koszul complex)

 $K = K^{R}(\mathbf{x})$ is a DG *R*-algebra for each sequence $\mathbf{x} \in R$.

A DG *A*-module is a graded *A*-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential $\partial_i^M : M_i \to M_{i-1}$ that satisfies the Leibniz Rule.

A DG *A*-module is a graded *A*-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential $\partial_i^M : M_i \to M_{i-1}$ that satisfies the Leibniz Rule.

Example (The ground ring)

A DG *R*-module is a bounded below *R*-complex,

A DG *A*-module is a graded *A*-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential $\partial_i^M : M_i \to M_{i-1}$ that satisfies the Leibniz Rule.

Example (The ground ring)

A DG *R*-module is a bounded below *R*-complex, e.g., a projective resolution of an *R*-module.

A DG *A*-module is a graded *A*-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential $\partial_i^M : M_i \to M_{i-1}$ that satisfies the Leibniz Rule.

Example (The ground ring)

A DG *R*-module is a bounded below *R*-complex, e.g., a projective resolution of an *R*-module.

Example (The Koszul complex)

 $K \otimes_R M$ is a DG *K*-module for each DG *R*-module *M*.

Semi-free DG Modules

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module *M* is semi-free if the underlying A^{\natural} -module M^{\natural} has a graded basis.

Semi-free DG Modules

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module *M* is semi-free if the underlying A^{\natural} -module M^{\natural} has a graded basis.

Note

The boundedness condition on *M* is important here.

Semi-free DG Modules

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module *M* is semi-free if the underlying A^{\natural} -module M^{\natural} has a graded basis.

Note

The boundedness condition on *M* is important here.

Example (The ground ring)

A semi-free DG *R*-module is a bounded below complex of free *R*-modules.

Let *A* be a DG *R*-algebra. A DG *A*-module *M* is semi-free if the underlying A^{\natural} -module M^{\natural} has a graded basis.

Note

The boundedness condition on *M* is important here.

Example (The ground ring)

A semi-free DG *R*-module is a bounded below complex of free *R*-modules.

Example (The Koszul complex)

 $K \otimes_R M$ is a semi-free DG *K*-module for each semi-free DG *R*-module *M*.

Definition

A semi-free DG A-module C is semidualizing if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasi-isomorphism.

Definition

A semi-free DG A-module C is semidualizing if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasi-isomorphism.

Notation

 $\mathfrak{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG *A*-modules.

Definition

A semi-free DG A-module C is semidualizing if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasi-isomorphism.

Notation

 $\mathfrak{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG *A*-modules.

Example (The ground ring)

A projective resolution of a semidualizing *R*-module is a semidualizing DG *R*-module: $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$.

Definition

A semi-free DG A-module C is semidualizing if it is homologically finite and the natural map $A \to \text{Hom}_A(C, C)$ is a quasi-isomorphism.

Notation

 $\mathfrak{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG *A*-modules.

Example (The ground ring)

A projective resolution of a semidualizing *R*-module is a semidualizing DG *R*-module: $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$.

Example (The Koszul complex)

 $K \otimes_R C$ is a semidualizing DG *K*-module for each semidualizing DG *R*-module $C: \mathfrak{S}_{dg}(R) \hookrightarrow \mathfrak{S}_{dg}(K)$.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$.

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R'$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R'$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R')$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R'$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R')$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R')$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(K)$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K)$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K)$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K)$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K}$

 $\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K)$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(R' \otimes_Q \widetilde{K})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(R' \otimes_Q \widetilde{K})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Let A be a DG algebra resolution of R' over Q.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K} \xleftarrow{\simeq} A \otimes_Q \widetilde{K}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(R' \otimes_Q \widetilde{K})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Let A be a DG algebra resolution of R' over Q.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K} \xleftarrow{\simeq} A \otimes_Q \widetilde{K}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(A \otimes_Q \widetilde{K})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Let A be a DG algebra resolution of R' over Q.

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K} \xleftarrow{\simeq} A \otimes_Q \widetilde{K}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(A \otimes_Q \widetilde{K})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Let *A* be a DG algebra resolution of R' over *Q*. \widetilde{K} is a minimal *Q*-free resolution of \overline{k} .

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K} \stackrel{\simeq}{\leftarrow} A \otimes_Q \widetilde{K} \stackrel{\simeq}{\to} A \otimes_Q \overline{k}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(A \otimes_Q \widetilde{K})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Let *A* be a DG algebra resolution of R' over *Q*. \widetilde{K} is a minimal *Q*-free resolution of \overline{k} .

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K} \stackrel{\simeq}{\leftarrow} A \otimes_Q \widetilde{K} \stackrel{\simeq}{\to} A \otimes_Q \overline{k}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(A \otimes_Q \overline{k})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Let *A* be a DG algebra resolution of R' over *Q*. \widetilde{K} is a minimal *Q*-free resolution of \overline{k} .

Theorem (Nasseh and Sather-Wagstaff '12)

The sets $\mathfrak{S}(R)$ and $\mathfrak{S}_{dg}(R)$ are finite.

Outline of Proof.

It suffices to prove that $\mathfrak{S}_{dg}(R)$ is finite since $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$. $R \to R' \to K \cong R' \otimes_Q \widetilde{K} \stackrel{\simeq}{\leftarrow} A \otimes_Q \widetilde{K} \stackrel{\simeq}{\to} A \otimes_Q \overline{k}$

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') pprox \mathfrak{S}_{\mathsf{dg}}(K) pprox \mathfrak{S}_{\mathsf{dg}}(A \otimes_Q \overline{k})$$

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

Let $\mathbf{x} \in \mathfrak{m} R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Let Q be a regular local ring surjecting onto R'.

Let $\widetilde{\mathbf{x}} \in Q$ be a lift of \mathbf{x} , and set $\widetilde{K} = K^Q(\widetilde{\mathbf{x}})$.

Let A be a DG algebra resolution of R' over Q.

 \widetilde{K} is a minimal *Q*-free resolution of \overline{k} .

 $A \otimes_Q \overline{k}$ is a finite dimensional DG \overline{k} -algebra, and $\mathfrak{S}_{dg}(A \otimes_Q \overline{k})$ is finite.