ALGEBRA PRELIMINARY EXAMINATION

AUGUST 2004

Notes. \mathbb{Z} and \mathbb{Q} are the integers and the rational numbers respectively. All rings are commutative with identity unless specifically indicated otherwise.
(1) Let p be a positive prime integer and G a nonabelian group of order p^{3} with center $Z(G)$. Show that $G / Z(G) \cong \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$.
(2) Show that there is no simple group of order 72.
(3) Let G be a group and N a normal subgroup of G such that G / N is abelian. For some $y \in G$, let $\phi_{y}: G \longrightarrow G$ be the automorphism of G defined by $\phi_{y}(x)=y^{-1} x y$ for all $x \in G$. Show that for all $g \in G$ that $g^{-1} \phi_{y}(g) \in N$.
(4) A Boolean ring is a ring with the property that $x^{2}=x$ for all $x \in R$. Show that any Boolean ring is commutative.
(5) Let R be a commutative ring and I an ideal of R. Show that if R / I is a projective R-module, then I is a principal ideal generated by an idempotent element (that is, an element x such that $x^{2}=x$).
(6) Let R be commutative with identity. An ideal $I \subseteq R$ is said to be idempotent if $I^{2}=I$. Show that R contains a proper ideal that is maximal with respect to being idempotent.
(7) Find all possible Jordan canonical forms of a 4×4 real matrix, A, such that $A^{3}=0$
(8) Let J be an injective \mathbb{Z}-module and M any \mathbb{Z}-module. Show that $J \otimes_{\mathbb{Z}} M$ is an injective \mathbb{Z}-module (hint: what is an equivalent characterization of an injective \mathbb{Z}-module?).
(9) Consider the following commutative diagram of R-modules with both rows exact (you may assume that R is commutative with 1 and that all modules are unitary).

Show that if f and h are surjective, then so is g.
(10) Let $\xi_{5}=e^{\left(\frac{2 \pi i}{5}\right)}$ be a primitive $5^{\text {th }}$ root of unity. Consider the polynomial $f(x)=x^{5}+7$. Compute the Galois group of this polynomial over the fields $\mathbb{Q}\left(\xi_{5}\right)$ and \mathbb{R}.

