ALGEBRA PRELIMINARY EXAMINATION

AUGUST 2004

NOTES. \mathbb{Z} and \mathbb{Q} are the integers and the rational numbers respectively. All rings are commutative with identity unless specifically indicated otherwise.

- (1) Let p be a positive prime integer and G a nonabelian group of order p^3 with center Z(G). Show that $G/Z(G) \cong \mathbb{Z}_p \oplus \mathbb{Z}_p$.
- (2) Show that there is no simple group of order 72.
- (3) Let G be a group and N a normal subgroup of G such that G/N is abelian. For some $y \in G$, let $\phi_y : G \longrightarrow G$ be the automorphism of G defined by $\phi_y(x) = y^{-1}xy$ for all $x \in G$. Show that for all $g \in G$ that $g^{-1}\phi_y(g) \in N$.
- (4) A Boolean ring is a ring with the property that $x^2 = x$ for all $x \in R$. Show that any Boolean ring is commutative.
- (5) Let R be a commutative ring and I an ideal of R. Show that if R/I is a projective R-module, then I is a principal ideal generated by an idempotent element (that is, an element x such that $x^2 = x$).
- (6) Let R be commutative with identity. An ideal $I \subseteq R$ is said to be idempotent if $I^2 = I$. Show that R contains a proper ideal that is maximal with respect to being idempotent.
- (7) Find all possible Jordan canonical forms of a 4×4 real matrix, A, such that $A^3=0$
- (8) Let J be an injective \mathbb{Z} -module and M any \mathbb{Z} -module. Show that $J \otimes_{\mathbb{Z}} M$ is an injective \mathbb{Z} -module (hint: what is an equivalent characterization of an injective \mathbb{Z} -module?).
- (9) Consider the following commutative diagram of R-modules with both rows exact (you may assume that R is commutative with 1 and that all modules are unitary).

$$0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow 0$$
$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h$$
$$0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow 0$$

Show that if f and h are surjective, then so is g.

(10) Let $\xi_5 = e^{(\frac{2\pi i}{5})}$ be a primitive 5th root of unity. Consider the polynomial $f(x) = x^5 + 7$. Compute the Galois group of this polynomial over the fields $\mathbb{Q}(\xi_5)$ and \mathbb{R} .