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Semidualizing Modules

Assumption

(R,m, k) is a local ring

Definition (Foxby ’72, Vasconcelos ’74)
A finitely generated R-module is semidualizing if
R ∼= HomR(C,C) and ExtiR(C,C) = 0 for all i ≥ 1.

Example
1 R is a semidualizing R-module.
2 D is dualizing for R if and only if it is semidualizing for R

and idR(D) <∞.

Notation
S(R) = {isomorphism classes of semidualizing R-modules}.

Saeed Nasseh, Sean Sather-Wagstaff A local ring has only finitely many semidualizing modules



Semidualizing Modules

Assumption

(R,m, k) is a local ring

Definition (Foxby ’72, Vasconcelos ’74)
A finitely generated R-module is semidualizing if
R ∼= HomR(C,C) and ExtiR(C,C) = 0 for all i ≥ 1.

Example
1 R is a semidualizing R-module.
2 D is dualizing for R if and only if it is semidualizing for R

and idR(D) <∞.

Notation
S(R) = {isomorphism classes of semidualizing R-modules}.

Saeed Nasseh, Sean Sather-Wagstaff A local ring has only finitely many semidualizing modules



Semidualizing Modules

Assumption

(R,m, k) is a local ring

Definition (Foxby ’72, Vasconcelos ’74)
A finitely generated R-module is semidualizing if
R ∼= HomR(C,C) and ExtiR(C,C) = 0 for all i ≥ 1.

Example
1 R is a semidualizing R-module.

2 D is dualizing for R if and only if it is semidualizing for R
and idR(D) <∞.

Notation
S(R) = {isomorphism classes of semidualizing R-modules}.

Saeed Nasseh, Sean Sather-Wagstaff A local ring has only finitely many semidualizing modules



Semidualizing Modules

Assumption

(R,m, k) is a local ring

Definition (Foxby ’72, Vasconcelos ’74)
A finitely generated R-module is semidualizing if
R ∼= HomR(C,C) and ExtiR(C,C) = 0 for all i ≥ 1.

Example
1 R is a semidualizing R-module.
2 D is dualizing for R if and only if it is semidualizing for R

and idR(D) <∞.

Notation
S(R) = {isomorphism classes of semidualizing R-modules}.

Saeed Nasseh, Sean Sather-Wagstaff A local ring has only finitely many semidualizing modules



Semidualizing Modules

Assumption

(R,m, k) is a local ring

Definition (Foxby ’72, Vasconcelos ’74)
A finitely generated R-module is semidualizing if
R ∼= HomR(C,C) and ExtiR(C,C) = 0 for all i ≥ 1.

Example
1 R is a semidualizing R-module.
2 D is dualizing for R if and only if it is semidualizing for R

and idR(D) <∞.

Notation
S(R) = {isomorphism classes of semidualizing R-modules}.

Saeed Nasseh, Sean Sather-Wagstaff A local ring has only finitely many semidualizing modules



A Conjecture and Partial Solution

Fact (Base-change)

If R → S is a local homomorphism of finite flat dimension, then
S(R) ↪→ S(S) by C 7→ S ⊗R C.

Conjecture (Vasconcelos ’74)

If R is Cohen-Macaulay, then S(R) is finite.

Theorem (Christensen and Sather-Wagstaff ’08)

If R is Cohen-Macaulay and contains a field, then S(R) is finite.

Outline of Proof.

There is a flat local ring homomorphism R → (R′,mR′, k).
Let x ∈ mR′ be a maximal R′-sequence.
Then R′/(x) is artinian and S(R) ↪→ S(R′) ↪→ S(R′/(x)).
A result of Happel essentially shows that S(R′/(x)) is finite.
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Tools for the Complete Solution: DG Algebras

Definition
A commutative differential graded (DG) R-algebra is

1 a graded commutative R-algebra A = ⊕∞i=0Ai with
2 a differential, i.e., a sequence of R-linear maps

∂A
i : Ai → Ai−1 such that ∂A

i ∂
A
i+1 = 0 for all i , such that

3 ∂A satisfies the Leibniz Rule: for all ai ∈ Ai and aj ∈ Aj

∂A
i+j(aiaj) = ∂A

i (ai)aj + (−1)iai∂
A
j (aj).

Example (The ground ring)

R is a DG R-algebra

Example (The Koszul complex)

K = K R(x) is a DG R-algebra for each sequence x ∈ R.
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DG Modules

Definition
A DG A-module is a graded A-module M = ⊕∞i=i0

Mi with a
differential ∂M

i : Mi → Mi−1 that satisfies the Leibniz Rule.

Example (The ground ring)

A DG R-module is a bounded below R-complex,
e.g., a projective resolution of an R-module.

Example (The Koszul complex)
K ⊗R M is a DG K -module for each DG R-module M.
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Semi-free DG Modules

Definition
Let A be a DG R-algebra. A DG A-module M is semi-free if the
underlying A\-module M\ has a graded basis.

Note
The boundedness condition on M is important here.

Example (The ground ring)

A semi-free DG R-module is a bounded below complex of free
R-modules.

Example (The Koszul complex)
K ⊗R M is a semi-free DG K -module for each semi-free DG
R-module M.
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Semidualizing DG Modules
Definition
A semi-free DG A-module C is semidualizing if it is
homologically finite and the natural map A→ HomA(C,C) is a
quasi-isomorphism.

Notation
Sdg(A) is the set of shift-quasiisomorphism classes of
semidualizing DG A-modules.

Example (The ground ring)

A projective resolution of a semidualizing R-module is a
semidualizing DG R-module: S(R) ↪→ Sdg(R).

Example (The Koszul complex)
K ⊗R C is a semidualizing DG K -module for each
semidualizing DG R-module C: Sdg(R) ↪→ Sdg(K ).
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Solution to Vasconcelos’ Conjecture
Theorem (Nasseh and Sather-Wagstaff ’12)

The sets S(R) and Sdg(R) are finite.

Outline of Proof.
It suffices to prove that Sdg(R) is finite since S(R) ↪→ Sdg(R).

R → R′ → K ∼= R′ ⊗Q K̃ '←− A⊗Q K̃ '−→ A⊗Q k

Sdg(R) ↪→ Sdg(R′) ↪→ Sdg(K )≈ Sdg(K ) ≈ Sdg(R′ ⊗Q K̃ )≈ Sdg(A⊗Q K̃ )≈ Sdg(A⊗Q k)

There is a flat local ring homomorphism R → (R′,mR′, k) such
that R′ is complete.
Let x ∈ mR′ be minimal generating sequence and K = K R′

(x).
Let Q be a regular local ring surjecting onto R′.
Let x̃ ∈ Q be a lift of x, and set K̃ = K Q(x̃).
Let A be a DG algebra resolution of R′ over Q.
K̃ is a minimal Q-free resolution of k .
A⊗Q k is a finite dimensional DG k -algebra, and Sdg(A⊗Q k)
is finite.
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